Advances in code-based public-key cryptography
D. J. Bernstein University of Illinois at Chicago

Advertisements

1. pqcrypto.org:

Post-quantum cryptography-
hash-based, lattice-based,
code-based, multivariate quadratic —introduction and bibliography.
2. pq.crypto.tw/pqc11/:

PQCrypto 2011, Taipei,
just before Asiacrypt.
Deadline 24 June 2011.
3. 2011.indocrypt.org:

Indocrypt 2011, Chennai,
just after Asiacrypt.
Deadline 31 July 2011.

The McEliece cryptosystem

(1978 McEliece)
McEliece public key:
linear map $G: \mathbf{F}_{2}^{524} \hookrightarrow \mathbf{F}_{2}^{1024}$
represented as 1024×524 matrix.
McEliece plaintext:
$m \in \mathbf{F}_{2}^{524}$;
and $e \in \mathbf{F}_{2}^{1024}$ of weight 50 .
McEliece ciphertext:
$y=G m+e \in \mathbf{F}_{2}^{1024}$.
Basic problem for attacker:
Given G, y, find codeword $G m$ close to y in the code $G \mathbf{F}_{2}^{524}$.

Instead use parity-check matrix (1986 Niederreiter).

Niederreiter public key:
linear map $H: \mathbf{F}_{2}^{1024} \rightarrow \mathbf{F}_{2}^{500}$ represented as 500×1024 matrix.

Niederreiter plaintext: $m \in \mathbf{F}_{2}^{1024}$ of weight 50 .

Niederreiter ciphertext:
$s=H m \in \mathbf{F}_{2}^{500}$.
Basic problem for attacker:
Given H, s, find low-weight $m \in \mathbf{F}_{2}^{1024}$ with $H m=s$. Equivalent to previous problem.

Information-set decoding

Choose random size-500 subset
$S \subseteq\{1,2,3, \ldots, 1024\}$.
For almost all H :
Good chance
that $\mathbf{F}_{2}^{S} \hookrightarrow \mathbf{F}_{2}^{1024} \xrightarrow{H} \mathbf{F}_{2}^{500}$ is invertible.

Hope $m \in \mathbf{F}_{2}^{S}$; chance $\approx 2^{-53}$.
Apply inverse map to Hm , revealing m if $m \in \mathbf{F}_{2}^{S}$.

If $m \notin \mathbf{F}_{2}^{S}$, try again.
Total cost $\approx 2^{80}$.

Long history, many improvements:
1962 Prange;
1981 Clark (crediting Omura);
1988 Lee-Brickell; 1988 Leon;
1989 Krouk; 1989 Stern;
1989 Dumer;
1990 Coffey-Goodman;
1990 van Tilburg; 1991 Dumer;
1991 Coffey-Goodman-Farrell;
1993 Chabanne-Courteau;
1993 Chabaud;
1994 van Tilburg;
1994 Canteaut-Chabanne;
1998 Canteaut-Chabaud;
1998 Canteaut-Sendrier.

1998 Canteaut-ChabaudSendrier: 2^{68} Alpha cycles to attack a McEliece ciphertext.

2008 Bernstein-Lange-Peters:
further improvements;
2^{58} Core 2 Quad cycles
to attack a McEliece ciphertext.
Ran attack successfully!
Subsequent literature:
2009 Finiasz-Sendrier;
2010 Peters;
2011 Bernstein-Lange-Peters.

Higher security levels

Easily improve security
by scaling parameters up from
McEliece's 1024, 524, 50 example.
Niederreiter public key:
linear $\operatorname{map} H: \mathbf{F}_{2}^{n} \rightarrow \mathbf{F}_{2}^{n-k}$
represented as $(n-k) \times n$ matrix.
Niederreiter plaintext:
$m \in \mathbf{F}_{2}^{n}$ of weight w.
Niederreiter ciphertext:
$s=H m \in \mathbf{F}_{2}^{n-k}$.
How large do n, k, w
have to be for 2^{b} security?

Basic information-set decoding: Hope $m \in \mathbf{F}_{2}^{S}$.
Chance $\binom{n-k}{w} /\binom{n}{w}$.
Trying S costs $\approx n^{3}$.
Total cost $\approx n^{3}\binom{n}{w} /\binom{n-k}{w}$.

Basic information-set decoding: Hope $m \in \mathbf{F}_{2}^{S}$.
Chance $\binom{n-k}{w} /\binom{n}{w}$.
Trying S costs $\approx n^{3}$.
Total cost $\approx n^{3}\binom{n}{w} /\binom{n-k}{w}$.
Standard entropy approximation:
If $w / n \rightarrow W$ as $n \rightarrow \infty$ then
$\binom{n}{w}^{1 / n} \rightarrow \frac{1}{W^{W}(1-W)^{1-W}}$.

Basic information-set decoding: Hope $m \in \mathbf{F}_{2}^{S}$.
Chance $\binom{n-k}{w} /\binom{n}{w}$.
Trying S costs $\approx n^{3}$.
Total cost $\approx n^{3}\binom{n}{w} /\binom{n-k}{w}$.
Standard entropy approximation: If $w / n \rightarrow W$ as $n \rightarrow \infty$ then $\binom{n}{w}^{1 / n} \rightarrow \frac{1}{W^{W}(1-W)^{1-W}}$.

If furthermore $k / n \rightarrow R$ then $\binom{n-k}{w}^{1 / n} \rightarrow \frac{(1-R)^{1-R}}{W^{W}(1-R-W)^{1-R-W}}$.

So cost ${ }^{1 / n} \rightarrow \frac{(1-R-W)^{1-R-W}}{(1-R)^{1-R}(1-W)^{1-W}}$.

1988 Lee-Brickell idea:
Hope $m-e \in \mathbf{F}_{2}^{S}$ for some weight-2 vector $e \in \mathbf{F}_{2}^{n-S}$. Chance $\binom{n-k}{w-2}\binom{k}{2} /\binom{n}{w}$.

Trying S costs $\approx n^{3}$; reuse one matrix inversion for all choices of e.
Speedup $\approx k^{2} w^{2} / 2(n-k-w)^{2}$.

1988 Lee-Brickell idea:
Hope $m-e \in \mathbf{F}_{2}^{S}$ for some weight-2 vector $e \in \mathbf{F}_{2}^{n-S}$. Chance $\binom{n-k}{w-2}\binom{k}{2} /\binom{n}{w}$.

Trying S costs $\approx n^{3}$;
reuse one matrix inversion
for all choices of e.
Speedup $\approx k^{2} w^{2} / 2(n-k-w)^{2}$.
Not visible in cost ${ }^{1 / n}$ limit: $\operatorname{cost}^{1 / n} \rightarrow \frac{(1-R-W)^{1-R-W}}{(1-R)^{1-R}(1-W)^{1-W}}$.
But still quite useful.

Many polynomial speedups in subsequent papers.
e.g. 1988 Leon:

Choose random S as before;
invert $\mathbf{F}_{2}^{S} \hookrightarrow \mathbf{F}_{2}^{n} \xrightarrow{H} \mathbf{F}_{2}^{n-k}$;
choose size- ℓ subset $Z \subseteq S$. Hope $m-e \in \mathbf{F}_{2}^{S-Z}$
for some weight-2 vector e.

Many polynomial speedups in subsequent papers.
e.g. 1988 Leon:

Choose random S as before; invert $\mathbf{F}_{2}^{S} \hookrightarrow \mathbf{F}_{2}^{n} \xrightarrow{H} \mathbf{F}_{2}^{n-k}$; choose size- ℓ subset $Z \subseteq S$. Hope $m-e \in \mathbf{F}_{2}^{S-Z}$
for some weight-2 vector e.
Advantage over Lee-Brickell: quickly reject e if $\varphi(m-e) \neq 0$; $\varphi: \mathbf{F}_{2}^{n} \rightarrow \mathbf{F}_{2}^{Z}$ is composition of $\mathbf{F}_{2}^{n} \rightarrow \mathbf{F}_{2}^{n-k} \rightarrow \mathbf{F}_{2}^{S} \rightarrow \mathbf{F}_{2}^{Z}$.

Some loss of success chance from disallowing \mathbf{F}_{2}^{Z} in $m-e$.

Collision decoding (1989 Stern, independently 1989-1991 Dimer):

Again choose S, Z.
Partition $n-S$ into X, Y.
Hope $m-e-e^{\prime} \in \mathbf{F}_{2}^{S-Z}$
for weight- p vectors e, e^{\prime}
with $e \in \mathbf{F}_{2}^{X}, e^{\prime} \in \mathbf{F}_{2}^{Y}$.

Collision decoding (1989 Stern, independently 1989-1991 Dimer):

Again choose S, Z.
Partition $n-S$ into X, Y.
Hope $m-e-e^{\prime} \in \mathbf{F}_{2}^{S-Z}$
for weight- p vectors e, e^{\prime}
with $e \in \mathbf{F}_{2}^{X}, e^{\prime} \in \mathbf{F}_{2}^{Y}$.
Don't enumerate (e, e^{\prime}).
Make list of $\varphi(m-e)$; make list of $\varphi\left(e^{\prime}\right)$;
find collisions between lists.

Collision decoding (1989 Stern, independently 1989-1991 Dimer):

Again choose S, Z.
Partition $n-S$ into X, Y.
Hope $m-e-e^{\prime} \in \mathbf{F}_{2}^{S-Z}$
for weight- p vectors e, e^{\prime}
with $e \in \mathbf{F}_{2}^{X}, e^{\prime} \in \mathbf{F}_{2}^{Y}$.
Don't enumerate (e, e^{\prime}).
Make list of $\varphi(m-e)$; make list of $\varphi\left(e^{\prime}\right)$;
find collisions between lists.
Optimal p is unbounded.
Exponential speedup for any (R, W), visible in cost ${ }^{1 / n}$ limit!

Ball-collision decoding
(Bernstein-Lange-Peters,
to appear at Crypto 2011):
Partition Z into A, B.
Hope $m-e-e^{\prime}-f-f^{\prime} \in \mathbf{F}_{2}^{S-Z}$
with $e \in \mathbf{F}_{2}^{X}$ of weight p,
$e^{\prime} \in \mathbf{F}_{2}^{Y}$ of weight p,
$f \in \mathbf{F}_{2}^{A}$ of weight $\leq q$,
$f^{\prime} \in \mathbf{F}_{2}^{B}$ of weight $\leq q$.
Expand $\varphi(m-e)$ into
ball of radius q; similarly $\varphi\left(e^{\prime}\right)$; find collisions between balls.

Exponential speedup over Stern for any reasonable (R, W).

Decryption

How does legitimate receiver decrypt s (or y)?

Answer: Secretly generate a fast decoding algorithm D
for a code $C(D)$.
Take random H (or G) with
$C(D)=\operatorname{Ker} H\left(\right.$ or $\left.C(D)=G F_{2}^{k}\right)$.
Or systematic H : smaller, faster.
Fastest algorithms known to exploit McEliece's choice of D
(by, e.g., computing D) are many orders of magnitude slower than collision decoding.

Fix a prime power q;
a positive integer m;
a positive integer $n \leq q^{m}$;
distinct $a_{1}, \ldots, a_{n} \in \mathbf{F}_{q}$; polynomial $g \in \mathbf{F}_{q^{m}}[x]$ with $\operatorname{deg} g<n / m$ and
$g\left(a_{1}\right) \cdots g\left(a_{n}\right) \neq 0$.
The classical Goppa code
$\Gamma_{q}\left(a_{1}, \ldots, a_{n}, g\right)$
is the set of $c \in \mathbf{F}_{q}^{n}$ with
$\sum_{i} c_{i} /\left(x-a_{i}\right)=0$ in $\mathbf{F}_{q^{m}}[x] / g$.
Code dimension $k \geq n-m$ deg g.
Almost always $k=n-m \operatorname{deg} g$.

McEliece's choice of $C(D)$: $\Gamma_{2}\left(a_{1}, \ldots, a_{n}, g\right)$
with irreducible g of degree w.
Can you figure out a_{1}, \ldots, a_{n}, g
given $\Gamma_{2}\left(a_{1}, \ldots, a_{n}, g\right)$?

McEliece's choice of $C(D)$: $\Gamma_{2}\left(a_{1}, \ldots, a_{n}, g\right)$
with irreducible g of degree w.
Can you figure out a_{1}, \ldots, a_{n}, g
given $\Gamma_{2}\left(a_{1}, \ldots, a_{n}, g\right)$?
McEliece's choice of D :
1975 Patterson algorithm
to decode $\operatorname{deg} g$ errors
given a_{1}, \ldots, a_{n}, g.

McEliece's choice of $C(D)$:
$\Gamma_{2}\left(a_{1}, \ldots, a_{n}, g\right)$
with irreducible g of degree w.
Can you figure out a_{1}, \ldots, a_{n}, g
given $\Gamma_{2}\left(a_{1}, \ldots, a_{n}, g\right)$?
McEliece's choice of D :
1975 Patterson algorithm
to decode $\operatorname{deg} g$ errors
given a_{1}, \ldots, a_{n}, g.
Original parameters: $m=10$, $w=50, n=1024, k=524$.

McEliece's choice of $C(D)$:
$\Gamma_{2}\left(a_{1}, \ldots, a_{n}, g\right)$
with irreducible g of degree w.
Can you figure out a_{1}, \ldots, a_{n}, g
given $\Gamma_{2}\left(a_{1}, \ldots, a_{n}, g\right)$?
McEliece's choice of D :
1975 Patterson algorithm
to decode $\operatorname{deg} g$ errors
given a_{1}, \ldots, a_{n}, g.
Original parameters: $m=10$, $w=50, n=1024, k=524$.

Much higher security: $m=12$, $w=150, n=3600, k=1800$.

If $k / n \rightarrow R$ as $n \rightarrow \infty$
then $1-m(\operatorname{deg} g) / n \rightarrow R$ but $m \geq(\lg n) / \lg q$
so $w / n=(\operatorname{deg} g) / n \rightarrow 0$.
Standard conjecture is that decoding is still quite hard: (constant $+o(1))^{n / \lg n}$ as $n \rightarrow \infty$.

McEliece reaches 2^{b} security with $n \in b^{1+o(1)}$.
Encryption and decryption cost only $b^{2+o(1)}$.

ECC also costs $b^{2+o(1), ~}$ but ECC's o(1) seems bigger and ECC isn't post-quantum.

2008 Bernstein-Lange-Peters:
Why stop with deg g errors?
Can take w above $\operatorname{deg} g$.
Use fast list-decoding algorithms
for exactly the same codes.
List can have >1 plaintext, but standard "CCA2 conversions" easily identify correct plaintext.

Each extra error makes
known attacks more difficult. More security for same key size.
\Rightarrow Smaller key for same security.

More codes
"I can increase w using an asymptotically good code!
$k / n \rightarrow R>0$ and
$w / n \rightarrow W>0$."

More codes

"I can increase w using an asymptotically good code!
$k / n \rightarrow R>0$ and
$w / n \rightarrow W>0$."
Maybe, but this isn't easy.
Do you also have a good D ?
Does your D run quickly?
Are there many choices of D ?
No exploitable structure in $C(D)$? Is D actually better than Γ_{2} for reasonable values of n ?

Tempting to increase q.
$n / \sqrt{\lg q}, k / \sqrt{\lg q}, q$
have same key size as $n, k, 2$.
Maybe better security?

Tempting to increase q.
$n / \sqrt{\lg q}, k / \sqrt{\lg q}, q$
have same key size as $n, k, 2$.
Maybe better security?
Problem 1: Structural attacks seem disastrous for large q. e.g. 1992 Shestakov-Sidelnikov broke 1986 Niederreiter proposal using $\Gamma_{q}(\ldots)$ with $q \approx n$.

Tempting to increase q.
$n / \sqrt{\lg q}, k / \sqrt{\lg q}, q$
have same key size as $n, k, 2$.
Maybe better security?
Problem 1: Structural attacks seem disastrous for large q. e.g. 1992 Shestakov-Sidelnikov broke 1986 Niederreiter proposal using $\Gamma_{q}(\ldots)$ with $q \approx n$.

Problem 2: Patterson's algorithm is specific to $q=2$.
Conventional wisdom: correct only $(\operatorname{deg} g) / 2$ errors for $q \geq 3$.

2010 Peters: switching from $q=2$ to $q=31$ gains factor 2 in key size with same security against information-set decoding, despite Problem 2.

2010 Peters: switching from $q=2$ to $q=31$ gains factor 2 in key size with same security against information-set decoding, despite Problem 2.

2010 Bernstein-Lange-Peters: "Wild Goppa codes"
$\Gamma_{q}\left(\ldots, g^{q-1}\right)$ with squarefree g
correct $q(\operatorname{deg} g) / 2$ errors,
generalizing smoothly from $q=2$.
Even more with list decoding.
Gain already for $q=3$.
Ongoing work:
optimizing $\Gamma_{q}\left(\ldots, f g^{q-1}\right)$.

Also many ongoing efforts
to reduce key size by creating
$C(D)$ with visible structure.
But safety is unclear.
e.g.

2010 Gauthier Umana-Leander and 2010 Faugère-Otmani-Perret-Tillich broke most of the quasi-cyclic and quasi-dyadic proposals by 2009 Berger-Cayrel-Gaborit-
Otmani and 2009 MisockiBarreto.

List-decoding algorithms

Most often quoted results:
Take any alternant code over \mathbf{F}_{q} of designed distance $t+1$.
Assume $(n / t) q\left(\lg q^{m}\right) \in(\lg n)^{O(1)}$.

1999 Guruswami-Sudan:

Polynomial-time algorithm
for $w<n-\sqrt{n(n-t-1)}$.
(Roughly: $w<t / 2+t^{2} / 8 n$.)
2000 Koetter-Vardy:
Polynomial-time algorithm
for $w<n^{\prime}-\sqrt{n^{\prime}\left(n^{\prime}-t-1\right)}$ where $n^{\prime}=n(q-1) / q$. (Roughly: $w<t / 2+t^{2} / 8 n+t^{2} / 8 n(q-1)$.)

What does this mean for Γ_{q} ?

Easy application:

$\Gamma_{q}(\ldots, g)$ is an alternant code with designed distance $\operatorname{deg} g+1$.
Slightly above $(\operatorname{deg} g) / 2$ errors.

What does this mean for Γ_{q} ?
Easy application:
$\Gamma_{q}(\ldots, g)$ is an alternant code with designed distance $\operatorname{deg} g+1$.
Slightly above $(\operatorname{deg} g) / 2$ errors.
2010 Bernstein-Lange-Peters:
Plug 1999 Guruswami-Sudan into 1975 Sugiyama-Kasahara-Hirasawa-Namekawa identity
$\Gamma_{q}\left(\ldots, g^{q-1}\right)=\Gamma_{q}\left(\ldots, g^{q}\right)$.

What does this mean for Γ_{q} ?
Easy application:
$\Gamma_{q}(\ldots, g)$ is an alternant code with designed distance $\operatorname{deg} g+1$. Slightly above $(\operatorname{deg} g) / 2$ errors.

2010 Bernstein-Lange-Peters:
Plug 1999 Guruswami-Sudan into 1975 Sugiyama-Kasahara-Hirasawa-Namekawa identity $\Gamma_{q}\left(\ldots, g^{q-1}\right)=\Gamma_{q}\left(\ldots, g^{q}\right)$.

2010 Augot-Barbier-Couvreur:
Plug 2000 Koetter-Vardy into
1975 Sugiyama-Kasahara-
Hirasawa-Namekawa identity.

2011 Bernstein "Simplified highspeed high-distance list decoding for alternant codes" :

Write $J^{\prime}=n^{\prime}-\sqrt{n^{\prime}\left(n^{\prime}-t-1\right)}$.
$n^{O(1)}$ bit operations
if $w \leq J^{\prime}+O((\lg n) / \lg \lg n)$.

2011 Bernstein "Simplified highspeed high-distance list decoding for alternant codes" :

Write $J^{\prime}=n^{\prime}-\sqrt{n^{\prime}\left(n^{\prime}-t-1\right)}$.
$n^{O(1)}$ bit operations
if $w \leq J^{\prime}+O((\lg n) / \lg \lg n)$.
$O\left(n^{4.5}\right)$ bit operations
if $w \leq J^{\prime}+o((\lg n) / \lg \lg n)$.

2011 Bernstein "Simplified highspeed high-distance list decoding for alternant codes" :

Write $J^{\prime}=n^{\prime}-\sqrt{n^{\prime}\left(n^{\prime}-t-1\right)}$.
$n^{O(1)}$ bit operations
if $w \leq J^{\prime}+O((\lg n) / \lg \lg n)$.
$O\left(n^{4.5}\right)$ bit operations
if $w \leq J^{\prime}+o((\lg n) / \lg \lg n)$.
$n(\lg n)^{O(1)}$ bit operations
if $w \leq J^{\prime}-n /(\lg n)^{O(1)}$.
Can of course combine with 1975
Sugiyama-Kasahara-Hirasawa-
Namekawa identity.

Still not really fast.
Big problem for, e.g., $n=3600$.
New wave of "rational"
list-decoding algorithms promise much better speeds: 2007 Wu ; 2008 Bernstein "List decoding for binary Goppa codes" (final version: IWCC 2011).

These algorithms are efficient only up to about J, not J^{\prime}.
Can this limitation be removed? I'm exploring one idea for this: "jet list decoding."

