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Note: In this talk, rings
are commutative and have 1.

“Ring” means a (0,1, 4+, —, -)
imitation of Z: a set with
operations 0, 1, 4+, —, - satisfying
every identity satisfied by Z.



The generalized Nullstellensatz

(critical ideas: 1947 Zariski;
the theorem: independently
1951 Goldman, 1952 Krull)

Theorem: field K, subring R,
genp K < 0o = dg € R—{0}:
R[1/q] is a field, lenpg /g K < 00.

“genp K < 00" means

“leng B < 00" means
B has finite dimension
as an A-vector space.



The usual Nullstellensatz

Corollary: field K, subfield F,
genr K <00 = leng K < 0.
“/Zariski's lemma’; usually
proven via Noether normalization.

Corollary: field K, subfield F,
F algebraically closed,

genFK<oo = K =F.

Corollary, classic Nullstellensatz:
F algebraically closed field,

poly ring R = Flz1,...,z4],

o . R—> K = Kerp =

(21 —a1)R+ 4+ (zy, — an)R
for some a1, ..., an € F.




Exercise: field F, poly ring F|z],
q € Flz] =10} =

Flz][1/q] is

not a field.

Proof via Zariski’'s lemma:

If K = Flx]
then leng F

1/q] is a field

z| < .

Direct proof:

If Flz][1/4]

Is a field

then 1/(1 — zq) = g/q"
for some g € F|z]

so ¢" = (1 —zq)g in Flz]

sol=(1-
h=1-+--.

zq)h with
1+ :cn—lqn—l 4+ ﬁcng

so ¢ = 0, contradiction.



Interlude: Integrality

Roots of monic polys in R|z]
are called “R-integral.”

1. Field F, subring R,
F is R-integral = R is a field.

2. Domain A, subfield F,
a € A ais F-integral =
Flal is a field, leng Fla] < .

3. Rings S, subring R,
R-integral a7y, ..., anp €S5S =
Rlaq, ..., an| is R-integral.

4. Field K, subfield F, a € K,
geFla]—{0}, K = Fla][1/q] =
a is F-integral. (Same exercise!)



Back to the generalization

Corollary: field K, subring R,
genp K<oo, Hilbert ring H—>R
= Ris a field, lenp K < .

“Hilbert” ring H means:
domain R, not a field, H - R,

geR—{0} = R|[1/q] not a field.

e.g. Flz| is a Hilbert ring.
(The same exercise again!)

e.g. Z is a Hilbert ring.
Corollary: Every finitely

generated field is a finite field.
(1940 Malcev)



How is it proven?

Proof for, e.g., K = R|[91, 92, 93]

Define Rg = R; R1 = R|91];

R2 = R[91.92]; R3 = R[91,92,93];
F; = subfield of K gen by R;.

K = F3 = R3 = R2|[g3]

S
T Ry = R1[go]
Fle T
T R1 = Rolg1]
Foe T

Ro = R



The main point of the proof:
Can obtain each F;
by inverting one element of R;.

Wil construct successively
g3€R3—{0} with F3 = R3[1/q3];
g2€Ro—{0} with F2 = Rz[1/g2];
q1€R1—{O} with F1 = Rl:l/Ch:;
go€Ro—{0} with Fo = Ro[1/q0].

Will also see that
enp, K < 00; leng, F3 < o0

enf, F2 < o0o; leng, F1 < 0.
Thus leng, K < 00 as claimed.

Core task: Build gg from g1,
while showing that leng, F1 < oc0.



g1 € R1 = Rolg1] C Folg1].
Rolg1][1/q1] = Ri[1/q1] = F1

so Folg1][1/q1] = F1.

By the exercise, g1 Is Fg-integral.

Folg1] is a field; leng, Fo[g1]<oo.

1/q1 € Folg1] so F1 = Folg1] so
leng, F1<oo; 1/q1 is Fo-integral.

Clear denominators:
g1 and 1/q7 are Rg[l/qq]-integral
for some qo9 € Rg — {0}.

F1 = Ro[1/qo0][91][1/ 1]
is Ro[1/qo]-integral,

so Rg[l/qo] is a field,
SO F() = Ro[l/qo]. Donel!



Common detours (haufig mit Zorn)

Detour N: Define Hilbert ring
as "every prime ideal Is an
intersection of maximal ideals.”

Detour > : Merge polynomial
manipulations into the proof,
instead of highlighting integrality.

Detour /: Work with RO, K1, ...

as quotients of polynomial rings,
instead of working inside K.

Detour 0co: Prove the exercise by
proving that there are infinitely

many maximal ideals in F|z].



Examples of these detours:

Proof Detours
1951 Goldman N, > ,/, ©

1995 Eisenbud N, > ,/, ©

1998 Bernstein none
2000 Stallings N, /, o0
2001 Grayson 00

2006 Swan /



