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Note: In this talk, rings

are commutative and have 1.

“Ring” means a (0; 1;+;�; �)

imitation of Z: a set with

operations 0; 1;+;�; � satisfying

every identity satisfied by Z.



The generalized Nullstellensatz

(critical ideas: 1947 Zariski;

the theorem: independently

1951 Goldman, 1952 Krull)

Theorem: field K, subring R,

genR K <1 ) 9q 2 R � f0g:

R[1=q] is a field, lenR[1=q] K <1.

“genR K <1” means

K = R[g1; : : : ; gn]

for some g1; : : : ; gn 2 K.

“lenA B <1” means

B has finite dimension

as an A-vector space.



The usual Nullstellensatz

Corollary: field K, subfield F ,

genF K <1 ) lenF K <1.

“Zariski’s lemma”; usually

proven via Noether normalization.

Corollary: field K, subfield F ,

F algebraically closed,

genF K <1 ) K = F .

Corollary, classic Nullstellensatz:

F algebraically closed field,

poly ring R = F [x1; : : : ; xn],

' : R � K ) Ker' =

(x1 � �1)R + � � �+ (xn � �n)R

for some �1; : : : ; �n 2 F .



Exercise: field F , poly ring F [x],

q 2 F [x]� f0g )

F [x][1=q] is not a field.

Proof via Zariski’s lemma:

If K = F [x][1=q] is a field

then lenF F [x] <1.

Direct proof:

If F [x][1=q] is a field

then 1=(1� xq) = g=qn

for some g 2 F [x]

so qn = (1� xq)g in F [x]

so 1 = (1� xq)h with

h = 1 + � � �+ xn�1qn�1 + xng

so q = 0, contradiction.



Interlude: Integrality

Roots of monic polys in R[x]

are called “R-integral.”

1. Field F , subring R,

F is R-integral ) R is a field.

2. Domain A, subfield F ,

� 2 A, � is F -integral )

F [�] is a field, lenF F [�] <1.

3. Rings S, subring R,

R-integral �1; : : : ; �n 2 S )

R[�1; : : : ; �n] is R-integral.

4. Field K, subfield F , � 2 K,

q2F [�]�f0g, K = F [�][1=q] )

� is F -integral. (Same exercise!)



Back to the generalization

Corollary: field K, subring R,

genR K<1, Hilbert ring H�R

) R is a field, lenR K <1.

“Hilbert” ring H means:

domain R, not a field, H � R,

q2R�f0g ) R[1=q] not a field.

e.g. F [x] is a Hilbert ring.

(The same exercise again!)

e.g. Z is a Hilbert ring.

Corollary: Every finitely

generated field is a finite field.

(1940 Malcev)



How is it proven?

Proof for, e.g., K = R[g1; g2; g3]:

Define R0 = R; R1 = R[g1];

R2 = R[g1;g2]; R3 = R[g1;g2;g3];

Fi = subfield of K gen by Ri.

K = F3 = R3 = R2[g3]

F2

33ggggggg

R2 = R1[g2]

kkWWWWWWWW

OO

F1

OO

R1 = R0[g1]

kkWWWWWWWW

OO

F0

OO

R0 = R

kkWWWWWWWWWW

OO



The main point of the proof:

Can obtain each Fi
by inverting one element of Ri.

Will construct successively

q32R3�f0g with F3 = R3[1=q3];

q22R2�f0g with F2 = R2[1=q2];

q12R1�f0g with F1 = R1[1=q1];

q02R0�f0g with F0 = R0[1=q0].

Will also see that

lenF3
K <1; lenF2

F3 <1;

lenF1
F2 <1; lenF0

F1 <1.

Thus lenF0
K <1 as claimed.

Core task: Build q0 from q1,

while showing that lenF0
F1 <1.



q1 2 R1 = R0[g1] � F0[g1].

R0[g1][1=q1] = R1[1=q1] = F1

so F0[g1][1=q1] = F1.

By the exercise, g1 is F0-integral.

F0[g1] is a field; lenF0
F0[g1]<1.

1=q1 2 F0[g1] so F1 = F0[g1] so

lenF0
F1<1; 1=q1 is F0-integral.

Clear denominators:

g1 and 1=q1 are R0[1=q0]-integral

for some q0 2 R0 � f0g.

F1 = R0[1=q0][g1][1=q1]

is R0[1=q0]-integral,

so R0[1=q0] is a field,

so F0 = R0[1=q0]. Done!



Common detours (häufig mit Zorn)

Detour \: Define Hilbert ring

as “every prime ideal is an

intersection of maximal ideals.”

Detour
P

: Merge polynomial

manipulations into the proof,

instead of highlighting integrality.

Detour =: Work with R0; R1; : : :

as quotients of polynomial rings,

instead of working inside K.

Detour 1: Prove the exercise by

proving that there are infinitely

many maximal ideals in F [x].



Examples of these detours:

Proof Detours

1951 Goldman \,
P

, =, 1

1995 Eisenbud \,
P

, =, 1

1998 Bernstein none

2000 Stallings \, =, 1

2001 Grayson 1

2006 Swan =


