A classification of detours in proofs of the generalized Nullstellensatz D. J. Bernstein University of Illinois at Chicago Note: In this talk, rings are commutative and have 1. imitation of **Z**: a set with operations $0, 1, +, -, \cdot$ satisfying every identity satisfied by Z.

The generalized Nullstellensatz

(critical ideas: 1947 Zariski; the theorem: independently 1951 Goldman, 1952 Krull)

Theorem: field K, subring R, gen_R $K < \infty \Rightarrow \exists q \in R - \{0\}$: R[1/q] is a field, len_{R[1/q]} $K < \infty$.

" $gen_R K < \infty$ " means $K = R[g_1, \ldots, g_n]$ for some $g_1, \ldots, g_n \in K$.

"len_A $B < \infty$ " means B has finite dimension as an A-vector space.

<u>The usual Nullstellensatz</u>

Corollary: field K, subfield F, $\operatorname{gen}_F K < \infty \implies \operatorname{Ien}_F K < \infty$. "Zariski's lemma"; usually proven via Noether normalization. Corollary: field K, subfield F, F algebraically closed, gen_F $K < \infty \Rightarrow K = F$. Corollary, classic Nullstellensatz: F algebraically closed field, poly ring $R = F[x_1, \ldots, x_n]$, $\varphi: R \twoheadrightarrow K \Rightarrow \operatorname{Ker} \varphi =$ $(x_1 - \alpha_1)R + \cdots + (x_n - \alpha_n)R$ for some $\alpha_1, \ldots, \alpha_n \in F$.

Exercise: field F, poly ring F[x], $q \in F[x] - \{0\} \Rightarrow$ F[x][1/q] is not a field.

Proof via Zariski's lemma: If K = F[x][1/q] is a field then len_F $F[x] < \infty$.

Direct proof: If F[x][1/q] is a field then $1/(1 - xq) = g/q^n$ for some $g \in F[x]$ so $q^n = (1 - xq)g$ in F[x]so 1 = (1 - xq)h with $h = 1 + \dots + x^{n-1}q^{n-1} + x^n g$ so q = 0, contradiction.

Interlude: Integrality

Roots of monic polys in R[x] are called "R-integral."

- 1. Field F, subring R,
- *F* is *R*-integral \Rightarrow *R* is a field.

2. Domain A, subfield F, $\alpha \in A$, α is F-integral \Rightarrow $F[\alpha]$ is a field, $\operatorname{len}_F F[\alpha] < \infty$. 3. Rings S, subring R, R-integral $\alpha_1, \ldots, \alpha_n \in S \Rightarrow$ $R[\alpha_1, \ldots, \alpha_n]$ is R-integral.

4. Field K, subfield F, $\alpha \in K$, $q \in F[\alpha] - \{0\}, K = F[\alpha][1/q] \Rightarrow$ α is F-integral. (Same exercise!)

Back to the generalization

Corollary: field K, subring R, gen_R $K < \infty$, Hilbert ring $H \rightarrow R$ $\Rightarrow R$ is a field, len_R $K < \infty$.

"Hilbert" ring H means: domain R, not a field, $H \rightarrow R$, $q \in R - \{0\} \Rightarrow R[1/q]$ not a field.

e.g. F[x] is a Hilbert ring. (The same exercise again!)

e.g. **Z** is a Hilbert ring. Corollary: Every finitely generated field is a finite field. (1940 Malcev)

How is it proven?

Proof for, e.g., $K = R[g_1, g_2, g_3]$: Define $R_0 = R$; $R_1 = R[g_1]$; $R_2 = R[g_1, g_2]$; $R_3 = R[g_1, g_2, g_3]$; $F_i =$ subfield of K gen by R_i .

The main point of the proof: Can obtain each F_i by inverting one element of R_i .

Will construct successively

 $q_3 \in R_3 - \{0\}$ with $F_3 = R_3[1/q_3]$; $q_2 \in R_2 - \{0\}$ with $F_2 = R_2[1/q_2]$; $q_1 \in R_1 - \{0\}$ with $F_1 = R_1[1/q_1]$; $q_0 \in R_0 - \{0\}$ with $F_0 = R_0[1/q_0]$.

Will also see that $\operatorname{len}_{F_3} K < \infty$; $\operatorname{len}_{F_2} F_3 < \infty$; $\operatorname{len}_{F_1} F_2 < \infty$; $\operatorname{len}_{F_0} F_1 < \infty$. Thus $\operatorname{len}_{F_0} K < \infty$ as claimed.

Core task: Build q_0 from q_1 , while showing that $Ien_{F_0} F_1 < \infty$.

 $q_1 \in R_1 = R_0[g_1] \subseteq F_0[g_1].$ $R_0[g_1][1/q_1] = R_1[1/q_1] = F_1$ so $F_0[g_1][1/q_1] = F_1.$ By the exercise, g_1 is F_0 -integral. $F_0[g_1]$ is a field; $\operatorname{len}_{F_0} F_0[g_1] < \infty.$

 $1/q_1 \in F_0[g_1]$ so $F_1 = F_0[g_1]$ so len_{F0} $F_1 < \infty$; $1/q_1$ is F_0 -integral.

Clear denominators:

 g_1 and $1/q_1$ are $R_0[1/q_0]$ -integral for some $q_0 \in R_0 - \{0\}$.

 $F_1 = R_0[1/q_0][g_1][1/q_1]$ is $R_0[1/q_0]$ -integral, so $R_0[1/q_0]$ is a field, so $F_0 = R_0[1/q_0]$. Done!

Common detours (häufig mit Zorn)

Detour ∩: Define Hilbert ring as "every prime ideal is an intersection of maximal ideals."

Detour \sum : Merge polynomial manipulations into the proof, instead of highlighting integrality.

Detour /: Work with R_0, R_1, \ldots as quotients of polynomial rings, instead of working inside K.

Detour ∞ : Prove the exercise by proving that there are infinitely many maximal ideals in F[x].

Examples of these detours:

ProofDetours1951 Goldman $\cap, \sum, /, \infty$ 1995 Eisenbud $\cap, \sum, /, \infty$ 1998 Bernsteinnone2000 Stallings $\cap, /, \infty$ 2001 Grayson ∞ 2006 Swan/