
Algorithms for primes

D. J. Bernstein

University of Illinois at Chicago

Some literature:

Recognizing primes:

1982 Atkin–Larson “On a

primality test of Solovay and

Strassen”; 1995 Atkin “Intelligent

primality test offer”

Proving primes to be prime:

1993 Atkin–Morain “Elliptic

curves and primality proving”

Factoring integers into primes:

1993 Atkin–Morain “Finding

suitable curves for the elliptic

curve method of factorization”

Enumerating small primes:

2004 Atkin–Bernstein “Prime

sieves using binary quadratic

forms”

Recognizing primes

Fermat: w 2 Z, prime n 2 Z

) wn �w = 0 in Z=n.

e.g. Fast proof of compositeness

of n = 314159265358979323:

in Z=n compute 2n � 2

= 198079119221837430 6= 0.

Recognizing primes

Fermat: w 2 Z, prime n 2 Z

) wn �w = 0 in Z=n.

e.g. Fast proof of compositeness

of n = 314159265358979323:

in Z=n compute 2n � 2

= 198079119221837430 6= 0.

“Carmichael numbers” are

composites that cannot be

proven composite this way.

1994 Alford–Granville–Pomerance:

#fCarmichael numbersg = 1.

Refined Fermat:

w 2 Z, prime n 2 1 + 2Z

) w = 0 in Z=n

or w(n�1)=2 + 1 = 0 in Z=n

or w(n�1)=2 � 1 = 0 in Z=n.

Proof:

wn �w

= w(wn�1 � 1)

= w(w(n�1)=2 + 1)(w(n�1)=2� 1).

Doubly refined Fermat:

w 2 Z, prime n 2 1 + 4Z

) w = 0 in Z=n

or w(n�1)=2 + 1 = 0 in Z=n

or w(n�1)=4 + 1 = 0 in Z=n

or w(n�1)=4 � 1 = 0 in Z=n.

Proof:

wn �w

= w(wn�1 � 1)

= w(w(n�1)=2 + 1)(w(n�1)=2� 1);

= w(w(n�1)=2 + 1)

(w(n�1)=4 + 1)(w(n�1)=4�1).

1966 Artjuhov:

w 2 Z, prime n 2 1 + 2u + 2u+1Z

) w = 0 in Z=n

or w(n�1)=2 + 1 = 0 in Z=n

or w(n�1)=4 + 1 = 0 in Z=n
...

or w(n�1)=2u + 1 = 0 in Z=n

or w(n�1)=2u � 1 = 0 in Z=n.

e.g. Proof that 2821 is not prime:

in Z=2821 have 21410 + 1 = 1521;

2705 + 1 = 2606; 2705 � 1 = 2604.

Non-prime n 2 1 + 2Z

) uniform random

w 2 f1; 2; : : : ; n� 1g
has �75% chance to prove

n non-prime by this test.

Try dlgne choices of w.

Conjecture: If this doesn’t prove

n non-prime then n is prime.

Messy history: Dubois, Selfridge,

Miller, Rabin, Lehmer, Solovay–

Strassen, Monier, Atkin–Larson.

Time (lgn)3+o(1) for

(lgn)1+o(1) exponentiations.

Can we do better?

e.g. Only
�p

lgn
�

choices of w?

Time (lgn)3+o(1) for

(lgn)1+o(1) exponentiations.

Can we do better?

e.g. Only
�p

lgn
�

choices of w?

No! There are too many n’s

that have too many failing w’s.

e.g. 1982 Atkin–Larson:

If 4k + 3; 8k + 5 are prime

then n = (4k + 3)(8k + 5) has

(2k + 1)(4k + 2) failing w’s.

Do better by extending Z=n?

Main credits: Lucas, Selfridge.

e.g. Prime n 2 1 + 2Z, w 2 Z,

w2 � 4 has Jacobi symbol �1

in Z=n) t(n+1)=2 2 f1;�1g
in (Z=n)[t]=(t2 �wt + 1).

Proof: k = (Z=n)[t]=(t2�wt+ 1)

is a field. In k[u] have

u2 �wu + 1 = (u� t)(u� tn)

so in k have tn+1 = 1.

Geometric view: group scheme G

=
�

(x; y) : x2 �wxy + y2 = 1
	

;

addition of (x; y) induced by

mult of y+xt modulo t2�wt+ 1.

w2 � 4 has Jacobi symbol �1

so #G(Z=n) = n + 1 so

(n + 1)(1; 0) = (0; 1) in G(Z=n).

Faster than (Z=n)�? No.

More reliable than (Z=n)�?

Geometric view: group scheme G

=
�

(x; y) : x2 �wxy + y2 = 1
	

;

addition of (x; y) induced by

mult of y+xt modulo t2�wt+ 1.

w2 � 4 has Jacobi symbol �1

so #G(Z=n) = n + 1 so

(n + 1)(1; 0) = (0; 1) in G(Z=n).

Faster than (Z=n)�? No.

More reliable than (Z=n)�?

No. Easily construct many n

that have many bad w.

Try another group scheme?

e.g. E : x2 + y2 = 1� 30x2y2.

Main obstacle: Find #E(Z=n),

assuming that n is prime.

1986 Chudnovsky–Chudnovsky,

1987 Gordon: Build E here

using CM with class number 1.

Faster than (Z=n)�? No.

More reliable than (Z=n)�?

Try another group scheme?

e.g. E : x2 + y2 = 1� 30x2y2.

Main obstacle: Find #E(Z=n),

assuming that n is prime.

1986 Chudnovsky–Chudnovsky,

1987 Gordon: Build E here

using CM with class number 1.

Faster than (Z=n)�? No.

More reliable than (Z=n)�?

No. Easily construct many

“elliptic pseudoprimes.”

1980 Baillie–Wagstaff, 1980

Pomerance–Selfridge–Wagstaff:

One x2 �wxy + y2 = 1 test

plus one (Z=n)� exponentiation.

Time (lgn)2+o(1).

Much more reliable than

two (Z=n)� exponentiations!

$620 for a counterexample,

i.e., a non-proved non-prime.

1995 Atkin:

one (Z=n)� exponentiation

plus one x2 �wxy + y2 = 1 test

plus one cubic test.

$2500 for a counterexample.

Bad news: There should be

infinitely many counterexamples

to the 1980 tests

(1984 Pomerance, adapting

heuristic from 1956 Erdős)

and to Atkin’s test.

Conjecture (new?):

Continuing this series

becomes perfectly reliable

after only (lgn)o(1) tests.

Resulting algorithm

determines primality of n

in time (lgn)2+o(1).

Conjecture (new?):

Continuing this series

becomes perfectly reliable

after only (lgn)o(1) tests.

Resulting algorithm

determines primality of n

in time (lgn)2+o(1).

To optimize o(1):

replace high-degree extensions

with many elliptic curves.

1956 Erdős heuristic:

For each prime divisor p of n:

Force frequent wn�1 = 1 in Z=p

by forcing n� 1 2 (p� 1)Z or

maybe n� 1 2 ((p� 1)=2)Z : : :

1956 Erdős heuristic:

For each prime divisor p of n:

Force frequent wn�1 = 1 in Z=p

by forcing n� 1 2 (p� 1)Z or

maybe n� 1 2 ((p� 1)=2)Z : : :

“Chance” � 1=lcmfp� 1g.

1956 Erdős heuristic:

For each prime divisor p of n:

Force frequent wn�1 = 1 in Z=p

by forcing n� 1 2 (p� 1)Z or

maybe n� 1 2 ((p� 1)=2)Z : : :

“Chance” � 1=lcmfp� 1g.

Force small lcm by

restricting to primes p

with p� 1 =
Q

subset of Q1,

where Q1 is set of small primes.

1984 Pomerance heuristic:

Choose disjoint Q1; Q2.

Restrict to primes p

with p� 1 =
Q

subset of Q1

and p + 1 =
Q

subset of Q2.

Build n from these primes p.

Large chance that

n� 1 2 (p� 1)Z for all p and

n + 1 2 (p + 1)Z for all p.

Obvious extension:

Can similarly fool t tests

starting with Q1; Q2; : : : ; Qt.

: : : but quantitative analysis,

generalizing Pomerance analysis,

suggests that smallest n

is doubly exponential in t,

i.e., t 2 O(lg lgn).

My conjecture: t 2 (lgn)o(1).

Interlude: Building E by CM

How quickly can we build

t elliptic curves E with known

#E(Z=n), assuming n is prime?

(Maybe best: 4 extensions

and t� 4 elliptic curves.)

Assume t � (lgn)0:3.

Compare to ECPP situation:

t 2 (lgn)1+o(1)

to find near-prime order.

Adapting idea of FastECPP

(1990 Shallit):

Compute square roots

of f1; 2; : : : ; bt1=2cg in Z=n.

Time t1=2(lgn)2+o(1).

(Surely t1=2 isn’t optimal.)

Multiply to obtain square roots

of all t1=2-smooth

discriminants � t2.

Time t2(lgn)1+o(1).

Apply Cornacchia.

Time t2(lgn)1+o(1).

Now have � t

CM discriminants for n,

assuming standard heuristics.

If < t: tweak “� t2.”

Find the curves by fast CM:

t2(lgn)1+o(1) + t(lgn)2+o(1)?

Latest news: 2010.09 Sutherland.

Proving primes to be prime

ECPP finds proof of primality

in conjectured time (lgn)5+o(1).

FastECPP: (lgn)4+o(1).

(1990 Shallit)

Verifying proof: time (lgn)3+o(1).

Current project, Bernstein–

Lange–Peters–Swart: Accelerate

(and simplify!) verification.

(lgn)3+o(1), but better o(1).

Standard proof structure:

elliptic curve E over Z=n;

point W 2 E(Z=n)

of prime order q > (n1=4 + 1)2;

recursive proof that q is prime.

Verifier checks

that qW = 0 in E(Z=n)

(so qW = 0 in each E(Z=p));

that W is “stably nonzero”

(so W 6= 0 in each E(Z=p));

that q > (n1=4 + 1)2;

and that q is prime.

Bad news, part 1:

Findable q’s are close to n,

so recursion has many levels.

Bad news, part 2:

Arithmetic in E(Z=n) is slow!

Engineer’s defn of E(Z=n)

(e.g., 1986 Goldwasser–Kilian)

computes gcd at each step.

Bad news, part 1:

Findable q’s are close to n,

so recursion has many levels.

Bad news, part 2:

Arithmetic in E(Z=n) is slow!

Engineer’s defn of E(Z=n)

(e.g., 1986 Goldwasser–Kilian)

computes gcd at each step.

Mathematician’s defn of E(Z=n)

(e.g., 1987 Lenstra)

computes gcd at each step.

Division-polynomial ECPP

(e.g., 2005 Morain)

uses many mults per bit.

Division-polynomial ECPP

(e.g., 2005 Morain)

uses many mults per bit.

Jacobian coordinates are

somewhat faster but still

(9 + o(1)) lgn mults, including

(1 + o(1)) lgn for multi-gcd.

Division-polynomial ECPP

(e.g., 2005 Morain)

uses many mults per bit.

Jacobian coordinates are

somewhat faster but still

(9 + o(1)) lgn mults, including

(1 + o(1)) lgn for multi-gcd.

“Montgomery ladder, 1 7! 0”

(2006 Bernstein) reduces 9 to 8

but proof is an unholy mess.

Edwards to the rescue!

Edwards addition law for

x2 + y2 = 1 + dx2y2

is complete for non-square d.

(2007 Bernstein–Lange)

Can skip the multi-gcd.

(7 + o(1))) lgn mults,

with very small o(1).

State of the art: 2010 Hisil.

Need correct computations in

E(Z=p) for every prime p in n.

Is d non-square in Z=p?

Need correct computations in

E(Z=p) for every prime p in n.

Is d non-square in Z=p?

Solution: Take d with

Jacobi symbol �1 in Z=n.

Must be non-square in some Z=p.

Deduce p � (q1=2 � 1)2.

Verify: no small primes in n.

Conclude that n is prime.

Can check larger order to reduce

“small.” Many optimizations.

Interlude: addition laws

1985 H. Lange–Ruppert:

A(k) has a complete system

of addition laws, degree � (3; 3).

Symmetry) degree � (2; 2).

“The proof is nonconstructive: : :

To determine explicitly a

complete system of addition laws

requires tedious computations

already in the easiest case

of an elliptic curve

in Weierstrass normal form.”

1985 Lange–Ruppert:

Explicit complete system

of 3 addition laws

for short Weierstrass curves.

Reduce formulas to 53 monomials

by introducing extra variables

xiyj + xjyi, xiyj � xjyi.

1987 Lange–Ruppert:

Explicit complete system

of 3 addition laws

for long Weierstrass curves.

1995 Bosma–Lenstra:

Explicit complete system

of 2 addition laws

for long Weierstrass curves:

X3; Y3; Z3; X
0

3; Y
0

3 ; Z
0

3

2 Z[a1; a2; a3; a4; a6;

X1; Y1; Z1; X2; Y2; Z2].

1995 Bosma–Lenstra:

Explicit complete system

of 2 addition laws

for long Weierstrass curves:

X3; Y3; Z3; X
0

3; Y
0

3 ; Z
0

3

2 Z[a1; a2; a3; a4; a6;

X1; Y1; Z1; X2; Y2; Z2].

My previous slide in this talk:

Bosma–Lenstra Y 0

3 ; Z
0

3.

1995 Bosma–Lenstra:

Explicit complete system

of 2 addition laws

for long Weierstrass curves:

X3; Y3; Z3; X
0

3; Y
0

3 ; Z
0

3

2 Z[a1; a2; a3; a4; a6;

X1; Y1; Z1; X2; Y2; Z2].

My previous slide in this talk:

Bosma–Lenstra Y 0

3 ; Z
0

3.

Actually, slide shows

Publish(Y 0

3);Publish(Z 0

3),

where Publish introduces typos.

What this means:

For all fields k,

all P2 Weierstrass curves

E=k : Y 2Z + a1XY Z + a3Y Z
2 =

X3 + a2X
2Z + a4XZ

2 + a6Z
3,

all P1 = (X1 : Y1 : Z1) 2 E(k),

all P2 = (X2 : Y2 : Z2) 2 E(k):

(X3 : Y3 : Z3)

is P1 + P2 or (0 : 0 : 0);

(X 0

3 : Y 0

3 : Z 0

3)

is P1 + P2 or (0 : 0 : 0);

at most one of these is (0 : 0 : 0).

2009 Bernstein–T. Lange:

For all fields k with 2 6= 0,

all P1 � P1 Edwards curves E=k :

X2T 2 + Y 2Z2 = Z2T 2 + dX2Y 2,

all P1; P2 2 E(k),

P1 = ((X1 : Z1); (Y1 : T1)),

P2 = ((X2 : Z2); (Y2 : T2)):

(X3 : Z3) is x(P1 + P2) or (0 : 0);

(X 0

3 : Z 0

3) is x(P1 + P2) or (0 : 0);

(Y3 : T3) is y(P1 + P2) or (0 : 0);

(Y 0

3 : T 0

3) is y(P1 + P2) or (0 : 0);

at most one of these is (0 : 0).

X3 = X1Y2Z2T1 + X2Y1Z1T2,

Z3 = Z1Z2T1T2 + dX1X2Y1Y2,

Y3 = Y1Y2Z1Z2 �X1X2T1T2,

T3 = Z1Z2T1T2 � dX1X2Y1Y2,

X 0

3 = X1Y1Z2T2 + X2Y2Z1T1,

Z 0

3 = X1X2T1T2 + Y1Y2Z1Z2,

Y 0

3 = X1Y1Z2T2 �X2Y2Z1T1,

T 0

3 = X1Y2Z2T1 �X2Y1Z1T2.

Much, much, much simpler than

Lange–Ruppert, Bosma–Lenstra.

Also much easier to prove.

1987 Lenstra: Use Lange–Ruppert

complete system of addition laws

to computationally define E(R)

for more general rings R.

Define P2(R) = f(X : Y : Z) :

X; Y; Z 2 R; XR+Y R+ZR = Rg
where (X : Y : Z) is the module

f(�X; �Y; �Z) : � 2 Rg.

Define E(R) =

f(X : Y : Z) 2 P2(R) :

Y 2Z = X3 + a4XZ
2 + a6Z

3g.

To define (and compute) sum

(X1 : Y1 : Z1) + (X2 : Y2 : Z2):

Consider (and compute)

Lange–Ruppert (X3 : Y3 : Z3),

(X 0

3 : Y 0

3 : Z 0

3), (X 00

3 : Y 00

3 : Z 00

3).

Add these R-modules:

f (�X3; �Y3; �Z3)

+ (�0X 0

3; �
0Y 0

3 ; �
0Z 0

3)

+ (�00X 00

3 ; �
00Y 00

3 ; �
00Z 00

3) :

�; �0; �00 2 Rg.

Express as (X : Y : Z);

assume trivial class group of R.

Factoring integers into primes

1993 Atkin–Morain “Finding

suitable curves for the elliptic

curve method of factorization”:

“For practical application,

one may as well use the largest

group available, namely the group

(Z=8Z)� (Z=2Z) of x3.1, giving a

prescribed factor of 16 in k.”

2010 Bernstein–Birkner–Lange:

Better to switch to a family of

twisted Edwards curves

�x2 + y2 = 1 + dx2y2

with Z=6 torsion.

Expected benefit:

These curves are very fast.

2010 Bernstein–Birkner–Lange:

Better to switch to a family of

twisted Edwards curves

�x2 + y2 = 1 + dx2y2

with Z=6 torsion.

Expected benefit:

These curves are very fast.

Unexpected benefit:

These curves find more primes

despite smaller torsion.

Mulmods/15-bit prime found:

620

640

660

680

700

720

740

760

780

800

1 250 500 750 1000

Mulmods/16-bit prime found:

750

800

850

900

950

1000

1050

1 250 500 750 1000

Mulmods/17-bit prime found:

1000

1050

1100

1150

1200

1250

1300

1350

1 250 500 750 1000

Mulmods/18-bit prime found:

1350

1400

1450

1500

1550

1600

1650

1700

1750

1 250 500 750 1000

Mulmods/19-bit prime found:

1700

1750

1800

1850

1900

1950

2000

2050

2100

1 250 500 750 1000

Mulmods/20-bit prime found:

2150

2200

2250

2300

2350

2400

2450

2500

2550

2600

2650

1 250 500 750 1000

Mulmods/21-bit prime found:

2700

2800

2900

3000

3100

3200

3300

3400

3500

1 250 500 750 1000

Mulmods/22-bit prime found:

3600

3700

3800

3900

4000

4100

4200

4300

4400

1 250 500 750 1000

Mulmods/23-bit prime found:

4600

4700

4800

4900

5000

5100

5200

5300

5400

1 250 500 750 1000

Mulmods/24-bit prime found:

5800

5900

6000

6100

6200

6300

6400

6500

6600

6700

6800

1 250 500 750 1000

Mulmods/25-bit prime found:

7200

7400

7600

7800

8000

8200

8400

8600

1 250 500 750 1000

Mulmods/26-bit prime found:

9000

9200

9400

9600

9800

10000

10200

10400

10600

1 250 500 750 1000

Enumerating small primes

Sieve of Eratosthenes

enumerates products ij;

i.e., enumerates values �x2 + y2;

i.e., enumerates norms of

elements y + xt of Z[t]=(t2 � 1).

Determines primality of n

by counting representations

of n as such norms.

Fast computation if batched

across all n 2 f1; 2; : : : ; Hg.

Sieve of Atkin enumerates

4x2 + y2 for n 2 1 + 4Z,

3x2 + y2 for n 2 7 + 12Z,

3x2 � y2 for n 2 11 + 12Z.

Fundamentally more efficient

than sieve of Eratosthenes:

Q(
p�1), Q(

p�3), Q(
p

3) are

smaller than “Q(
p

1)” = Q�Q.

(Can we determine primality

by enumerating points

on elliptic curves?)

Consequence: Can print

the primes in f1; 2; : : : ; Hg,

in order, using Θ(H= lg lgH)

ops on Θ(lgH)-bit integers

and H1=2+o(1) bits of memory.

Galway: H1=3+o(1).

H1=4+o(1) should be doable

with LLL, Coppersmith, etc.

But is this a meaningful game?

Radeon 5970 graphics card:

2 320 000 000 000 mults/second.

$600; consumes 300 watts.

Can run at even higher speed

using more power, more fans:

Need better algorithms

with massive parallelism,

very little communication.

Good example, 2006 Sorenson

“The pseudosquares prime sieve”:

Θ(H lgH) operations,

Θ((lgH)2) bits of memory,

assuming standard conjectures.

Output is always correct:

primes in f1; 2; : : : ; Hg.

