Algorithms for primes

D. J. Bernstein

University of Illinois at Chicago

Some literature:
Recognizing primes:
1982 Atkin-Larson "On a
primality test of Solovay and
Strassen"; 1995 Atkin "Intelligent primality test offer"

Proving primes to be prime:
1993 Atkin-Morain "Elliptic curves and primality proving"

Factoring integers into primes:
1993 Atkin-Morain "Finding suitable curves for the elliptic curve method of factorization"

Enumerating small primes:
2004 Atkin-Bernstein "Prime sieves using binary quadratic forms"

Recognizing primes

Fermat: $w \in \mathbf{Z}$, prime $n \in \mathbf{Z}$ $\Rightarrow w^{n}-w=0$ in \mathbf{Z} / n.
e.g. Fast proof of compositeness of $n=314159265358979323$:
in \mathbf{Z} / n compute $2^{n}-2$
$=198079119221837430 \neq 0$.

Recognizing primes

Fermat: $w \in \mathbf{Z}$, prime $n \in \mathbf{Z}$ $\Rightarrow w^{n}-w=0$ in \mathbf{Z} / n.
e.g. Fast proof of compositeness of $n=314159265358979323$:
in \mathbf{Z} / n compute $2^{n}-2$
$=198079119221837430 \neq 0$.
"Carmichael numbers" are composites that cannot be proven composite this way. 1994 Alford-Granville-Pomerance: $\#\{$ Carmichael numbers $\}=\infty$.

Refined Fermat:
$w \in \mathbf{Z}$, prime $n \in 1+2 \mathbf{Z}$
$\Rightarrow w=0$ in \mathbf{Z} / n
or $w^{(n-1) / 2}+1=0$ in \mathbf{Z} / n or $w^{(n-1) / 2}-1=0$ in \mathbf{Z} / n.

Proof:
$w^{n}-w$
$=w\left(w^{n-1}-1\right)$
$=w\left(w^{(n-1) / 2}+1\right)\left(w^{(n-1) / 2}-1\right)$.

Doubly refined Fermat:

$w \in \mathbf{Z}$, prime $n \in 1+4 \mathbf{Z}$
$\Rightarrow w=0$ in \mathbf{Z} / n
or $w^{(n-1) / 2}+1=0$ in \mathbf{Z} / n or $w^{(n-1) / 4}+1=0$ in \mathbf{Z} / n or $w^{(n-1) / 4}-1=0$ in \mathbf{Z} / n.

Proof:
$w^{n}-w$
$=w\left(w^{n-1}-1\right)$
$=w\left(w^{(n-1) / 2}+1\right)\left(w^{(n-1) / 2}-1\right)$;
$=w\left(w^{(n-1) / 2}+1\right)$

$$
\left(w^{(n-1) / 4}+1\right)\left(w^{(n-1) / 4}-1\right)
$$

1966 Artjuhov:
$w \in \mathbf{Z}$, prime $n \in 1+2^{u}+2^{u+1} \mathbf{Z}$ $\Rightarrow w=0$ in \mathbf{Z} / n
or $w^{(n-1) / 2}+1=0$ in \mathbf{Z} / n or $w^{(n-1) / 4}+1=0$ in \mathbf{Z} / n
or $w^{(n-1) / 2^{u}}+1=0$ in \mathbf{Z} / n or $w^{(n-1) / 2^{u}}-1=0$ in \mathbf{Z} / n. e.g. Proof that 2821 is not prime: in $\mathbf{Z} / 2821$ have $2^{1410}+1=1521$; $2^{705}+1=2606 ; 2^{705}-1=2604$.

Non-prime $n \in 1+2 \mathbf{Z}$
\Rightarrow uniform random
$w \in\{1,2, \ldots, n-1\}$
has $\geq 75 \%$ chance to prove
n non-prime by this test.
Try $\lceil\lg n\rceil$ choices of w.
Conjecture: If this doesn't prove n non-prime then n is prime.

Messy history: Dubois, Selfridge, Miller, Rabin, Lehmer, SolovayStrassen, Monier, Atkin-Larson.

Time $(\lg n)^{3+o(1)}$ for
$(\lg n)^{1+o(1)}$ exponentiations.
Can we do better?
e.g. Only $\lceil\sqrt{\lg n}\rceil$ choices of w ?

Time $(\lg n)^{3+o(1)}$ for
$(\lg n)^{1+o(1)}$ exponentiations.
Can we do better?
e.g. Only $\lceil\sqrt{\lg n}\rceil$ choices of w ?

No! There are too many n 's that have too many failing w 's.
e.g. 1982 Atkin-Larson:

If $4 k+3,8 k+5$ are prime then $n=(4 k+3)(8 k+5)$ has $(2 k+1)(4 k+2)$ failing w 's.

Do better by extending \mathbf{Z} / n ?
Main credits: Lucas, Selfridge.
e.g. Prime $n \in 1+2 \mathbf{Z}, w \in \mathbf{Z}$, $w^{2}-4$ has Jacobi symbol -1 in $\mathbf{Z} / n \Rightarrow t^{(n+1) / 2} \in\{1,-1\}$
in $(\mathbf{Z} / n)[t] /\left(t^{2}-w t+1\right)$.
Proof: $k=(\mathbf{Z} / n)[t] /\left(t^{2}-w t+1\right)$
is a field. In $k[u]$ have
$u^{2}-w u+1=(u-t)\left(u-t^{n}\right)$
so in k have $t^{n+1}=1$.

Geometric view: group scheme G $=\left\{(x, y): x^{2}-w x y+y^{2}=1\right\}$; addition of (x, y) induced by mult of $y+x t$ modulo $t^{2}-w t+1$.
$w^{2}-4$ has Jacobi symbol -1 so $\# G(\mathbf{Z} / n)=n+1$ so $(n+1)(1,0)=(0,1)$ in $G(\mathbf{Z} / n)$.

Faster than $(\mathbf{Z} / n)^{*}$? No. More reliable than $(\mathbf{Z} / n)^{*}$?

Geometric view: group scheme G $=\left\{(x, y): x^{2}-w x y+y^{2}=1\right\}$; addition of (x, y) induced by mult of $y+x t$ modulo $t^{2}-w t+1$.
$w^{2}-4$ has Jacobi symbol -1 so $\# G(\mathbf{Z} / n)=n+1$ so $(n+1)(1,0)=(0,1)$ in $G(\mathbf{Z} / n)$.

Faster than $(\mathbf{Z} / n)^{*}$? No.
More reliable than $(\mathbf{Z} / n)^{*}$?
No. Easily construct many n that have many bad w.

Try another group scheme?
e.g. $E: x^{2}+y^{2}=1-30 x^{2} y^{2}$. Main obstacle: Find $\# E(\mathbf{Z} / n)$, assuming that n is prime.

1986 Chudnovsky-Chudnovsky, 1987 Gordon: Build E here using CM with class number 1 .

Faster than $(\mathbf{Z} / n)^{*}$? No. More reliable than $(\mathbf{Z} / n)^{*}$?

Try another group scheme?
e.g. $E: x^{2}+y^{2}=1-30 x^{2} y^{2}$. Main obstacle: Find $\# E(\mathbf{Z} / n)$, assuming that n is prime.

1986 Chudnovsky-Chudnovsky, 1987 Gordon: Build E here using CM with class number 1 .

Faster than $(\mathbf{Z} / n)^{*}$? No. More reliable than $(\mathbf{Z} / n)^{*}$?
No. Easily construct many "elliptic pseudoprimes."

1980 Baillie-Wagstaff, 1980
Pomerance-Selfridge-Wagstaff:
One $x^{2}-w x y+y^{2}=1$ test
plus one $(\mathbf{Z} / n)^{*}$ exponentiation.
Time $(\lg n)^{2+o(1)}$.
Much more reliable than two $(\mathbf{Z} / n)^{*}$ exponentiations!
$\$ 620$ for a counterexample,
i.e., a non-proved non-prime.

1995 Atkin:
one $(\mathbf{Z} / n)^{*}$ exponentiation
plus one $x^{2}-w x y+y^{2}=1$ test plus one cubic test.
$\$ 2500$ for a counterexample.
Bad news: There should be infinitely many counterexamples to the 1980 tests
(1984 Pomerance, adapting heuristic from 1956 Erdős) and to Atkin's test.

Conjecture (new?):
Continuing this series
becomes perfectly reliable after only $(\lg n)^{o(1)}$ tests.

Resulting algorithm determines primality of n in time $(\lg n)^{2+o(1)}$.

Conjecture (new?):

Continuing this series
becomes perfectly reliable after only $(\lg n)^{o(1)}$ tests.

Resulting algorithm determines primality of n in time $(\lg n)^{2+o(1)}$.

To optimize $o(1)$:
replace high-degree extensions with many elliptic curves.

1956 Erdős heuristic:
For each prime divisor p of n : Force frequent $w^{n-1}=1$ in \mathbf{Z} / p by forcing $n-1 \in(p-1) \mathbf{Z}$ or maybe $n-1 \in((p-1) / 2) \mathbf{Z} \ldots$

1956 Erdős heuristic:
For each prime divisor p of n : Force frequent $w^{n-1}=1$ in \mathbf{Z} / p by forcing $n-1 \in(p-1) \mathbf{Z}$ or maybe $n-1 \in((p-1) / 2) \mathbf{Z} \ldots$
"Chance" $\approx 1 / \mathrm{lcm}\{p-1\}$.

1956 Erdős heuristic:
For each prime divisor p of n : Force frequent $w^{n-1}=1$ in \mathbf{Z} / p by forcing $n-1 \in(p-1) \mathbf{Z}$ or maybe $n-1 \in((p-1) / 2) \mathbf{Z} \ldots$
"Chance" $\approx 1 / \mathrm{lcm}\{p-1\}$.
Force small lcm by restricting to primes p
with $p-1=\Pi$ subset of Q_{1}, where Q_{1} is set of small primes.

1984 Pomerance heuristic:
Choose disjoint Q_{1}, Q_{2}.
Restrict to primes p
with $p-1=\prod$ subset of Q_{1} and $p+1=\prod$ subset of Q_{2}.
Build n from these primes p.
Large chance that
$n-1 \in(p-1) \mathbf{Z}$ for all p and $n+1 \in(p+1) \mathbf{Z}$ for all p.

Obvious extension:
Can similarly fool t tests starting with $Q_{1}, Q_{2}, \ldots, Q_{t}$.
... but quantitative analysis, generalizing Pomerance analysis, suggests that smallest n is doubly exponential in t, i.e., $t \in O(\lg \lg n)$.

My conjecture: $t \in(\lg n)^{o(1)}$.

Interlude: Building E by CM

How quickly can we build t elliptic curves E with known $\# E(\mathbf{Z} / n)$, assuming n is prime? (Maybe best: 4 extensions and $t-4$ elliptic curves.)

Assume $t \leq(\lg n)^{0.3}$.
Compare to ECPP situation:
$t \in(\lg n)^{1+o(1)}$
to find near-prime order.

Adapting idea of FastECPP (1990 Shallit):

Compute square roots
of $\left\{1,2, \ldots,\left\lfloor t^{1 / 2}\right\rfloor\right\}$ in \mathbf{Z} / n.
Time $t^{1 / 2}(\lg n)^{2+o(1)}$.
(Surely $t^{1 / 2}$ isn't optimal.)
Multiply to obtain square roots
of all $t^{1 / 2}$-smooth
discriminants $\leq t^{2}$.
Time $t^{2}(\lg n)^{1+o(1)}$.

Apply Cornacchia.
Time $t^{2}(\lg n)^{1+o(1)}$.
Now have $\approx t$
CM discriminants for n, assuming standard heuristics. If $<t$: tweak " $\leq t^{2}$."

Find the curves by fast CM: $t^{2}(\lg n)^{1+o(1)}+t(\lg n)^{2+o(1)} ?$
Latest news: 2010.09 Sutherland.

Proving primes to be prime

ECPP finds proof of primality

 in conjectured time $(\lg n)^{5+o(1)}$.FastECPP: $(\lg n)^{4+o(1)}$.
(1990 Shallit)
Verifying proof: time $(\lg n)^{3+o(1)}$.
Current project, Bernstein-Lange-Peters-Swart: Accelerate (and simplify!) verification.
$(\lg n)^{3+o(1)}$, but better $o(1)$.

Standard proof structure: elliptic curve E over \mathbf{Z} / n; point $W \in E(\mathbf{Z} / n)$ of prime order $q>\left(n^{1 / 4}+1\right)^{2}$; recursive proof that q is prime.

Verifier checks
that $q W=0$ in $E(\mathbf{Z} / n)$
(so $q W=0$ in each $E(\mathbf{Z} / p)$);
that W is "stably nonzero"
(so $W \neq 0$ in each $E(\mathbf{Z} / p)$); that $q>\left(n^{1 / 4}+1\right)^{2}$; and that q is prime.

Bad news, part 1:
Findable q 's are close to n, so recursion has many levels.

Bad news, part 2:
Arithmetic in $E(\mathbf{Z} / n)$ is slow!
Engineer's defn of $E(\mathbf{Z} / n)$
(e.g., 1986 Goldwasser-Kilian)
computes gcd at each step.

Bad news, part 1:
Findable q 's are close to n, so recursion has many levels.

Bad news, part 2:
Arithmetic in $E(\mathbf{Z} / n)$ is slow!
Engineer's defn of $E(\mathbf{Z} / n)$
(e.g., 1986 Goldwasser-Kilian)
computes gcd at each step.
Mathematician's defn of $E(\mathbf{Z} / n)$
(e.g., 1987 Lenstra)
computes gcd at each step.

Division-polynomial ECPP (e.g., 2005 Morain) uses many mults per bit.

Division-polynomial ECPP
(e.g., 2005 Morain)
uses many mults per bit.
Jacobian coordinates are somewhat faster but still $(9+o(1)) \lg n$ mults, including
$(1+o(1)) \lg n$ for multi-gcd.

Division-polynomial ECPP
(e.g., 2005 Morain)
uses many mults per bit.
Jacobian coordinates are somewhat faster but still
$(9+o(1)) \lg n$ mults, including
$(1+o(1)) \lg n$ for multi-gcd.
"Montgomery ladder, $\infty \mapsto 0$ "
(2006 Bernstein) reduces 9 to 8 but proof is an unholy mess.

Edwards to the rescue!

Edwards addition law for
$x^{2}+y^{2}=1+d x^{2} y^{2}$
is complete for non-square d.
(2007 Bernstein-Lange)
Can skip the multi-gcd.
$(7+o(1))) \lg n$ mults,
with very small $o(1)$.
State of the art: 2010 Hisil.

Need correct computations in $E(\mathbf{Z} / p)$ for every prime p in n. Is d non-square in \mathbf{Z} / p ?

Need correct computations in $E(\mathbf{Z} / p)$ for every prime p in n. Is d non-square in \mathbf{Z} / p ?

Solution: Take d with Jacobi symbol -1 in \mathbf{Z} / n. Must be non-square in some \mathbf{Z} / p.
Deduce $p \geq\left(q^{1 / 2}-1\right)^{2}$.
Verify: no small primes in n.
Conclude that n is prime.
Can check larger order to reduce "small." Many optimizations.

Interlude: addition laws

1985 H. Lange-Ruppert:
$A(\bar{k})$ has a complete system
of addition laws, degree $\leq(3,3)$.
Symmetry \Rightarrow degree $\leq(2,2)$.
"The proof is nonconstructive...
To determine explicitly a complete system of addition laws requires tedious computations already in the easiest case of an elliptic curve in Weierstrass normal form."

1985 Lange-Ruppert:
Explicit complete system
of 3 addition laws
for short Weierstrass curves.
Reduce formulas to 53 monomials by introducing extra variables
$x_{i} y_{j}+x_{j} y_{i}, x_{i} y_{j}-x_{j} y_{i}$.
1987 Lange-Ruppert:
Explicit complete system
of 3 addition laws
for long Weierstrass curves.

$$
\begin{aligned}
& Y_{3}^{(2)}=Y_{1}^{2} Y_{2}^{2}+a_{1} X_{2} Y_{1}^{2} Y_{2}+\left(a_{1} a_{2}-3 a_{3}\right) X_{1} X_{2}^{2} Y_{1} \\
& +a_{3} Y_{1}^{2} Y_{2} Z_{2}-\left(a_{2}^{2}-3 a_{4}\right) X_{1}^{2} X_{2}^{2} \\
& +\left(a_{1} a_{4}-a_{2} a_{3}\right)\left(2 X_{1} Z_{2}+X_{2} Z_{1}\right) X_{2} Y_{1} \\
& +\left(a_{1}^{2} a_{4}-2 a_{1} a_{2} a_{3}+3 a_{3}^{2}\right) X_{1}^{2} X_{2} Z_{2} \\
& -\left(a_{2} a_{4}-9 a_{6}\right) X_{1} X_{2}\left(X_{1} Z_{2}+X_{2} Z_{1}\right) \\
& +\left(3 a_{1} a_{6}-a_{3} a_{4}\right)\left(X_{1} Z_{2}+2 X_{2} Z_{1}\right) Y_{1} Z_{2} \\
& +\left(3 a_{1}^{2} a_{6}-2 a_{1} a_{3} a_{4}+a_{2} a_{3}^{2}+3 a_{2} a_{6}-a_{4}^{2}\right) X_{1} Z_{2}\left(X_{1} Z_{2}+2 X_{2} Z_{1}\right) \\
& -\left(3 a_{2} a_{6}-a_{4}^{2}\right)\left(X_{1} Z_{2}+X_{2} Z_{1}\right)\left(X_{1} Z_{2}-X_{2} Z_{1}\right) \\
& +\left(a_{1}^{3} a_{6}-a_{1}^{2} a_{3} a_{4}+a_{1} a_{2} a_{3}^{2}-a_{1} a_{4}^{2}+4 a_{1} a_{2} a_{6}-a_{3}^{3}-3 a_{3} a_{6}\right) Y_{1} Z_{1} Z_{2}^{2} \\
& +\left(a_{1}^{4} a_{6}-a_{1}^{3} a_{3} a_{4}+5 a_{1}^{2} a_{2} a_{6}+a_{1}^{2} a_{2} a_{3}^{2}-a_{1} a_{2} a_{3} a_{4}-a_{1} a_{3}^{3}-3 a_{1} a_{3} a_{6}\right. \\
& \left.-a_{1}^{2} a_{4}^{2}+a_{2}^{2} a_{3}^{2}-a_{2} a_{4}^{2}+4 a_{2}^{2} a_{6}-a_{3}^{2} a_{4}-3 a_{4} a_{6}\right) X_{1} Z_{1} Z_{2}^{2} \\
& +\left(a_{1}^{2} a_{2} a_{6}-a_{1} a_{2} a_{3} a_{4}+3 a_{1} a_{3} a_{6}+a_{2}^{2} a_{3}^{2}-a_{2} a_{4}^{2}\right. \\
& \left.+4 a_{2}^{2} a_{6}-2 a_{3}^{2} a_{4}-3 a_{4} a_{6}\right) X_{2} Z_{1}^{2} Z_{2} \\
& +\left(a_{1}^{3} a_{3} a_{6}-a_{1}^{2} a_{3}^{2} a_{4}+a_{1}^{2} a_{4} a_{6}+a_{1} a_{2} a_{3}^{3}\right. \\
& +4 a_{1} a_{2} a_{3} a_{6}-2 a_{1} a_{3} a_{4}^{2}+a_{2} a_{3}^{2} a_{4} \\
& \left.+4 a_{2} a_{4} a_{6}-a_{3}^{4}-6 a_{3}^{2} a_{6}-a_{4}^{3}-9 a_{6}^{2}\right) Z_{1}^{2} Z_{2}^{2}, \\
& Z_{3}^{(2)}=3 X_{1} X_{2}\left(X_{1} Y_{2}+X_{2} Y_{1}\right)+Y_{1} Y_{2}\left(Y_{1} Z_{2}+Y_{2} Z_{1}\right)+3 a_{1} X_{1}^{2} X_{2}^{2} \\
& +a_{1}\left(2 X_{1} Y_{2}+Y_{1} X_{2}\right) Y_{1} Z_{2}+a_{1}^{2} X_{1} Z_{2}\left(2 X_{2} Y_{1}+X_{1} Y_{2}\right) \\
& +a_{2} X_{1} X_{2}\left(Y_{1} Z_{2}+Y_{2} Z_{1}\right) \\
& +a_{2}\left(X_{1} Y_{2}+X_{2} Y_{1}\right)\left(X_{1} Z_{2}+X_{2} Z_{1}\right) \\
& +a_{1}^{3} X_{1}^{2} X_{2} Z_{2}+a_{1} a_{2} X_{1} X_{2}\left(2 X_{1} Z_{2}+X_{2} Z_{1}\right) \\
& +3 a_{3} X_{1} X_{2}^{2} Z_{1}+a_{3} Y_{1} Z_{2}\left(Y_{1} Z_{2}+2 Y_{2} Z_{1}\right) \\
& +2 a_{1} a_{3} X_{1} Z_{2}\left(Y_{1} Z_{2}+Y_{2} Z_{1}\right) \\
& +2 a_{1} a_{3} X_{2} Y_{1} Z_{1} Z_{2}+a_{4}\left(X_{1} Y_{2}+X_{2} Y_{1}\right) Z_{1} Z_{2} \\
& +a_{4}\left(X_{1} Z_{2}+X_{2} Z_{1}\right)\left(Y_{1} Z_{2}+Y_{2} Z_{1}\right) \\
& +\left(a_{1}^{2} a_{3}+a_{1} a_{4}\right) X_{1} Z_{2}\left(X_{1} Z_{2}+2 X_{2} Z_{1}\right)+a_{2} a_{3} X_{2} Z_{1}\left(2 X_{1} Z_{2}+X_{2} Z_{1}\right) \\
& +a_{3}^{2} Y_{1} Z_{1} Z_{2}^{2}+\left(a_{3}^{2}+3 a_{6}\right)\left(Y_{1} Z_{2}+Y_{2} Z_{1}\right) Z_{1} Z_{2} \\
& +a_{1} a_{3}^{2}\left(2 X_{1} Z_{2}+X_{2} Z_{1}\right) Z_{1} Z_{2}+3 a_{1} a_{6} X_{1} Z_{1} Z_{2}^{2} \\
& +a_{3} a_{4}\left(X_{1} Z_{2}+2 X_{2} Z_{1}\right) Z_{1} Z_{2}+\left(a_{3}^{3}+3 a_{3} a_{6}\right) Z_{1}^{2} Z_{2}^{2} .
\end{aligned}
$$

1995 Bosma-Lenstra:
Explicit complete system of 2 addition laws
for long Weierstrass curves:
$X_{3}, Y_{3}, Z_{3}, X_{3}^{\prime}, Y_{3}^{\prime}, Z_{3}^{\prime}$
$\in \mathbf{Z}\left[a_{1}, a_{2}, a_{3}, a_{4}, a_{6}\right.$,
$\left.X_{1}, Y_{1}, Z_{1}, X_{2}, Y_{2}, Z_{2}\right]$.

1995 Bosma-Lenstra:
Explicit complete system
of 2 addition laws
for long Weierstrass curves:
$X_{3}, Y_{3}, Z_{3}, X_{3}^{\prime}, Y_{3}^{\prime}, Z_{3}^{\prime}$
$\in \mathbf{Z}\left[a_{1}, a_{2}, a_{3}, a_{4}, a_{6}\right.$,
$\left.X_{1}, Y_{1}, Z_{1}, X_{2}, Y_{2}, Z_{2}\right]$.
My previous slide in this talk:
Bosma-Lenstra $Y_{3}^{\prime}, Z_{3}^{\prime}$.

1995 Bosma-Lenstra:
Explicit complete system
of 2 addition laws
for long Weierstrass curves:
$X_{3}, Y_{3}, Z_{3}, X_{3}^{\prime}, Y_{3}^{\prime}, Z_{3}^{\prime}$
$\in \mathbf{Z}\left[a_{1}, a_{2}, a_{3}, a_{4}, a_{6}\right.$,
$\left.X_{1}, Y_{1}, Z_{1}, X_{2}, Y_{2}, Z_{2}\right]$.
My previous slide in this talk:
Bosma-Lenstra $Y_{3}^{\prime}, Z_{3}^{\prime}$.
Actually, slide shows
Publish $\left(Y_{3}^{\prime}\right)$, Publish $\left(Z_{3}^{\prime}\right)$,
where Publish introduces typos.

What this means:
For all fields k,
all \mathbf{P}^{2} Weierstrass curves
$E / k: Y^{2} Z+a_{1} X Y Z+a_{3} Y Z^{2}=$
$X^{3}+a_{2} X^{2} Z+a_{4} X Z^{2}+a_{6} Z^{3}$,
all $P_{1}=\left(X_{1}: Y_{1}: Z_{1}\right) \in E(k)$,
all $P_{2}=\left(X_{2}: Y_{2}: Z_{2}\right) \in E(k)$:
$\left(X_{3}: Y_{3}: Z_{3}\right)$
is $P_{1}+P_{2}$ or (0:0:0);
$\left(X_{3}^{\prime}: Y_{3}^{\prime}: Z_{3}^{\prime}\right)$
is $P_{1}+P_{2}$ or (0:0:0);
at most one of these is $(0: 0: 0)$.

2009 Bernstein-T. Lange:
For all fields k with $2 \neq 0$, all $\mathbf{P}^{1} \times \mathbf{P}^{1}$ Edwards curves E / k : $X^{2} T^{2}+Y^{2} Z^{2}=Z^{2} T^{2}+d X^{2} Y^{2}$, all $P_{1}, P_{2} \in E(k)$,
$P_{1}=\left(\left(X_{1}: Z_{1}\right),\left(Y_{1}: T_{1}\right)\right)$,
$P_{2}=\left(\left(X_{2}: Z_{2}\right),\left(Y_{2}: T_{2}\right)\right):$
$\left(X_{3}: Z_{3}\right)$ is $x\left(P_{1}+P_{2}\right)$ or $(0: 0)$; $\left(X_{3}^{\prime}: Z_{3}^{\prime}\right)$ is $x\left(P_{1}+P_{2}\right)$ or $(0: 0)$; $\left(Y_{3}: T_{3}\right)$ is $y\left(P_{1}+P_{2}\right)$ or $(0: 0)$; $\left(Y_{3}^{\prime}: T_{3}^{\prime}\right)$ is $y\left(P_{1}+P_{2}\right)$ or $(0: 0)$; at most one of these is $(0: 0)$.

$$
\begin{aligned}
& X_{3}=X_{1} Y_{2} Z_{2} T_{1}+X_{2} Y_{1} Z_{1} T_{2} \\
& Z_{3}=Z_{1} Z_{2} T_{1} T_{2}+d X_{1} X_{2} Y_{1} Y_{2} \\
& Y_{3}=Y_{1} Y_{2} Z_{1} Z_{2}-X_{1} X_{2} T_{1} T_{2} \\
& T_{3}=Z_{1} Z_{2} T_{1} T_{2}-d X_{1} X_{2} Y_{1} Y_{2} \\
& X_{3}^{\prime}=X_{1} Y_{1} Z_{2} T_{2}+X_{2} Y_{2} Z_{1} T_{1} \\
& Z_{3}^{\prime}=X_{1} X_{2} T_{1} T_{2}+Y_{1} Y_{2} Z_{1} Z_{2} \\
& Y_{3}^{\prime}=X_{1} Y_{1} Z_{2} T_{2}-X_{2} Y_{2} Z_{1} T_{1} \\
& T_{3}^{\prime}=X_{1} Y_{2} Z_{2} T_{1}-X_{2} Y_{1} Z_{1} T_{2}
\end{aligned}
$$

Much, much, much simpler than Lange-Ruppert, Bosma-Lenstra.
Also much easier to prove.

5. Explicit Formulae

From [5, Chapter III, 2.3] it follows that $f=m^{*}(X / Z)$ and $g=m^{*}(Y / Z)$ are given by

$$
f=\lambda^{2}+a_{1} \lambda-\frac{X_{1} Z_{2}+X_{2} Z_{1}}{Z_{1} Z_{2}}-a_{2}, \quad g=-\left(\lambda+a_{1}\right) f-v-a_{3},
$$

where

$$
\lambda=\frac{Y_{1} Z_{2}-Y_{2} Z_{1}}{X_{1} Z_{2}-X_{2} Z_{1}} \quad \text { and } \quad v=-\frac{Y_{1} X_{2}-Y_{2} X_{1}}{X_{1} Z_{2}-X_{2} Z_{1}}
$$

Applying the automorphism of $E \times E$ mapping $\left(P_{1}, P_{2}\right)$ to $\left(P_{1},-P_{2}\right)$ we find that

$$
s^{*}(X / Z)=\kappa^{2}+a_{1} \kappa-\frac{X_{1} Z_{2}+X_{2} Z_{1}}{Z_{1} Z_{2}}-a_{2}
$$

and

$$
s^{*}(Y / Z)=-\left(\kappa+a_{1}\right) s^{*}(X / Z)-\mu-a_{3},
$$

where

$$
\kappa=\frac{Y_{1} Z_{2}+Y_{2} Z_{1}+a_{1} X_{2} Z_{1}+a_{3} Z_{1} Z_{2}}{X_{1} Z_{2}-X_{2} Z_{1}}
$$

and

$$
\mu=-\frac{Y_{1} X_{2}+Y_{2} X_{1}+a_{1} X_{1} X_{2}+a_{3} X_{1} Z_{2}}{X_{1} Z_{2}-X_{2} Z_{1}}
$$

The bijection of Theorem 2 maps $(0: 0: 1)$ to the addition law given by $X_{3}^{(1)}=f Z_{0}, Y_{3}^{(1)}=g Z_{0}, Z_{3}^{(1)}=Z_{0}$, which in explicit terms is found to be given by

$$
\begin{aligned}
X_{3}^{(1)}= & \left(X_{1} Y_{2}-X_{2} Y_{1}\right)\left(Y_{1} Z_{2}+Y_{2} Z_{1}\right)+\left(X_{1} Z_{2}-X_{2} Z_{1}\right) Y_{1} Y_{2} \\
& +a_{1} X_{1} X_{2}\left(Y_{1} Z_{2}-Y_{2} Z_{1}\right)+a_{1}\left(X_{1} Y_{2}-X_{2} Y_{1}\right)\left(X_{1} Z_{2}+X_{2} Z_{1}\right) \\
& -a_{2} X_{1} X_{2}\left(X_{1} Z_{2}-X_{2} Z_{1}\right)+a_{3}\left(X_{1} Y_{2}-X_{2} Y_{1}\right) Z_{1} Z_{2} \\
& +a_{3}\left(X_{1} Z_{2}-X_{2} Z_{1}\right)\left(Y_{1} Z_{2}+Y_{2} Z_{1}\right) \\
& -a_{4}\left(X_{1} Z_{2}+X_{2} Z_{1}\right)\left(X_{1} Z_{2}-X_{2} Z_{1}\right) \\
& -3 a_{6}\left(X_{1} Z_{2}-X_{2} Z_{1}\right) Z_{1} Z_{2}
\end{aligned}
$$

$$
\begin{aligned}
Y_{3}^{(1)}= & -3 X_{1} X_{2}\left(X_{1} Y_{2}-X_{2} Y_{1}\right) \\
& -Y_{1} Y_{2}\left(Y_{1} Z_{2}-Y_{2} Z_{1}\right)-2 a_{1}\left(X_{1} Z_{2}-X_{2} Z_{1}\right) Y_{1} Y_{2} \\
& +\left(a_{1}^{2}+3 a_{2}\right) X_{1} X_{2}\left(Y_{1} Z_{2}-Y_{2} Z_{1}\right) \\
& -\left(a_{1}^{2}+a_{2}\right)\left(X_{1} Y_{2}+X_{2} Y_{1}\right)\left(X_{1} Z_{2}-X_{2} Z_{1}\right) \\
& +\left(a_{1} a_{2}-3 a_{3}\right) X_{1} X_{2}\left(X_{1} Z_{2}-X_{2} Z_{1}\right) \\
& -\left(2 a_{1} a_{3}+a_{4}\right)\left(X_{1} Y_{2}-X_{2} Y_{1}\right) Z_{1} Z_{2} \\
& +a_{4}\left(X_{1} Z_{2}+X_{2} Z_{1}\right)\left(Y_{1} Z_{2}-Y_{2} Z_{1}\right) \\
& +\left(a_{1} a_{4}-a_{2} a_{3}\right)\left(X_{1} Z_{2}+X_{2} Z_{1}\right)\left(X_{1} Z_{2}-X_{2} Z_{1}\right) \\
& +\left(a_{3}^{2}+3 a_{6}\right)\left(Y_{1} Z_{2}-Y_{2} Z_{1}\right) Z_{1} Z_{2} \\
& +\left(3 a_{1} a_{6}-a_{3} a_{4}\right)\left(X_{1} Z_{2}-X_{2} Z_{1}\right) Z_{1} Z_{2} \\
Z_{3}^{(1)}= & 3 X_{1} X_{2}\left(X_{1} Z_{2}-X_{2} Z_{1}\right)-\left(Y_{1} Z_{2}+Y_{2} Z_{1}\right)\left(Y_{1} Z_{2}-Y_{2} Z_{1}\right) \\
& +a_{1}\left(X_{1} Y_{2}-X_{2} Y_{1}\right) Z_{1} Z_{2}-a_{1}\left(X_{1} Z_{2}-X_{2} Z_{1}\right)\left(Y_{1} Z_{2}+Y_{2} Z_{1}\right) \\
& +a_{2}\left(X_{1} Z_{2}+X_{2} Z_{1}\right)\left(X_{1} Z_{2}-X_{2} Z_{1}\right)-a_{3}\left(Y_{1} Z_{2}-Y_{2} Z_{1}\right) Z_{1} Z_{2} \\
& +a_{4}\left(X_{1} Z_{2}-X_{2} Z_{1}\right) Z_{1} Z_{2}
\end{aligned}
$$

The corresponding exceptional divisor is $3 \cdot \Delta$, so a pair of points P_{1}, P_{2} on E is exceptional for this addition law if and only if $P_{1}=P_{2}$.

Multiplying the addition law just given by $s^{*}(Y / Z)$ we obtain the addition law corresponding to $(0: 1: 0)$. It reads as follows:

$$
\begin{aligned}
X_{3}^{(2)}= & Y_{1} Y_{2}\left(X_{1} Y_{2}+X_{2} Y_{1}\right)+a_{1}\left(2 X_{1} Y_{2}+X_{2} Y_{1}\right) X_{2} Y_{1}+a_{1}^{2} X_{1} X_{2}^{2} Y_{1} \\
& -a_{2} X_{1} X_{2}\left(X_{1} Y_{2}+X_{2} Y_{1}\right)-a_{1} a_{2} X_{1}^{2} X_{2}^{2}+a_{3} X_{2} Y_{1}\left(Y_{1} Z_{2}+2 Y_{2} Z_{1}\right) \\
& +a_{1} a_{3} X_{1} X_{2}\left(Y_{1} Z_{2}-Y_{2} Z_{1}\right)-a_{1} a_{3}\left(X_{1} Y_{2}+X_{2} Y_{1}\right)\left(X_{1} Z_{2}-X_{2} Z_{1}\right) \\
& -a_{4} X_{1} X_{2}\left(Y_{1} Z_{2}+Y_{2} Z_{1}\right)-a_{4}\left(X_{1} Y_{2}+X_{2} Y_{1}\right)\left(X_{1} Z_{2}+X_{2} Z_{1}\right) \\
& -a_{1}^{2} a_{3} X_{1}^{2} X_{2} Z_{2}-a_{1} a_{4} X_{1} X_{2}\left(2 X_{1} Z_{2}+X_{2} Z_{1}\right) \\
& -a_{2} a_{3} X_{1} X_{2}^{2} Z_{1}-a_{3}^{2} X_{1} Z_{2}\left(2 Y_{2} Z_{1}+Y_{1} Z_{2}\right) \\
& -3 a_{6}\left(X_{1} Y_{2}+X_{2} Y_{1}\right) Z_{1} Z_{2} \\
& -3 a_{6}\left(X_{1} Z_{2}+X_{2} Z_{1}\right)\left(Y_{1} Z_{2}+Y_{2} Z_{1}\right)-a_{1} a_{3}^{2} X_{1} Z_{2}\left(X_{1} Z_{2}+2 X_{2} Z_{1}\right) \\
& -3 a_{1} a_{6} X_{1} Z_{2}\left(X_{1} Z_{2}+2 X_{2} Z_{1}\right)+a_{3} a_{4}\left(X_{1} Z_{2}-2 X_{2} Z_{1}\right) X_{2} Z_{1} \\
& -\left(a_{1}^{2} a_{6}-a_{1} a_{3} a_{4}+a_{2} a_{3}^{2}+4 a_{2} a_{6}-a_{4}^{2}\right)\left(Y_{1} Z_{2}+Y_{2} Z_{1}\right) Z_{1} Z_{2} \\
& -\left(a_{1}^{3} a_{6}-a_{1}^{2} a_{3} a_{4}+a_{1} a_{2} a_{3}^{2}+4 a_{1} a_{2} a_{6}-a_{1} a_{4}^{2}\right) X_{1} Z_{1} Z_{2}^{2} \\
& -a_{3}^{3}\left(X_{1} Z_{2}+X_{2} Z_{1}\right) Z_{1} Z_{2}-3 a_{3} a_{6}\left(X_{1} Z_{2}+2 X_{2} Z_{1}\right) Z_{1} Z_{2} \\
& -\left(a_{1}^{2} a_{3} a_{6}-a_{1} a_{3}^{2} a_{4}+a_{2} a_{3}^{3}+4 a_{2} a_{3} a_{6}-a_{3} a_{4}^{2}\right) Z_{1}^{2} Z_{2}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& Y_{3}^{(2)}=Y_{1}^{2} Y_{2}^{2}+a_{1} X_{2} Y_{1}^{2} Y_{2}+\left(a_{1} a_{2}-3 a_{3}\right) X_{1} X_{2}^{2} Y_{1} \\
& +a_{3} Y_{1}^{2} Y_{2} Z_{2}-\left(a_{2}^{2}-3 a_{4}\right) X_{1}^{2} X_{2}^{2} \\
& +\left(a_{1} a_{4}-a_{2} a_{3}\right)\left(2 X_{1} Z_{2}+X_{2} Z_{1}\right) X_{2} Y_{1} \\
& +\left(a_{1}^{2} a_{4}-2 a_{1} a_{2} a_{3}+3 a_{3}^{2}\right) X_{1}^{2} X_{2} Z_{2} \\
& -\left(a_{2} a_{4}-9 a_{6}\right) X_{1} X_{2}\left(X_{1} Z_{2}+X_{2} Z_{1}\right) \\
& +\left(3 a_{1} a_{6}-a_{3} a_{4}\right)\left(X_{1} Z_{2}+2 X_{2} Z_{1}\right) Y_{1} Z_{2} \\
& +\left(3 a_{1}^{2} a_{6}-2 a_{1} a_{3} a_{4}+a_{2} a_{3}^{2}+3 a_{2} a_{6}-a_{4}^{2}\right) X_{1} Z_{2}\left(X_{1} Z_{2}+2 X_{2} Z_{1}\right) \\
& -\left(3 a_{2} a_{6}-a_{4}^{2}\right)\left(X_{1} Z_{2}+X_{2} Z_{1}\right)\left(X_{1} Z_{2}-X_{2} Z_{1}\right) \\
& +\left(a_{1}^{3} a_{6}-a_{1}^{2} a_{3} a_{4}+a_{1} a_{2} a_{3}^{2}-a_{1} a_{4}^{2}+4 a_{1} a_{2} a_{6}-a_{3}^{3}-3 a_{3} a_{6}\right) Y_{1} Z_{1} Z_{2}^{2} \\
& +\left(a_{1}^{4} a_{6}-a_{1}^{3} a_{3} a_{4}+5 a_{1}^{2} a_{2} a_{6}+a_{1}^{2} a_{2} a_{3}^{2}-a_{1} a_{2} a_{3} a_{4}-a_{1} a_{3}^{3}-3 a_{1} a_{3} a_{6}\right. \\
& \left.-a_{1}^{2} a_{4}^{2}+a_{2}^{2} a_{3}^{2}-a_{2} a_{4}^{2}+4 a_{2}^{2} a_{6}-a_{3}^{2} a_{4}-3 a_{4} a_{6}\right) X_{1} Z_{1} Z_{2}^{2} \\
& +\left(a_{1}^{2} a_{2} a_{6}-a_{1} a_{2} a_{3} a_{4}+3 a_{1} a_{3} a_{6}+a_{2}^{2} a_{3}^{2}-a_{2} a_{4}^{2}\right. \\
& \left.+4 a_{2}^{2} a_{6}-2 a_{3}^{2} a_{4}-3 a_{4} a_{6}\right) X_{2} Z_{1}^{2} Z_{2} \\
& +\left(a_{1}^{3} a_{3} a_{6}-a_{1}^{2} a_{3}^{2} a_{4}+a_{1}^{2} a_{4} a_{6}+a_{1} a_{2} a_{3}^{3}\right. \\
& +4 a_{1} a_{2} a_{3} a_{6}-2 a_{1} a_{3} a_{4}^{2}+a_{2} a_{3}^{2} a_{4} \\
& \left.+4 a_{2} a_{4} a_{6}-a_{3}^{4}-6 a_{3}^{2} a_{6}-a_{4}^{3}-9 a_{6}^{2}\right) Z_{1}^{2} Z_{2}^{2}, \\
& Z_{3}^{(2)}=3 X_{1} X_{2}\left(X_{1} Y_{2}+X_{2} Y_{1}\right)+Y_{1} Y_{2}\left(Y_{1} Z_{2}+Y_{2} Z_{1}\right)+3 a_{1} X_{1}^{2} X_{2}^{2} \\
& +a_{1}\left(2 X_{1} Y_{2}+Y_{1} X_{2}\right) Y_{1} Z_{2}+a_{1}^{2} X_{1} Z_{2}\left(2 X_{2} Y_{1}+X_{1} Y_{2}\right) \\
& +a_{2} X_{1} X_{2}\left(Y_{1} Z_{2}+Y_{2} Z_{1}\right) \\
& +a_{2}\left(X_{1} Y_{2}+X_{2} Y_{1}\right)\left(X_{1} Z_{2}+X_{2} Z_{1}\right) \\
& +a_{1}^{3} X_{1}^{2} X_{2} Z_{2}+a_{1} a_{2} X_{1} X_{2}\left(2 X_{1} Z_{2}+X_{2} Z_{1}\right) \\
& +3 a_{3} X_{1} X_{2}^{2} Z_{1}+a_{3} Y_{1} Z_{2}\left(Y_{1} Z_{2}+2 Y_{2} Z_{1}\right) \\
& +2 a_{1} a_{3} X_{1} Z_{2}\left(Y_{1} Z_{2}+Y_{2} Z_{1}\right) \\
& +2 a_{1} a_{3} X_{2} Y_{1} Z_{1} Z_{2}+a_{4}\left(X_{1} Y_{2}+X_{2} Y_{1}\right) Z_{1} Z_{2} \\
& +a_{4}\left(X_{1} Z_{2}+X_{2} Z_{1}\right)\left(Y_{1} Z_{2}+Y_{2} Z_{1}\right) \\
& +\left(a_{1}^{2} a_{3}+a_{1} a_{4}\right) X_{1} Z_{2}\left(X_{1} Z_{2}+2 X_{2} Z_{1}\right)+a_{2} a_{3} X_{2} Z_{1}\left(2 X_{1} Z_{2}+X_{2} Z_{1}\right) \\
& +a_{3}^{2} Y_{1} Z_{1} Z_{2}^{2}+\left(a_{3}^{2}+3 a_{6}\right)\left(Y_{1} Z_{2}+Y_{2} Z_{1}\right) Z_{1} Z_{2} \\
& +a_{1} a_{3}^{2}\left(2 X_{1} Z_{2}+X_{2} Z_{1}\right) Z_{1} Z_{2}+3 a_{1} a_{6} X_{1} Z_{1} Z_{2}^{2} \\
& +a_{3} a_{4}\left(X_{1} Z_{2}+2 X_{2} Z_{1}\right) Z_{1} Z_{2}+\left(a_{3}^{3}+3 a_{3} a_{6}\right) Z_{1}^{2} Z_{2}^{2} .
\end{aligned}
$$

1987 Lenstra: Use Lange-Ruppert complete system of addition laws to computationally define $E(R)$ for more general rings R.

Define $\mathbf{P}^{2}(R)=\{(X: Y: Z)$: $X, Y, Z \in R ; X R+Y R+Z R=R\}$ where $(X: Y: Z)$ is the module $\{(\lambda X, \lambda Y, \lambda Z): \lambda \in R\}$.

Define $E(R)=$
$\left\{(X: Y: Z) \in \mathbf{P}^{2}(R):\right.$
$\left.Y^{2} Z=X^{3}+a_{4} X Z^{2}+a_{6} Z^{3}\right\}$.

To define (and compute) sum
$\left(X_{1}: Y_{1}: Z_{1}\right)+\left(X_{2}: Y_{2}: Z_{2}\right):$
Consider (and compute)
Lange-Ruppert $\left(X_{3}: Y_{3}: Z_{3}\right)$,
$\left(X_{3}^{\prime}: Y_{3}^{\prime}: Z_{3}^{\prime}\right),\left(X_{3}^{\prime \prime}: Y_{3}^{\prime \prime}: Z_{3}^{\prime \prime}\right)$.
Add these R-modules:
$\left\{\quad\left(\lambda X_{3}, \lambda Y_{3}, \lambda Z_{3}\right)\right.$
$+\left(\lambda^{\prime} X_{3}^{\prime}, \lambda^{\prime} Y_{3}^{\prime}, \lambda^{\prime} Z_{3}^{\prime}\right)$
$+\left(\lambda^{\prime \prime} X_{3}^{\prime \prime}, \lambda^{\prime \prime} Y_{3}^{\prime \prime}, \lambda^{\prime \prime} Z_{3}^{\prime \prime}\right):$

$$
\left.\lambda, \lambda^{\prime}, \lambda^{\prime \prime} \in R\right\}
$$

Express as $(X: Y: Z)$;
assume trivial class group of R.

Factoring integers into primes

1993 Atkin-Morain "Finding suitable curves for the elliptic curve method of factorization":
"For practical application, one may as well use the largest group available, namely the group $(\mathbf{Z} / 8 \mathbf{Z}) \times(\mathbf{Z} / 2 \mathbf{Z})$ of $\S 3.1$, giving a prescribed factor of 16 in k."

2010 Bernstein-Birkner-Lange:
Better to switch to a family of twisted Edwards curves
$-x^{2}+y^{2}=1+d x^{2} y^{2}$
with $\mathbf{Z} / 6$ torsion.
Expected benefit:
These curves are very fast.

2010 Bernstein-Birkner-Lange:
Better to switch to a family of twisted Edwards curves
$-x^{2}+y^{2}=1+d x^{2} y^{2}$
with $\mathbf{Z} / 6$ torsion.
Expected benefit:
These curves are very fast.
Unexpected benefit:
These curves find more primes
despite smaller torsion.

Mulmods/15-bit prime found:

Mulmods/16-bit prime found:

Mulmods/17-bit prime found:

Mulmods/18-bit prime found:

Mulmods/19-bit prime found:

Mulmods/20-bit prime found:

Mulmods/21-bit prime found:

Mulmods/22-bit prime found:

Mulmods/23-bit prime found:

Mulmods/24-bit prime found:

Mulmods/25-bit prime found:

Mulmods/26-bit prime found:

Enumerating small primes

Sieve of Eratosthenes enumerates products $i j$;
ie., enumerates values $-x^{2}+y^{2}$; ie., enumerates norms of elements $y+x t$ of $\mathbf{Z}[t] /\left(t^{2}-1\right)$.

Determines primality of n by counting representations of n as such norms.

Fast computation if batched across all $n \in\{1,2, \ldots, H\}$.

Sieve of Atkin enumerates
$4 x^{2}+y^{2}$ for $n \in 1+4 \mathbf{Z}$,
$3 x^{2}+y^{2}$ for $n \in 7+12 \mathbf{Z}$,
$3 x^{2}-y^{2}$ for $n \in 11+12 \mathbf{Z}$.
Fundamentally more efficient than sieve of Eratosthenes:
$\mathbf{Q}(\sqrt{-1}), \mathbf{Q}(\sqrt{-3}), \mathbf{Q}(\sqrt{3})$ are smaller than " $\mathbf{Q}(\sqrt{1})$ " $=\mathbf{Q} \times \mathbf{Q}$.
(Can we determine primality by enumerating points on elliptic curves?)

Consequence: Can print the primes in $\{1,2, \ldots, H\}$, in order, using $\Theta(H / \lg \lg H)$ ops on $\Theta(\lg H)$-bit integers and $H^{1 / 2+o(1)}$ bits of memory.

Galway: $H^{1 / 3+o(1)}$.
$H^{1 / 4+o(1)}$ should be doable with LLL, Coppersmith, etc.

But is this a meaningful game?

Radeon 5970 graphics card:
2320000000000 mults/second. \$600; consumes 300 watts.

Can run at even higher speed using more power, more fans:

Need better algorithms
with massive parallelism,
very little communication.
Good example, 2006 Sorenson
"The pseudosquares prime sieve":
$\Theta(H \lg H)$ operations,
$\Theta\left((\lg H)^{2}\right)$ bits of memory,
assuming standard conjectures.
Output is always correct:
primes in $\{1,2, \ldots, H\}$.

