
Two completely unrelated topics:

(1) McBits;

(2) Post-Quantum RSA

D. J. Bernstein

University of Illinois at Chicago

Thanks for (1) to:

Cisco University Research Program

Two completely unrelated topics:

(1) McBits;

(2) Post-Quantum RSA

D. J. Bernstein

University of Illinois at Chicago

Thanks for (1) to:

Cisco University Research Program

Thanks for (2) to:

No sponsors yet!

Two completely unrelated topics:

(1) McBits;

(2) Post-Quantum RSA

D. J. Bernstein

University of Illinois at Chicago

Thanks for (1) to:

Cisco University Research Program

Thanks for (2) to:

No sponsors yet! Insert Coin

http://google.com/pacman

Bonus topic added today:

0. Wild McEliece (joint work with

Tanja Lange, Christiane Peters)

Conventional wisdom on

McEliece using degree-t Goppa:

t errors over F2, but only

t=2 errors over Fq if q > 2.

Bonus topic added today:

0. Wild McEliece (joint work with

Tanja Lange, Christiane Peters)

Conventional wisdom on

McEliece using degree-t Goppa:

t errors over F2, but only

t=2 errors over Fq if q > 2.

New: “Wild McEliece” uses

qt=(2(q � 1)) errors over Fq.

More details: See talk from

C. Peters from two days ago.

1. McBits: Arithmetic circuits

for code-based cryptography

An F2-arithmetic circuit

starts from inputs and constants

and computes a chain of

two-input F2-adds u; v 7! u + v,

two-input F2-mults u; v 7! uv.

Example, not the smallest

2� 2 polynomial multiplier:

f0

$$IIIII
// �

��/
///////////

// h0

f1
//

+ // �

$$IIIII

+ // h1

g0 //

>>

+

CC��������
+

499ttttt

g1

99sssss // �

99ttttt // h2

What I’m working on:

fast arithmetic circuits

for confidence-inspiring

code-based public-key encryption.

Circuits are good for security:

no conditional jumps;

no variable array indices;

no input-dependent timings;

no software side channels.

Plan to publish software

and place into public domain.

Main challenge: Speed.

Metric for this project:

“ops” = #adds + #mults.

Clear definition; simple.

Not a bad predictor of

bitsliced software speed.

Also not a bad predictor of

throughput of unrolled hardware.

Warnings: metric doesn’t see

code size (“ops” unrolls loops),

communication costs, etc.

Counting bit operations

rewards fast mult algorithms,

as in new ECC speed records

(2009 “batch binary Edwards”).

Now exploring Gao–Mateer mult.

Use fast multipoint evaluation to

eliminate conditional jumps from

fast root-finding; n1+o(1) ops.

Most annoying part to write:

n1+o(1) fast continued fraction

without conditional jumps.

Biggest asymptotic bottleneck:

matrix randomizer, n2+o(1) ops.

Can reduce 2 with more batching.

2. Post-Quantum RSA:

Is it possible that

the community has missed

another plausible candidate

for post-quantum cryptography?

2. Post-Quantum RSA:

Is it possible that

the community has missed

another plausible candidate

for post-quantum cryptography?

Conventional wisdom:

Shor’s algorithm supersedes

all previous factorization methods.

In fact, it breaks RSA

as quickly as RSA decrypts,

so we have no hope of security

from scaling RSA key sizes.

2. Post-Quantum RSA:

Is it possible that

the community has missed

another plausible candidate

for post-quantum cryptography?

Conventional wisdom:

Shor’s algorithm supersedes

all previous factorization methods.

In fact, it breaks RSA

as quickly as RSA decrypts,

so we have no hope of security

from scaling RSA key sizes.

Is this actually true?

Some methods to factor n

(assuming standard conjectures):

Trial division finds p

using (p + lgn)1+o(1) bit ops.

Some methods to factor n

(assuming standard conjectures):

Trial division finds p

using (p + lgn)1+o(1) bit ops.

Pollard’s rho method finds p

using (p1=2 lgn)1+o(1) bit ops.

Some methods to factor n

(assuming standard conjectures):

Trial division finds p

using (p + lgn)1+o(1) bit ops.

Pollard’s rho method finds p

using (p1=2 lgn)1+o(1) bit ops.

Quadratic sieve finds p using

(2(lgn lg lgn)1=2
)1+o(1) bit ops.

Some methods to factor n

(assuming standard conjectures):

Trial division finds p

using (p + lgn)1+o(1) bit ops.

Pollard’s rho method finds p

using (p1=2 lgn)1+o(1) bit ops.

Quadratic sieve finds p using

(2(lgn lg lgn)1=2
)1+o(1) bit ops.

ECM finds p using

(2(2 lg p lg lg p)1=2
lgn)1+o(1) bit ops.

Some methods to factor n

(assuming standard conjectures):

Trial division finds p

using (p + lgn)1+o(1) bit ops.

Pollard’s rho method finds p

using (p1=2 lgn)1+o(1) bit ops.

Quadratic sieve finds p using

(2(lgn lg lgn)1=2
)1+o(1) bit ops.

ECM finds p using

(2(2 lg p lg lg p)1=2
lgn)1+o(1) bit ops.

Number-field sieve finds p using

(2c(lgn)1=3(lg lgn)2=3
)1+o(1) bit ops.

Shor’s algorithm finds p

using (lgn)2+o(1) qubit ops.

Let’s assume that qubit ops

aren’t much harder than bit ops,

and that o(1) isn’t very big.

Does Shor supersede NFS?

Yes.

Shor’s algorithm finds p

using (lgn)2+o(1) qubit ops.

Let’s assume that qubit ops

aren’t much harder than bit ops,

and that o(1) isn’t very big.

Does Shor supersede NFS?

Yes.

Does Shor supersede ECM?

Not necessarily!

ECM beats Shor for small p:

compare 2 lg p lg lg p to (lg lgn)2.

Best small-p algorithm I know:

GEECM.

Shor’s algorithm finds p

using (lgn)2+o(1) qubit ops.

Let’s assume that qubit ops

aren’t much harder than bit ops,

and that o(1) isn’t very big.

Does Shor supersede NFS?

Yes.

Does Shor supersede ECM?

Not necessarily!

ECM beats Shor for small p:

compare 2 lg p lg lg p to (lg lgn)2.

Best small-p algorithm I know:

GEECM. Grover+Edwards+ECM.

Standard RSA decryption:

compute cube root mod n = pq

by computing and combining

cube roots mod p and q.

(lgn)2+o(1) ops.

Same as Shor. Game over?

Standard RSA decryption:

compute cube root mod n = pq

by computing and combining

cube roots mod p and q.

(lgn)2+o(1) ops.

Same as Shor. Game over?

No! Speed up decryption.

Standard RSA decryption:

compute cube root mod n = pq

by computing and combining

cube roots mod p and q.

(lgn)2+o(1) ops.

Same as Shor. Game over?

No! Speed up decryption.

Use “multi-prime RSA.”

1997/1998 Tandem patent

Standard RSA decryption:

compute cube root mod n = pq

by computing and combining

cube roots mod p and q.

(lgn)2+o(1) ops.

Same as Shor. Game over?

No! Speed up decryption.

Use “multi-prime RSA.”

1997/1998 Tandem patent

but already in 1983 RSA patent:

“the present invention

may use a modulus n which is

a product of three or more primes

(not necessarily distinct).”

Public key n = p1p2 � � � pk.

Secret primes p1; p2; : : : ; pk with

lg pi 2 b2+o(1), k 2 2(1+o(1))b=2.

Key: 2(1+o(1))b=2 bits.

Encryption: 2(1+o(1))b=2 bit ops.

Decryption: 2(1+o(1))b=2 bit ops.

Shor attack, GEECM attack:

> 2b qubit ops

if each o(1) was chosen properly.

Public key n = p1p2 � � � pk.

Secret primes p1; p2; : : : ; pk with

lg pi 2 b2+o(1), k 2 2(1+o(1))b=2.

Key: 2(1+o(1))b=2 bits.

Encryption: 2(1+o(1))b=2 bit ops.

Decryption: 2(1+o(1))b=2 bit ops.

Shor attack, GEECM attack:

> 2b qubit ops

if each o(1) was chosen properly.

Concrete analysis suggests that

RSA with 231 4096-bit primes

provides > 2100 security

vs. all known quantum attacks.

Key almost fits on a hard drive.

