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New: “Wild McEliece” uses

qt=(2(q � 1)) errors over Fq.

More details: See talk from

C. Peters from two days ago.



1. McBits: Arithmetic circuits

for code-based cryptography



An F2-arithmetic circuit

starts from inputs and constants

and computes a chain of

two-input F2-adds u; v 7! u + v,

two-input F2-mults u; v 7! uv.

Example, not the smallest

2� 2 polynomial multiplier:
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What I’m working on:

fast arithmetic circuits

for confidence-inspiring

code-based public-key encryption.

Circuits are good for security:

no conditional jumps;

no variable array indices;

no input-dependent timings;

no software side channels.

Plan to publish software

and place into public domain.



Main challenge: Speed.

Metric for this project:

“ops” = #adds + #mults.

Clear definition; simple.

Not a bad predictor of

bitsliced software speed.

Also not a bad predictor of

throughput of unrolled hardware.

Warnings: metric doesn’t see

code size (“ops” unrolls loops),

communication costs, etc.



Counting bit operations

rewards fast mult algorithms,

as in new ECC speed records

(2009 “batch binary Edwards”).

Now exploring Gao–Mateer mult.

Use fast multipoint evaluation to

eliminate conditional jumps from

fast root-finding; n1+o(1) ops.

Most annoying part to write:

n1+o(1) fast continued fraction

without conditional jumps.

Biggest asymptotic bottleneck:

matrix randomizer, n2+o(1) ops.

Can reduce 2 with more batching.
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)1+o(1) bit ops.

ECM finds p using

(2(2 lg p lg lg p)1=2
lgn)1+o(1) bit ops.

Number-field sieve finds p using

(2c(lgn)1=3(lg lgn)2=3
)1+o(1) bit ops.
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using (lgn)2+o(1) qubit ops.

Let’s assume that qubit ops

aren’t much harder than bit ops,

and that o(1) isn’t very big.

Does Shor supersede NFS?

Yes.

Does Shor supersede ECM?

Not necessarily!

ECM beats Shor for small p:

compare 2 lg p lg lg p to (lg lgn)2.

Best small-p algorithm I know:

GEECM. Grover+Edwards+ECM.
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Standard RSA decryption:

compute cube root mod n = pq

by computing and combining

cube roots mod p and q.

(lgn)2+o(1) ops.

Same as Shor. Game over?

No! Speed up decryption.

Use “multi-prime RSA.”

1997/1998 Tandem patent

but already in 1983 RSA patent:

“the present invention

may use a modulus n which is

a product of three or more primes

(not necessarily distinct).”
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Secret primes p1; p2; : : : ; pk with

lg pi 2 b2+o(1), k 2 2(1+o(1))b=2.

Key: 2(1+o(1))b=2 bits.

Encryption: 2(1+o(1))b=2 bit ops.

Decryption: 2(1+o(1))b=2 bit ops.

Shor attack, GEECM attack:

> 2b qubit ops

if each o(1) was chosen properly.

Concrete analysis suggests that

RSA with 231 4096-bit primes

provides > 2100 security

vs. all known quantum attacks.

Key almost fits on a hard drive.


