
Counting points as a video game

D. J. Bernstein

University of Illinois at Chicago

Want efficient computation of

secure twist-secure genus-2 C

with very small coefficients

for fastest known Diffie–Hellman.

Can’t do that with CM.

This talk focuses on algorithms;

does not report any computations.

Need results today? Ask Gaudry.

But first an advertisement: : :

1985 H. Lange–Ruppert

“Complete systems of addition

laws on abelian varieties”:

A(k) has a complete system

of addition laws, degree � (3; 3).

Symmetry) degree � (2; 2).

“The proof is nonconstructive: : :

To determine explicitly a

complete system of addition laws

requires tedious computations

already in the easiest case

of an elliptic curve

in Weierstrass normal form.”

1985 Lange–Ruppert:

Explicit complete system

of 3 addition laws

for short Weierstrass curves.

Reduce formulas to 53 monomials

by introducing extra variables

xiyj + xjyi, xiyj � xjyi.

I won’t copy the formulas here.

1987 Lange–Ruppert

“Addition laws on elliptic curves

in arbitrary characteristics”:

Explicit complete system

of 3 addition laws

for long Weierstrass curves.

1995 Bosma–Lenstra:

Explicit complete system

of 2 addition laws

for long Weierstrass curves:

explicit polynomials

X3; Y3; Z3; X
0
3; Y

0
3 ; Z

0
3

2 Z[a1; a2; a3; a4; a6;

X1; Y1; Z1; X2; Y2; Y2].

1995 Bosma–Lenstra:

Explicit complete system

of 2 addition laws

for long Weierstrass curves:

explicit polynomials

X3; Y3; Z3; X
0
3; Y

0
3 ; Z

0
3

2 Z[a1; a2; a3; a4; a6;

X1; Y1; Z1; X2; Y2; Y2].

My previous slide in this talk:

Bosma–Lenstra Y 03 ; Z
0
3.

Not human-comprehensible.

1995 Bosma–Lenstra:

Explicit complete system

of 2 addition laws

for long Weierstrass curves:

explicit polynomials

X3; Y3; Z3; X
0
3; Y

0
3 ; Z

0
3

2 Z[a1; a2; a3; a4; a6;

X1; Y1; Z1; X2; Y2; Y2].

My previous slide in this talk:

Bosma–Lenstra Y 03 ; Z
0
3.

Not human-comprehensible.

Actually, slide shows

Publish(Y 03);Publish(Z 03),

where Publish introduces typos.

What this means:

For all fields k,

all P2 Weierstrass curves

E=k : Y 2Z + a1XY Z + a3Y Z
2 =

X3 + a2X
2Z + a4XZ

2 + a6Z
3,

all P1 = (X1 : Y1 : Z1) 2 E(k),

all P2 = (X2 : Y2 : Z2) 2 E(k):

(X3 : Y3 : Z3)

is P1 + P2 or (0 : 0 : 0);

(X 0
3 : Y 03 : Z 03)

is P1 + P2 or (0 : 0 : 0);

at most one of these is (0 : 0 : 0).

2009.11 Bernstein–T. Lange,

eprint.iacr.org/2009/580:

For all fields k with 2 6= 0,

all P1 � P1 Edwards curves E=k :

X2T 2 + Y 2Z2 = Z2T 2 + dX2Y 2,

all P1; P2 2 E(k),

P1 = ((X1 : Z1); (Y1 : T1)),

P2 = ((X2 : Z2); (Y2 : T2)):

(X3 : Z3) is x(P1 + P2) or (0 : 0);

(X 0
3 : Z 03) is x(P1 + P2) or (0 : 0);

(Y3 : T3) is y(P1 + P2) or (0 : 0);

(Y 03 : T 03) is y(P1 + P2) or (0 : 0);

at most one of these is (0 : 0).

http://eprint.iacr.org/2009/580

X3 = X1Y2Z2T1 + X2Y1Z1T2,

Z3 = Z1Z2T1T2 + dX1X2Y1Y2,

Y3 = Y1Y2Z1Z2 �X1X2T1T2,

T3 = Z1Z2T1T2 � dX1X2Y1Y2,

X 0
3 = X1Y1Z2T2 + X2Y2Z1T1,

Z 03 = X1X2T1T2 + Y1Y2Z1Z2,

Y 03 = X1Y1Z2T2 �X2Y2Z1T1,

T 03 = X1Y2Z2T1 �X2Y1Z1T2.

Much, much, much simpler than

Lange–Ruppert, Bosma–Lenstra.

Also much easier to prove.

Also useful for computations.

Geometrically, all elliptic curves.

(Handle 2 = 0 separately.)

History of these addition laws:

1761 Euler, 1866 Gauss:

Beautiful addition law

for x2 + y2 = 1� x2y2,

the “lemniscatic elliptic curve.”

(x1; y1) + (x2; y2) = (x3; y3) with

x3 =
x1y2 + x2y1

1� x1x2y1y2
,

y3 =
y1y2 � x1x2

1 + x1x2y1y2
.

1986 Chudnovsky–Chudnovsky

factorization-speed study begins

with Ga, Gm, T2, lemniscate;

but focuses on curve families.

2007 Edwards:

Obtain all elliptic curves over Q

by generalizing to curve

x2 + y2 = 1 + dx2y2.

(x1; y1) + (x2; y2) = (x3; y3) with

x3 =
x1y2 + x2y1

1 + dx1x2y1y2
,

y3 =
y1y2 � x1x2

1� dx1x2y1y2
.

Edwards actually used d = c4.

Scaling: x2 + y2 = c2(1 + x2y2).

But x2 + y2 = 1 + dx2y2 lowers

j degree; includes lemniscate;

simplifies degeneration to clock.

Embed E into P1 � P1,

as recommended by Edwards.
�1; �1p

d

�
;
��1p

d
;1� 2 E(k(

p
d)).

Edwards commented that

the addition law works for

(x1; y1)+
�

1p
d
;1�=� 1

y1
p
d
; �1
x1
p
d

�
.

Can easily use this to obtain

a dual addition law:

x3 =
x1y1 + x2y2

x1x2 + y1y2
,

y3 =
x1y1 � x2y2

x1y2 � x2y1
.

Here’s how: (x1; y1) + (x2; y2)

= (x1; y1) +
�

1p
d
;1�

+ (x2; y2)� � 1p
d
;1�

Here’s how: (x1; y1) + (x2; y2)

= (x1; y1) +
�

1p
d
;1�

+ (x2; y2)� � 1p
d
;1�

=
�

1
y1
p
d
; �1
x1
p
d

�
+(x2; y2)�� 1p

d
;1�

Here’s how: (x1; y1) + (x2; y2)

= (x1; y1) +
�

1p
d
;1�

+ (x2; y2)� � 1p
d
;1�

=
�

1
y1
p
d
; �1
x1
p
d

�
+(x2; y2)�� 1p

d
;1�

=

0
@

y2
y1
p
d
� x2

x1
p
d

1� dx2y2
dx1y1

;

�y2
x1
p
d
� x2

y1
p
d

1 + dx2y2
dx1y1

1
A

� � 1p
d
;1�

Here’s how: (x1; y1) + (x2; y2)

= (x1; y1) +
�

1p
d
;1�

+ (x2; y2)� � 1p
d
;1�

=
�

1
y1
p
d
; �1
x1
p
d

�
+(x2; y2)�� 1p

d
;1�

=

0
@

y2
y1
p
d
� x2

x1
p
d

1� dx2y2
dx1y1

;

�y2
x1
p
d
� x2

y1
p
d

1 + dx2y2
dx1y1

1
A

� � 1p
d
;1�

=

0
@

x1y2�x2y1p
d

x1y1 � x2y2
;

�y1y2�x1x2p
d

x1y1 + x2y2

1
A

� � 1p
d
;1�

Here’s how: (x1; y1) + (x2; y2)

= (x1; y1) +
�

1p
d
;1�

+ (x2; y2)� � 1p
d
;1�

=
�

1
y1
p
d
; �1
x1
p
d

�
+(x2; y2)�� 1p

d
;1�

=

0
@

y2
y1
p
d
� x2

x1
p
d

1� dx2y2
dx1y1

;

�y2
x1
p
d
� x2

y1
p
d

1 + dx2y2
dx1y1

1
A

� � 1p
d
;1�

=

0
@

x1y2�x2y1p
d

x1y1 � x2y2
;

�y1y2�x1x2p
d

x1y1 + x2y2

1
A

� � 1p
d
;1�

= (x1y1+x2y2
x1x2+y1y2

; x1y1�x2y2
x1y2�x2y1

).

2007 Bernstein–Lange:

Edwards addition law gives

speed records for ECM, ECC, etc.

2008 Hisil–Wong–Carter–Dawson:

First publication of dual

addition law; new speed records.

(Completely different derivation.)

2009.11 Bernstein–Lange:

Addition law and dual

form a complete system.

Elementary, computational proof,

giving elementary, computational

definition of the group E(k)

using these formulas.

1987 Lenstra “Elliptic curves and

number-theoretic algorithms”:

Use Lange–Ruppert

complete system of addition laws

to give computational definition

of the Weierstrass group E(R)

for more general rings R.

Define P2(R) = f(X : Y : Z) :

X; Y; Z 2 R; XR+Y R+ZR = Rg
where (X : Y : Z) is the module

f(�X; �Y; �Z) : � 2 Rg.

Define E(R) =

f(X : Y : Z) 2 P2(R) :

Y 2Z = X3 + a4XZ
2 + a6Z

3g.

To define (and compute) sum

(X1 : Y1 : Z1) + (X2 : Y2 : Z2):

Consider (and compute)

Lange–Ruppert (X3 : Y3 : Z3),

(X 0
3 : Y 03 : Z 03), (X 00

3 : Y 003 : Z 003).

Add these R-modules:

f (�X3; �Y3; �Z3)

+ (�0X 0
3; �

0Y 03 ; �
0Z 03)

+ (�00X 00
3 ; �

00Y 003 ; �
00Z 003) :

�; �0; �00 2 Rg.

Allow any ring R

having trivial class group.

Then this sum of modules can be

expressed as (X : Y : Z).

Counting points: Schoof etc.

Input: prime `; abelian variety

A=Fq, usually Jac(genus-g curve).

Write down generic point

P 2 A with `P = 0.

Specifically: express `P = 0

as system of equations

on coordinates of P ;

extend Fq to ring

R = Fq[coords]=equations;

note that `P = 0 in A(R).

Genus 1: #R � q`
2
.

Genus 2: #R � q`
4
.

Much larger computations.

True often enough to be useful:

Genus 1: Unique linear equation

'2(P)� s1'(P) + qP = 0 for

qth-power ' : A(R) ! A(R)

with s1 2 f0; 1; : : : ; `� 1g.

Then 1� s1 + q �#A(Fq) 2 `Z.

Genus 2: Unique linear equation

'4(P)� s1'
3(P) + s2'

2(P)

� qs1'(P) + q2P = 0

with s1; s2 2 f0; 1; : : : ; `� 1g.

Then 1� s1 + s2 � qs1 + q2

� #A(Fq) 2 `Z.

Try many `; deduce #A(Fq).

Silly name: “`-adic method.”

Which coords to choose for

A = Jac(C) when C has genus 2?

2000 Gaudry–Harley,

2004 Gaudry–Schost,

2009 Gaudry–Schost:

Use Mumford coordinates for A,

and write P = P1 � P2

with Pi = (xi; yi) 2 C ! A.

R = Fq[x1; y1; x2; y2]=(

(x1; y1) 2 C;

(x2; y2) 2 C;

`(x1; y1) = `(x2; y2)

).

`(x1; y1) = `(x2; y2)

gives two equations in x1; x2

of degree `2+o(1). Eliminate x2,

obtaining equation in x1.

Elimination time (`6 lg q)1+o(1)

using fast-arithmetic techniques.

Equation in x1: degree `4+o(1).

Computing '(P) etc.:

time (`4(lg q)2)1+o(1).

Total time (lg q)8+o(1)

to handle all ` � (lg q)1+o(1).

2004 Gaudry–Schost: symmetrize;

constant-factor speedup.

2000 Gaudry–Harley et al.

don’t actually use A(R).

They map R to a field,

allegedly saving time.

2000 Gaudry–Harley et al.

don’t actually use A(R).

They map R to a field,

allegedly saving time.

But factorization is slow!

Latest factorization algorithm,

2008 Kedlaya–Umans,

takes time (lg q)7+o(1)

to factor the x1 equation.

Sum over `: (lg q)8+o(1).

Closer analysis of o(1)

shows that factorization

still loses time here,

except for “free” factors.

Can save time in genus 1

by building a smaller R

that defines a '-stable

subgroup of `-torsion.

(1991 Elkies; 1992 Atkin)

Fastest such techniques reported

for genus 2: time `12+o(1).

Use for ` � (lg q)2=3+o(1).

Asymptotic speedup 1 + o(1).

Also “kangaroos”/“cockroaches”:

Asymptotic speedup 1 + o(1).

Also #A mod 22 etc.:

Asymptotic speedup 1 + o(1).

Video games

Millions of people buy PCs

to “play video games”:

i.e., to participate in

applied physics simulations,

often highly networked.

Society adjusts ultracomputer

to improve these simulations.

Algorithm designers

obtain much better results

by paying attention to the

ultracomputer architecture!

Most important fact:

#ALUs 2 Θ(#bits of RAM).

My university has just spent

<$20000 on a cluster for me.

8 CPUs; 15 GTX 295 cards.

Each GTX 295 has 2 “GPUs.”

My university has just spent

<$20000 on a cluster for me.

8 CPUs; 15 GTX 295 cards.

Each GTX 295 has 2 “GPUs.”

Each GPU has 30 cores.

My university has just spent

<$20000 on a cluster for me.

8 CPUs; 15 GTX 295 cards.

Each GTX 295 has 2 “GPUs.”

Each GPU has 30 cores.

Each core has 8 ALUs

and <100KB of fast RAM.

Each ALU performs a 32-bit

operation every cycle @1.242GHz.

My university has just spent

<$20000 on a cluster for me.

8 CPUs; 15 GTX 295 cards.

Each GTX 295 has 2 “GPUs.”

Each GPU has 30 cores.

Each core has 8 ALUs

and <100KB of fast RAM.

Each ALU performs a 32-bit

operation every cycle @1.242GHz.

I also have accounts

on several “TeraGrid” clusters.

Right now I’m using 448 GPUs;

13440 cores; 107520 32-bit ALUs.

GPU cores can communicate

through slow “global” RAM.

�3 bits per ALU per cycle.

GPU cores can communicate

through slow “global” RAM.

�3 bits per ALU per cycle.

Cluster nodes can communicate

through a slow network.

�0.003 bits per ALU per cycle.

GPU cores can communicate

through slow “global” RAM.

�3 bits per ALU per cycle.

Cluster nodes can communicate

through a slow network.

�0.003 bits per ALU per cycle.

Algorithm-analysis students

are taught to count

algorithm “operations.”

RAM access: 1 operation.

Resulting algorithms are poorly

optimized for the real world.

Gap grows with cluster size.

Much better model

developed 30 years ago:

Computation is carried out

on a 2-dimensional circuit.

Measure circuit area, time.

e.g. 1981 Brent–Kung:

multiply n-bit integers

in time n0:5+o(1)

using circuit area n1+o(1).

Scalability in this model

is fairly close to scalability

of real-world computations.

Many other “buildable” models.

Time to sort n small integers

on machine of size n1+o(1):

n2:0+o(1): 1-tape Turing machine.

n1:5+o(1): 2-dimensional RAM.

n1:0+o(1): pipelined RAM.

n0:5+o(1): 2-dimensional circuit.

Why does anyone say that

sorting time is n1+o(1)?

Why choose third machine?

Silly! Once n is large enough,

fourth machine is better.

Let’s see what this means

for genus-2 point-counting.

Machine cost: (lg q)5+o(1).

(lg q)5+o(1) ALUs.

Let’s see what this means

for genus-2 point-counting.

Machine cost: (lg q)5+o(1).

(lg q)5+o(1) ALUs.

Multiplying two univariate

polynomials of degree (lg q)2+o(1):

(lg q)3+o(1) ALUs;

time (lg q)1:5+o(1).

Let’s see what this means

for genus-2 point-counting.

Machine cost: (lg q)5+o(1).

(lg q)5+o(1) ALUs.

Multiplying two univariate

polynomials of degree (lg q)2+o(1):

(lg q)3+o(1) ALUs;

time (lg q)1:5+o(1).

(lg q)4+o(1) resultants:

(lg q)5+o(1) ALUs;

time (lg q)3:5+o(1).

Multiplying mod x1 equation:

(lg q)5+o(1) ALUs;

time (lg q)2:5+o(1).

Multiplying mod x1 equation:

(lg q)5+o(1) ALUs;

time (lg q)2:5+o(1).

Computing '(P) etc.:

(lg q)5+o(1) ALUs;

time (lg q)3:5+o(1).

Total time (lg q)4:5+o(1).

Multiplying mod x1 equation:

(lg q)5+o(1) ALUs;

time (lg q)2:5+o(1).

Computing '(P) etc.:

(lg q)5+o(1) ALUs;

time (lg q)3:5+o(1).

Total time (lg q)4:5+o(1).

In oversimplified RAM model,

lg q exponent was dominated

solely by the resultants.

No longer true here.

Most important computation:

big multiplication on GPUs,

and then on network of GPUs.

First steps: 2009 Emeliyanenko,

“Efficient multiplication of

polynomials on graphics

hardware.” Uses algorithm ideas

developed for FFT on tape,

� computation on disk, etc.

Recent tool development: 2010

Bernstein–Chen–Cheng–Lange–

Niederhagen–Schwabe–Yang,

“Usable assembly language for

GPUs: a success story.”

