Speeding up characteristic 2:
I. Linear maps
II. The $M(n)$ game
III. Batching
IV. Normal bases
D. J. Bernstein University of Illinois at Chicago

NSF ITR-0716498

Part I. Linear maps

Consider computing
$h_{0}=q_{0}$;
$h_{1}=q_{1}$;
$h_{2}=q_{2} \oplus\left(p_{0} \oplus q_{0} \oplus r_{0}\right) ;$
$h_{3}=\left(p_{1} \oplus q_{1} \oplus r_{1}\right)$;
$h_{4}=\left(p_{2} \oplus q_{2} \oplus r_{2}\right) \oplus r_{0} ;$
$h_{5}=r_{1}$;
$h_{6}=r_{2}$.
Easy: 8 additions.
Can find these 8 additions
in several papers.
But 8 is not optimal!
"Wasting brain power
is bad for the environment."
Use existing algorithms to find addition chains.

Apply, e.g., greedy additive
CSE algorithm from 1997 Paar:

- find input pair i_{0}, i_{1}
with most popular $i_{0} \oplus i_{1}$;
- compute $i_{0} \oplus i_{1}$;
- simplify using $i_{0} \oplus i_{1}$;
- repeat.

This algorithm finds repeated $q_{2} \oplus r_{0}$; uses 7 additions.

A new algorithm: "xor largest."
Start with the matrix mod 2
for the desired linear map.
If two largest rows
have same first bit,
replace largest row
by its xor with second-largest row.

Otherwise change largest row by clearing first bit.

In both cases,
compute result recursively, and finish with one xor.

A small example:

$1011=x_{0}+x_{2}+x_{3}$
$1111=x_{0}+x_{1}+x_{2}+x_{3}$
$0110=x_{1}+x_{2}$
$0101=x_{1}+x_{3}$
Replace largest row by its xor with second-largest row.

Recursively compute

$1011=x_{0}+x_{2}+x_{3}$
$0100=x_{1} \leftarrow$
$0110=x_{1}+x_{2}$
$0101=x_{1}+x_{3}$
plus 1 xor
of first output into second output.

Recursively compute

$0011 \leftarrow$
0100
0110
0101
plus 1 input load, 2 xors.

Recursively compute

0011
0100
$0011 \leftarrow$
0101
plus 1 input load, 3 xors.

Recursively compute

0011
0100
0011
$0001 \leftarrow$
plus 1 input load, 4 xors.

Recursively compute

0011
$0000 \leftarrow$
0011
0001
plus 2 input loads, 4 xors.
Note: this was just a copy.

Recursively compute

$0000 \leftarrow$
0000
0011
0001
plus 2 input loads, 4 xors.

Recursively compute

0000
0000
$0001 \leftarrow$
0001
plus 3 input loads, 5 xors.

Recursively compute

0000
0000
$0000 \leftarrow$
0001
plus 3 input loads, 5 xors.

Recursively compute

0000
0000
0000
$0000 \leftarrow$
plus 4 input loads, 5 xors.

Memory friendliness:
Algorithm writes only
to the output registers.
No temporary storage.
n inputs, n outputs:
total $2 n$ registers
with 0 loads, 0 stores.
Or $n+1$ registers
with n loads, 0 stores: each input is read only once.

Or n registers
with n loads, 0 stores,
if platform has load-xor insn.

Two-operand friendliness:

Platform with $a \leftarrow a \oplus b$
but without $a \leftarrow b \oplus c$ uses only n extra copies.

Naive column sweep also uses $n+1$ registers, n loads, but usually many more xors.

Input partitioning
(e.g., 1956 Lupanov) uses somewhat more xors, copies; somewhat more registers.

Greedy additive CSE uses somewhat fewer xors but many more copies, registers.

For m inputs and n outputs, average $n \times m$ matrix:

The xor-largest algorithm uses $\approx m n / \lg n$ two-operand xors; n copies; m loads; $n+1$ regs.

For m inputs and n outputs, average $n \times m$ matrix:

The xor-largest algorithm uses $\approx m n / \lg n$ two-operand xors; n copies; m loads; $n+1$ regs.

Pippenger's algorithm uses $\approx m n / \lg m n$ three-operand xors but seems to need many regs.

Pippenger proved that his algebraic complexity was near optimal for most matrices (at least without mod 2),
but didn't consider regs, two-operand complexity, etc.

Our original example:

000100000
000010000
100101100
010010010
001001101
000000010
000000001
Each row has coefficients of
$p_{0}, p_{1}, p_{2}, q_{0}, q_{1}, q_{2}, r_{0}, r_{1}, r_{2}$.

Our original example:

000100000
000010000
$000101100 \leftarrow$
010010010
001001101
000000010
000000001
plus 1 xor, 1 input load.

Our original example:

000100000
000010000
000101100
$000010010 \leftarrow$
001001101
000000010
000000001
plus 2 xors, 2 input loads.

Our original example:

000100000
000010000
000101100
000010010
$000001101 \leftarrow$
000000010
000000001
plus 3 xors, 3 input loads.

Our original example:

000100000
000010000
$000001100 \leftarrow$
000010010
000001101
000000010
000000001
plus 4 xors, 3 input loads.

Our original example:

$000000000 \leftarrow$
000010000
000001100
000010010
000001101
000000010
000000001
plus 4 xors, 4 input loads.

Our original example:

000000000
000010000
000001100
$000000010 \leftarrow$
000001101
000000010
000000001
plus 5 xors, 4 input loads.

Our original example:

000000000
$000000000 \leftarrow$
000001100
000000010
000001101
000000010
000000001
plus 5 xors, 5 input loads.

Our original example:

000000000
000000000
000001100
000000010
$000000001 \leftarrow$
000000010
000000001
plus 6 xors, 5 input loads.

Our original example:

000000000
000000000
$000000100 \leftarrow$
000000010
000000001
000000010
000000001
plus 7 xors, 6 input loads.

Our original example:

000000000
000000000
$000000000 \leftarrow$
000000010
000000001
000000010
000000001
plus 7 xors, 7 input loads.

Our original example:

000000000
000000000
000000000
$000000000 \leftarrow$
000000001
000000010
000000001
plus 7 xors, 7 input loads.

Our original example:

000000000
000000000
000000000
000000000
000000001
$000000000 \leftarrow$
000000001
plus 7 xors, 8 input loads.

Our original example:

000000000
000000000
000000000
000000000
$000000000 \leftarrow$
000000000
000000001
plus 7 xors, 8 input loads.

Our original example:

000000000
000000000
000000000
000000000
000000000
000000000
$000000000 \leftarrow$
plus 7 xors, 9 input loads.
Algorithm found the speedup.

Part II. The $M(n)$ game

Define $M(n)$
as the minimum number of
bit operations (ands, xors) needed to multiply
n-bit polys $f, g \in \mathbf{F}_{2}[x]$
(in standard representation).
e.g. $M(2) \leq 5$:
to compute
$h_{0}+h_{1} x+h_{2} x^{2}=$
$\left(f_{0}+f_{1} x\right)\left(g_{0}+g_{1} x\right)$
can compute $h_{0}=f_{0} g_{0}$,
$h_{1}=f_{0} g_{1}+f_{1} g_{0}, h_{2}=f_{1} g_{1}$
with 4 ands, 1 xor.

Schoolbook multiplication:
$M(n) \leq \Theta\left(n^{2}\right)$
1963 Karatsuba:
$M(n) \leq \Theta\left(n^{\lg 3}\right)$.
1963 Toom:
$M(n) \leq n 2^{\Theta(\sqrt{\lg n})}$.
1971 Schönhage-Strassen:
$M(n) \leq \Theta(n \lg n \lg \lg n)$.
2007 Fürer
improves $\lg \lg n$ for integers
but doesn't help mod 2 .

What does this tell us about $M(131)$ or $M(251)$?

Absolutely nothing!
Reanalyze algorithms
to see exact complexity.
Rethink algorithm design to find constant-factor (and sub-constant-factor) speedups that are not visible in the asymptotics.

Schoolbook recursion:
$M(n+1) \leq M(n)+4 n$.
Hence $M(n) \leq 2 n^{2}-2 n+1$.
Karatsuba recursion as commonly stated:
$M(2 n) \leq 3 M(n)+8 n-4$.
e.g. Karatsuba for $n=1$:
$f=f_{0}+f_{1} x$,
$g=g_{0}+g_{1} x$,
$h_{0}=f_{0} g_{0}$,
$h_{2}=f_{1} g_{1}$,
$h_{1}=\left(f_{0}+f_{1}\right)\left(g_{0}+g_{1}\right)-h_{0}-h_{2}$
$\Rightarrow f g=h_{0}+h_{1} x+h_{2} x^{2}$.

Karatsuba for $n=2$:

$f=f_{0}+f_{1} x+f_{2} x^{2}+f_{3} x^{3}$, $g=g_{0}+g_{1} x+g_{2} x^{2}+g_{3} x^{3}$,
$H_{0}=\left(f_{0}+f_{1} x\right)\left(g_{0}+g_{1} x\right)$,
$H_{2}=\left(f_{2}+f_{3} x\right)\left(g_{2}+g_{3} x\right)$,
$H_{1}=\left(f_{0}+f_{2}+\left(f_{1}+f_{3}\right) x\right)$.
$\left(g_{0}+g_{2}+\left(g_{1}+g_{3}\right) x\right)$
$-H_{0}-H_{2}$
$\Rightarrow f g=H_{0}+H_{1} x^{2}+H_{2} x^{4}$.

Initial linear computation:
$f_{0}+f_{2}, f_{1}+f_{3}, g_{0}+g_{2}, g_{1}+g_{3} ;$ cost 4.

Three size-2 mults producing
$H_{0}=q_{0}+q_{1} x+q_{2} x^{2}$;
$H_{2}=r_{0}+r_{1} x+r_{2} x^{2}$;
$H_{0}+H_{1}+H_{2}=p_{0}+p_{1} x+p_{2} x^{2}$.
Final linear reconstruction:

$$
\begin{aligned}
H_{1}= & \left(p_{0}-q_{0}-r_{0}\right)+ \\
& \left(p_{1}-q_{1}-r_{1}\right) x+ \\
& \left(p_{2}-q_{2}-r_{2}\right) x^{2}
\end{aligned}
$$

cost 6;
$f g=H_{0}+H_{1} x^{2}+H_{2} x^{4}$,
cost 2.

Let's look more closely at the reconstruction:
$f g=h_{0}+h_{1} x+\cdots+h_{6} x^{6}$ with
$h_{0}=q_{0} ;$
$h_{1}=q_{1}$;
$h_{2}=q_{2}+\left(p_{0}-q_{0}-r_{0}\right)$;
$h_{3}=\left(p_{1}-q_{1}-r_{1}\right)$;
$h_{4}=\left(p_{2}-q_{2}-r_{2}\right)+r_{0}$;
$h_{5}=r_{1}$;
$h_{6}=r_{2}$.

Let's look more closely

 at the reconstruction:$f g=h_{0}+h_{1} x+\cdots+h_{6} x^{6}$ with
$h_{0}=q_{0} ;$
$h_{1}=q_{1}$;
$h_{2}=q_{2}+\left(p_{0}-q_{0}-r_{0}\right)$;
$h_{3}=\left(p_{1}-q_{1}-r_{1}\right)$;
$h_{4}=\left(p_{2}-q_{2}-r_{2}\right)+r_{0} ;$
$h_{5}=r_{1}$;
$h_{6}=r_{2}$.
We've seen this before!
Reduce $6+2=8$ ops to 7 ops by reusing $q_{2}-r_{0}$.

2000 Bernstein:
$M(2 n) \leq 3 M(n)+7 n-3$.
2009 Bernstein:
new bounds on $M(n)$
from further improvements
to Karatsuba, Toom, etc.
binary.cr.yp.to/m.html
Typically 20\% smaller than
2003 Rodríguez-Henríquez-Koç,
2005 Chang-Kim-Park-Lim,
2006 Weimerskirch-Paar,
2006 von zur Gathen-Shokrollahi,
2007 Peter-Langendörfer.

So far have focused on
$M(n)$ for small n,
but different techniques
are better for large n.
I'm now exploring impact of 2008 Gao-Mateer.

For $\mathbf{F}_{2} \subseteq \mathbf{F}_{q} \subseteq k$:
1988 Wang-Zhu, 1989 Cantor diagonalize $k[t] /\left(t^{q}+t\right)$ using $\approx 0.5 q \lg q$ mults in k, $\approx 0.5 q(\lg q)^{\lg 3}$ adds in k.
2008 Gao-Mateer use $\approx 0.5 q \lg q$ mults, $\approx 0.25 q \lg q \lg \lg q$ adds.

"Who cares?"

Conventional wisdom:
Detailed $M(n)$ analysis has very little relevance to software speed.

We multiply f by g
by looking up 4 bits of f
in a size-16 table of precomputed multiples of g; looking up next 4 bits; etc. One table lookup replaces many bit operations!

Might use Karatsuba etc., but only for large n.

Part III. Batching

Classic \mathbf{F}_{p}^{*} index calculus needs to check smoothness of many positive integers $<p$.

Smooth integer: integer with no prime divisors $>y$.
Typical: $(\log y)^{2} \in$
$(1 / 2+o(1)) \log p \log \log p$.
Many: typically $y^{2+o(1), ~}$ of which $y^{1+o(1)}$ are smooth.
(Modern index calculus, NFS: smaller integers; smaller y.)

How to check smoothness?

Old answers: Trial division, time $y^{1+o(1)} ;$ rho, time $y^{1 / 2+o(1)}$, assuming standard conjectures.

Better answer: ECM etc.
Time $y^{o(1)}$; specifically
$\exp \sqrt{(2+o(1)) \log y \log \log y}$, assuming standard conjectures.

Much better answer
(in standard RAM model): Known batch algorithms test smoothness of many integers simultaneously.
Time per input: $(\log y)^{O(1)}$ $=\exp O(\log \log y)$.

General pattern:

Algorithm designer optimizes algorithm for one input.

But algorithm is then applied to many inputs! Oops.

Often much better speed
from batch algorithms
optimized for many inputs.
e.g. Batch ECDL: $\sqrt{\#}$ speedup. Batch NFS: smaller exponent.
Can find many more examples.

Surprising recent example:
Batching can save time in multiplication!

Largest speedups: $\mathbf{F}_{2}[x]$.
Consequence: New speed record for public-key cryptography. 37895 scalar mults/second on a 3.2GHz Phenom II X4 for a secure elliptic curve $/ \mathbf{F}_{2} 251$. http://binary.cr.yp.to

Surprising recent example:
Batching can save time in multiplication!

Largest speedups: $\mathbf{F}_{2}[x]$.
Consequence: New speed record for public-key cryptography. 37895 scalar mults/second on a 3.2GHz Phenom II X4 for a secure elliptic curve $/ \mathbf{F}_{2} 251$. http://binary.cr.yp.to

Note: No subfields were exploited in the creation of this record.

Simplest batching technique: "bitslicing."

Transpose 128 polynomials
$f_{0}, f_{1}, \ldots, f_{127} \in \mathbf{F}_{2}[x]$, each having d coefficients,
into d vectors
$F_{0}, F_{1}, \ldots, F_{d-1} \in \mathbf{F}_{2}^{128}$,
where $F_{i}[j]=f_{j}[i]$.
Vector operation $F_{1} \oplus F_{33}$ adds bit 1 of f_{j}
to bit 33 of f_{j}
for each i in parallel.

Bitslicing disadvantages:

Table lookups are expensive. e.g. $\operatorname{tab}\left[f_{j} \bmod 16\right]$.

Conditional branches are expensive.
$128 \times$ volume of data; harder to avoid load/store bottlenecks.

Transposition costs roughly 1 cycle per byte; frequent transposition is bad.

Bitslicing advantages:

Free bit extraction, bit shuffling, etc.

No word-size penalty. e.g. 128 additions of d-bit polynomials cost d vector xors instead of 128 「 $d / 128\rceil$. Huge speedup for small d.
\Rightarrow Productive synergy with $M(n)$ techniques.

Elliptic-curve addition
$P+Q$ traditionally uses
conditional branches:
$Q=P ? Q=-P ?$ etc.
2006 Bernstein: cheaply avoid conditional branches in $P \mapsto n P$ if $2 \neq 0$.

2007 Bernstein-Lange, using Edwards curves: arbitrary group ops if $2 \neq 0$.

2008 Bernstein-LangeRezaeian Farashahi, "binary Edwards curves": arbitrary group ops if $2=0$.

Part IV. Normal bases

Current ECRYPT project, spearheaded by Tanja Lange: break Certicom's ECC2K-130.
i.e., compute discrete log of a challenge point on $y^{2}+x y=x^{3}+1$ over \mathbf{F}_{2131}.

Carefully selected iteration
function for Pollard rho
involves 5 mults,
21 squarings, 7 adds, occasional inversions, and one computation of weight in normal basis.
\mathbf{F}_{2131} has type-2
normal basis $\zeta+\zeta^{-1}$,
$\zeta^{2}+\zeta^{-2}, \zeta^{4}+\zeta^{-4}$,
$\ldots, \zeta^{2^{130}}+\zeta^{-2^{130}}$ where
ζ is primitive 263 rd root of 1 .
Weight is sum of coefficients.
Squaring is rotation.
Multi-squaring is rotation.
Inversion by Fermat uses many multi-squarings.

But fast ECDL software uses polynomial basis: e.g.,
basis $1, x, x^{2}, \ldots, x^{130}$ of
$\mathrm{F}_{2}[x] /\left(x^{131}+x^{13}+x^{2}+x+1\right)$.
Many obvious disadvantages: more expensive squaring, multi-squaring, inversion; must convert to normal basis
(e.g., with xor-largest)
before computing weight.
But huge speedup in the 5 mults: polynomial multiplication uses Karatsuba etc.; reduction is very fast.

How slow is normal-basis mult?
Type-1 normal basis of $\mathbf{F}_{2}{ }^{n}$, where 2 has order $n \bmod n+1$, is a permutation of
$\zeta, \zeta^{2}, \ldots, \zeta^{n}$
in $\mathbf{F}_{2}[\zeta] /\left(\zeta^{n+1}-1\right)$.
$M(n)$ operations to multiply,
obtaining coefficients of
$\zeta^{2}, \zeta^{3}, \ldots, \zeta^{2 n}$.
$2 n-1$ operations to reduce
$\zeta^{2}, \zeta^{3}, \ldots, \zeta^{2 n}$
to $\zeta, \zeta^{2}, \ldots, \zeta^{n}$.
Alternative: $M(n+1)+n$ for redundant $1, \zeta, \ldots, \zeta^{n}$.

Type-2 normal basis of $\mathbf{F}_{2 n}$, where 2 has order $n \bmod 2 n+1$, is a permutation of
$\zeta+\zeta^{-1}, \zeta^{2}+\zeta^{-2}$,
$\zeta^{3}+\zeta^{-3}, \ldots, \zeta^{n}+\zeta^{-n}$
in $\mathbf{F}_{2}[\zeta] /\left(\zeta^{2 n+1}-1\right)$.
2000 Gao-von zur Gathen-Panario-Shoup:
$2 M(n)+O(n)$ operations
to multiply on this basis.
Polynomial basis of $\boldsymbol{F}_{2 n}$
is about twice as fast.

2007 von zur Gathen-
Shokrollahi-Shokrollahi:
$M(n)+O(n \lg n)$ operations
to multiply on this basis.
2009 Bernstein:
improved variant of algorithm sets Core 2 speed records
for the ECC2K-130 attack.

2009 Schwabe:
also Cell speed records.
2009 Bernstein-Lange: mix normal bases
with polynomial bases and speed up reduction.
vzG-S-S in a nutshell:
Write $N_{j}=\zeta^{j}+\zeta^{-j}$
and $P_{j}=\left(\zeta+\zeta^{-1}\right)^{j}$.
If
$f_{0}+f_{1} P_{1}+f_{2} P_{2}+f_{3} P_{3}=$
$g_{0}+g_{1} N_{1}+g_{2} N_{2}+g_{3} N_{3}$ and $f_{4}+f_{5} P_{1}+f_{6} P_{2}+f_{7} P_{3}=$ $g_{4}+g_{5} N_{1}+g_{6} N_{2}+g_{7} N_{3}$ then
$f_{0}+f_{1} P_{1}+f_{2} P_{2}+f_{3} P_{3}+$
$f_{4} P_{4}+f_{5} P_{5}+f_{6} P_{6}+f_{7} P_{7}=$ $g_{0}+\left(g_{1}+g_{7}\right) N_{1}+$
$\left(g_{2}+g_{6}\right) N_{2}+\left(g_{3}+g_{5}\right) N_{3}+$ $g_{4} N_{4}+g_{5} N_{5}+g_{6} N_{6}+g_{7} N_{7}$.

Proof: e.g.,
$\left(\zeta+\zeta^{-1}\right)^{4}\left(\zeta^{3}+\zeta^{-3}\right)$
$=\zeta^{7}+\zeta^{-7}+\zeta^{1}+\zeta^{-1}$
so $P_{4} N_{3}=N_{7}+N_{1}$. Q.E.D.
So size-8 conversion
from $1, P_{1}, P_{2}, \ldots, P_{7}$
to $1, N_{1}, N_{2}, \ldots, N_{7}$
can be done with
two size-4 conversions and three additions.

Apply same idea recursively: size- n conversion uses
$\leq 1+0.5 n(\lg n-2)$ additions.
Inverse has same cost.

To multiply f, g on basis

$N_{1}, N_{2}, \ldots, N_{n}$:
Convert to $1, P_{1}, \ldots, P_{n}$; cost $\approx 0.5 n \lg n$, twice.

Polynomial product; $M(n+1)$.
Convert $1, P_{1}, \ldots, P_{2 n}$
to $1, N_{1}, \ldots, N_{2 n}$;
cost $\approx n \lg n$.
Eliminate $N_{n+1}, \ldots, N_{2 n}$ using $N_{2 n+1-j}=N_{j}$; cost n. Eliminate 1 using
$1+N_{1}+\cdots+N_{n}=0 ;$ cost n.

Some new improvements:

1. For $1, P_{1}, \ldots, P_{n}$:
coefficient of 1 is 0 .
Cost $M(n)$ instead of $M(n+1)$.
2. For $1, P_{1}, \ldots, P_{2 n}$:
coefficients of $1, P_{1}$ are 0 .
Reduces cost by $n+1$.
3. If mults share input, reuse input conversion.
Reduces cost by $\approx 0.5 n \lg n$.
4. If output is an input,
use different reduction strategy
to skip a first-half conversion.
Reduces cost by $\approx 0.5 n \lg n$.

Can represent field element using basis P_{1}, \ldots, P_{n} for fast multiplication;
or basis N_{1}, \ldots, N_{n}
for fast multi-squarings;
or both.
Can vary this choice
across field-element variables.
Can also vary over time.
Approximate costs:
$P \rightarrow N: 0.5 n \lg n$.
$N \rightarrow P: 0.5 n \lg n$.
$P \times P \rightarrow N: M(n)+n \lg n$.
$P \times P \rightarrow P: M(n)+n \lg n$.
$N^{2^{j}} \rightarrow N: 0$.

