
What is a use case for quantum
key exchange?

Part I

Tanja Lange

Technische Universiteit Eindhoven

tanja@hyperelliptic.org

06 October 2009

PQCrypto 2010. Darmstadt, Germany, May 25–28 www.pqcrypto.org – p. 1



Threat of quantum computers

Shor’s algorithm makes polynomial time:

integer factorization

DLP in finite fields

DLP on elliptic curves

DLP in general class groups

Grover’s algorithm brings faster
simultaneous search in data

some security loss in symmetric
crypto (block and stream ciphers)

some security loss in hash
functions (if not VSH)

Compensate for Grover by ≈ doubling key size.

Sorry,
no picture
available

Quantum computer
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. . . but 15 years from now . . .

Large quantum computers might be reality. Then

• RSA is dead.

• DH key exchange is dead.

• DSA is dead.

• XTR is dead.

• ECDSA is dead.

• ECC is dead.

• HECC is dead.
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. . . but 15 years from now . . .

Large quantum computers might be reality. Then

• RSA is dead.

• DH key exchange is dead.

• DSA is dead.

• XTR is dead.

• ECDSA is dead.

• ECC is dead.

• HECC is dead.

• all public key cryptography is dead?

• Actually there are a few more public-key cryptosystems.
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The “survivors”

Public-key encryption:

Lattice-based encryption (e.g. NTRU)

Code-based encryption (e.g. McEliece, Niederreiter)

Public-key signatures:

Multivariate-quadratic-equations signatures (e.g.
HFEv-)

Hash-based signatures (e.g. Merkle’s hash-trees
signatures)

For these systems no efficient usage of Shor’s algorithm is
known. Grover’s algorithm has to be taken into account
when choosing key sizes.
Some more possibilities with less confidence.
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Encryption systems.
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Why care about this now?
15 years might seem a long time. But

There is no guarantee that it takes at least 15 years.

ECC-encrypted long-term-confidential documents (e.g.
health records, state secrets) become readable once
quantum computers are available.

ECC-signatures on long-term commitments (e.g. last
wishes, contracts) can be forged once quantum
computers are available.

Nobody will inform you if a secret agency made a
breakthrough in constructing a quantum computer.

The systems mentioned before remain secure – but
need better study of parameters, faster
implementations, and better embedding into protocols.
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Post-quantum cryptography

We study cryptographic systems that run on
conventional computers, are secure against attacks
with conventional computers, and remain secure under
attacks with quantum computers.

Could develop cryptosystems for quantum computers –
but there won’t be a market too soon (attacker has big
quantum computer long before wide-spread use).

Post-quantum cryptography deals with
the design of such systems;
cryptanalysis of such systems;
the analysis of suitable parameters depending on
different threat models;
design of protocols using the secure primitives.
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Warnings

The following describes text-book versions.

There exist e.g. CCA2 secure versions, versions with
better efficiency, other finite fields . . . .
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Hash-based signatures
Evolved from Lamport one-time signature scheme.

Standardize a 4k-bit hash function H.

Signer’s secret key X: 8k strings
x1[0], x1[1], . . . , x4k[0], x4k[1], each 4k bits. Total: 32k2 bits.

Signer’s public key Y : 8k strings
y1[0], y1[1], . . . , y4k[0], y4k[1], each 4k bits, computed as
yi[b] = H(xi[b]). Total: 32k2 bits.

Signature S(X, r, m) of a message m:
r, x1[h1], . . . , x4k[h4k] where H(r, m) = (h1, . . . , h4k).

Must never use secret key more than once.

Collision resistance not required from H.

1979 Merkle extends to more signatures.
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4-time Merkle hash tree

Four Lamport one-time keys Y1, Y2, Y3, Y4 with
corresponding X1, X2, X3, X4

X1

��

X2

��

X3

��

X4

��
Y1

$$JJJJJ Y2

zzttttt
Y3

$$JJJJJ Y4

zzttttt

Y5 = H(Y1, Y2)

**TTTTTTT
Y6 = H(Y3, Y4)

ttjjjjjjj

Y7 = H(Y5, Y6)

Merkle public key is Y7.
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4-time Merkle hash tree

First message m1: signature S(X1, r1, m1), Y1, Y2, Y5, Y6.

X1

��

X2

��

X3

��

X4

��
Y1

$$JJJJJ Y2

zzttttt
Y3

$$JJJJJ Y4

zzttttt

Y5 = H(Y1, Y2)

**TTTTTTT
Y6 = H(Y3, Y4)

ttjjjjjjj

Y7 = H(Y5, Y6)

Receiver’s verification:
Y7 = H(Y5, Y6);
Y5 = H(Y1, Y2);
Y1 matches one-time signature S(X1, r1, m1).
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4-time Merkle hash tree

Second message m2: signature S(X2, r2, m2), Y2, Y1, Y5, Y6.

X1

��

X2

��

X3

��

X4

��
Y1

$$JJJJJ Y2

zzttttt
Y3

$$JJJJJ Y4

zzttttt

Y5 = H(Y1, Y2)

**TTTTTTT
Y6 = H(Y3, Y4)

ttjjjjjjj

Y7 = H(Y5, Y6)

Receiver’s verification:
Y7 = H(Y5, Y6);
Y5 = H(Y1, Y2) (after trying H(Y2, Y1));
Y2 matches one-time signature S(X2, r2, m2).
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4-time Merkle hash tree

Third message m3: signature S(X3, r3, m3), Y3, Y4, Y6, Y5.

X1

��

X2

��

X3

��

X4

��
Y1

$$JJJJJ Y2

zzttttt
Y3

$$JJJJJ Y4

zzttttt

Y5 = H(Y1, Y2)

**TTTTTTT
Y6 = H(Y3, Y4)

ttjjjjjjj

Y7 = H(Y5, Y6)

Receiver’s verification:
Y7 = H(Y5, Y6);
Y6 = H(Y3, Y4);
Y3 matches one-time signature S(X3, r3, m3).
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4-time Merkle hash tree

Fourth message m4: signature S(X4, r4, m4), Y4, Y3, Y6, Y5.

X1

��

X2

��

X3

��

X4

��
Y1

$$JJJJJ Y2

zzttttt
Y3

$$JJJJJ Y4

zzttttt

Y5 = H(Y1, Y2)

**TTTTTTT
Y6 = H(Y3, Y4)

ttjjjjjjj

Y7 = H(Y5, Y6)

Receiver’s verification:
Y7 = H(Y5, Y6);
Y6 = H(Y3, Y4);
Y4 matches one-time signature S(X4, r4, m4).
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Multivariate signatures
Idea: Given y0, . . . , yn−1 ∈ IF2 finding x0, . . . , xn−1 ∈ IF2

with y0 = q0(x0, x1, . . . , xn−1),

y1 = q1(x0, x1, . . . , xn−1),

...
yn−1 = qn−1(x0, x1, . . . , xn−1),

is hard, where the qi are quadratic equation over IF2.

Signature: preimage of (y0, . . . , yn−1) = H(r, m) (if
exists).

Build in trapdoor by constructing the polynomials from a
hidden polynomial q(x) over IF2n ∼= IF2[t]/f(t), using
x =

∑
xit

i and sorting by powers of t. Finding x ∈ IF2n

with f(x) = y easier.

Hide structure by applying linear transformations,
removing some equations; adding extra variables.
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Linear codes

We only consider binary codes, i.e. codes over IF2.

A generator matrix of an [n, k] code C is a k × n matrix
G such that C = {xG : x ∈ IFk

2}.
The matrix G corresponds to a map IFk

2 → IFn
2 sending a

message of length k to an n-bit string.

A parity-check matrix of an [n, k] code C is an
(n− k)× n matrix H such that C = {c ∈ IFn

2 : H cT = 0}.
A systematic generator matrix is a generator matrix of
the form (Ik|Q) where Ik is the k × k identity matrix and
Q is a k × (n− k) matrix (redundant part).

Easy to get parity-check matrix from systematic
generator matrix, use H = (QT |In−k).
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Decoding problem

The Hamming distance between two words in IFn
2 is the

number of coordinates where they differ. The Hamming
weight of a word is the number of non-zero coordinates.

The minimum distance of a linear code C is the
smallest Hamming weight of a nonzero codeword in C.

Classical decoding problem: find the closest codeword
x ∈ C to a given y ∈ IFn

2 , assuming that there is a
unique closest codeword.

In particular: Decoding a generic binary code of length
n and without knowing anything about its structure
requires about 2(0.5+o(1))n/ log2(n) binary operations
(assuming a rate ≈ 1/2)

Coding theory deals with efficiently decodeable codes.
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The McEliece cryptosystem I

Proposed by McEliece in 1978; system and parameter
sizes proposed back then need 260 operations to break;
done last year (Bernstein-L.-Peters).

Let C be a length-n binary Goppa code Γ of dimension k
with minimum distance 2t + 1 where t ≈ (n− k)/ log2(n);
(original parameters: n = 1024, k = 524, t = 50).

The McEliece secret key consists of a generator matrix
G for Γ, an efficient t-error correcting decoding
algorithm for Γ; an n× n permutation matrix P and a
nonsingular k × k matrix S.

n, k, t are public; but Γ, P , S are randomly generated
secrets.

The McEliece public key is the k × n matrix G′ = SGP .
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The McEliece cryptosystem II
McEliece encryption: Compute mG′ and add a random
error vector e of weight t and length n.

Encryption of a message m of length k: Compute mG′
and add a random error vector e of weight t and length
n. Send y = mG′ + e.

McEliece decryption using secret key: Compute
yP−1 = mG′P−1 + eP−1 = mSG + eP−1.
Use decoding algorithm to find mS and thereby m.

Attacker is faced with decoding y to nearest codeword
mG′ in the code generated by G′. This is general
decoding if G′ does not expose any structure.

For codes other than Goppa codes often original code
could be reconstructed from G′ allowing faster
decoding.
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Attacks on the McEliece PKC

Most effective attack against the McEliece cryptosystem
(with binary Goppa code) is information-set decoding.

Many variants:
McEliece (1978), Leon (1988), Lee and Brickell (1988),
Stern (1989), van Tilburg (1990), Canteaut and
Chabanne (1994), Canteaut and Chabaud (1998),
Canteaut and Sendrier (1998), Bernstein-L.-Peters, and
Bernstein-L.-Peters-van Tilborg.

Quantum attacks (Grover applies) by Overbeck and
Sendrier.

Many attacks on code-based crypto when codes other
than Goppa codes are used. Some alternatives
available that give shorter keys.
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Advertisement

Visit www.pqcrypto.org for much more material, in
particular references in

Quantum computing
Hash-based cryptography
Code-based cryptography
Lattice-based cryptography
MQ cryptography

Help us complete the bibliography.

Next conference on post-quantum cryptography:
PQCrypto 2010 in Darmstadt, Germany, May 25-28.
Dates directly before Eurocrypt (Nice, France). Location
close to Frankfurt airport.
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