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2007.01.10, 09:00 (yikes!),

Leiden University, part of

“Mathematics: Algorithms and

Proofs” week at Lorentz Center:

Harold Edwards speaks on

“Addition on elliptic curves.”

Edwards



What we think when we hear

“addition on elliptic curves”:
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Addition on y2 � 5xy = x3 � 7.



� = (y2 � y1)=(x2 � x1),

x3 = �2 � 5�� x1 � x2,

y3 = 5x3 � (y1 + �(x3 � x1))

) (x1; y1) + (x2; y2) = (x3; y3).



� = (y2 � y1)=(x2 � x1),

x3 = �2 � 5�� x1 � x2,

y3 = 5x3 � (y1 + �(x3 � x1))

) (x1; y1) + (x2; y2) = (x3; y3).

Oops, this requires x1 6= x2.

� = (5y1 + 3x2
1)=(2y1 � 5x1),

x3 = �2 � 5�� 2x1,

y3 = 5x3 � (y1 + �(x3 � x1))

) (x1; y1) + (x1; y1) = (x3; y3).



� = (y2 � y1)=(x2 � x1),

x3 = �2 � 5�� x1 � x2,

y3 = 5x3 � (y1 + �(x3 � x1))

) (x1; y1) + (x2; y2) = (x3; y3).

Oops, this requires x1 6= x2.

� = (5y1 + 3x2
1)=(2y1 � 5x1),

x3 = �2 � 5�� 2x1,

y3 = 5x3 � (y1 + �(x3 � x1))

) (x1; y1) + (x1; y1) = (x3; y3).

Oops, this requires 2y1 6= 5x1.

(x1; y1) + (x1; 5x1 � y1) = 1.

(x1; y1) +1 = (x1; y1).

1+ (x1; y1) = (x1; y1).

1+1 = 1.



Despite 09:00,

despite Dutch trains,

we attend the talk.

Edwards says:

Euler–Gauss addition law

on x2 + y2 = 1� x2y2 is

(x1; y1) + (x2; y2) = (x3; y3) with

x3 =
x1y2 + y1x2

1� x1x2y1y2
,

y3 =
y1y2 � x1x2

1 + x1x2y1y2
.

Euler Gauss



Edwards, continued:

Every elliptic curve over Q

is birationally equivalent to

x2 + y2 = a2(1 + x2y2)

for some a 2 Q� f0;�1;�ig.
(Euler–Gauss curve � the

“lemniscatic elliptic curve.”)



Edwards, continued:

Every elliptic curve over Q

is birationally equivalent to

x2 + y2 = a2(1 + x2y2)

for some a 2 Q� f0;�1;�ig.
(Euler–Gauss curve � the

“lemniscatic elliptic curve.”)

x2 + y2 = a2(1 + x2y2) has

neutral element (0; a), addition

(x1; y1) + (x2; y2) = (x3; y3) with

x3 =
x1y2 + y1x2

a(1 + x1x2y1y2)
,

y3 =
y1y2 � x1x2

a(1� x1x2y1y2)
.



Addition law is “unified”:

(x1; y1) + (x1; y1) = (x3; y3) with

x3 =
x1y1 + y1x1

a(1 + x1x1y1y1)
,

y3 =
y1y1 � x1x1

a(1� x1x1y1y1)
.

Have seen unification before.

e.g., 1986 Chudnovsky2:

17M unified addition formulas

for (S : C : D : Z) on Jacobi’s

S2 + C2 = Z2, k2S2 + D2 = Z2.

Chudnovsky2 Jacobi



2007.01.10, � 09:30,

Bernstein–Lange:

Edwards addition law with

standard projective (X : Y : Z),

standard Karatsuba optimization,

common-subexp elimination:

10M + 1S + 1A.

Faster than anything seen before!

M: field multiplication.

S: field squaring.

A: multiplication by a.

Karatsuba



Edwards paper: Bulletin AMS

44 (2007), 393–422.

Many papers in 2007, 2008, 2009

have now used Edwards curves

to set speed records

for critical computations

in elliptic-curve cryptography.

Also new speed records

for ECM factorization: see

Lange’s talk here on Saturday.

Also expect speedups in verifying

elliptic-curve primality proofs.



Back to B.–L., early 2007.

Edwards x2 + y2 = a2(1 + x2y2)

doesn’t rationally include

Euler–Gauss x2 + y2 = 1� x2y2.

Common generalization,

presumably more curves over Q,

presumably more curves over Fq:
x2 + y2 = 2(1 + dx2y2) has

neutral element (0; ), addition

(x1; y1) + (x2; y2) = (x3; y3) with

x3 =
x1y2 + y1x2

(1 + dx1x2y1y2)
,

y3 =
y1y2 � x1x2

(1� dx1x2y1y2)
.



Convenient to take  = 1

for speed, simplicity.

Covers same set of curves

up to birational equivalence:

(; d) � (1; d4).
x2 + y2 = 1 + dx2y2 has

neutral element (0; 1), addition

(x1; y1) + (x2; y2) = (x3; y3) with

x3 =
x1y2 + y1x2

1 + dx1x2y1y2
,

y3 =
y1y2 � x1x2

1� dx1x2y1y2
.



Hmmm, does this really work?

Easiest way to check

the generalized addition law:

pull out the computer!

Pick a prime p; e.g. 47.

Pick curve param d 2 Fp.
Enumerate all affine points

(x; y) 2 Fp � Fp satisfying

x2 + y2 = 1 + dx2y2.

Use generalized addition law

to make an addition table

for all pairs of points.

Check associativity etc.



Warning: Don’t expect

complete addition table.

Addition law works generically

but can fail for some

exceptional pairs of points.

Unified addition law

works for generic additions

and for generic doublings

but can fail for some

exceptional pairs of points.

Basic problem: Denominators

1� dx1x2y1y2 can be zero.



Even if we switched to

projective coordinates,

would expect addition law

to fail for some points,

producing (0 : 0 : 0).

1995 Bosma–Lenstra theorem:

“The smallest cardinality of a

complete system of addition laws

on E equals two.”

Bosma Lenstra



Try p = 47, d = 25:

denominator 1� dx1x2y1y2

is nonzero for most points

(x1; y1), (x2; y2) on curve.

Edwards addition law is

associative whenever defined.



Try p = 47, d = 25:

denominator 1� dx1x2y1y2

is nonzero for most points

(x1; y1), (x2; y2) on curve.

Edwards addition law is

associative whenever defined.

Try p = 47, d = �1:

denominator 1� dx1x2y1y2

is nonzero for all points

(x1; y1), (x2; y2) on curve.

Addition law is a group law!



Try p = 47, d = 25:

denominator 1� dx1x2y1y2

is nonzero for most points

(x1; y1), (x2; y2) on curve.

Edwards addition law is

associative whenever defined.

Try p = 47, d = �1:

denominator 1� dx1x2y1y2

is nonzero for all points

(x1; y1), (x2; y2) on curve.

Addition law is a group law!

vs.

Z60T



2007 Bernstein–Lange

completeness proof

for all non-square d:
If x2

1 + y2
1 = 1 + dx2

1y2
1

and x2
2 + y2

2 = 1 + dx2
2y2

2

and dx1x2y1y2 = �1



2007 Bernstein–Lange

completeness proof

for all non-square d:
If x2

1 + y2
1 = 1 + dx2

1y2
1

and x2
2 + y2

2 = 1 + dx2
2y2

2

and dx1x2y1y2 = �1

then dx2
1y2

1(x2 + y2)
2

= dx2
1y2

1(x2
2 + y2

2 + 2x2y2)

= dx2
1y2

1(dx2
2y2

2 + 1 + 2x2y2)



2007 Bernstein–Lange

completeness proof

for all non-square d:
If x2

1 + y2
1 = 1 + dx2

1y2
1

and x2
2 + y2

2 = 1 + dx2
2y2

2

and dx1x2y1y2 = �1

then dx2
1y2

1(x2 + y2)
2

= dx2
1y2

1(x2
2 + y2

2 + 2x2y2)

= dx2
1y2

1(dx2
2y2

2 + 1 + 2x2y2)

= d2x2
1y2

1x2
2y2

2+dx2
1y2

1+2dx2
1y2

1x2y2



2007 Bernstein–Lange

completeness proof

for all non-square d:
If x2

1 + y2
1 = 1 + dx2

1y2
1

and x2
2 + y2

2 = 1 + dx2
2y2

2

and dx1x2y1y2 = �1

then dx2
1y2

1(x2 + y2)
2

= dx2
1y2

1(x2
2 + y2

2 + 2x2y2)

= dx2
1y2

1(dx2
2y2

2 + 1 + 2x2y2)

= d2x2
1y2

1x2
2y2

2+dx2
1y2

1+2dx2
1y2

1x2y2

= 1 + dx2
1y2

1 � 2x1y1



2007 Bernstein–Lange

completeness proof

for all non-square d:
If x2

1 + y2
1 = 1 + dx2

1y2
1

and x2
2 + y2

2 = 1 + dx2
2y2

2

and dx1x2y1y2 = �1

then dx2
1y2

1(x2 + y2)
2

= dx2
1y2

1(x2
2 + y2

2 + 2x2y2)

= dx2
1y2

1(dx2
2y2

2 + 1 + 2x2y2)

= d2x2
1y2

1x2
2y2

2+dx2
1y2

1+2dx2
1y2

1x2y2

= 1 + dx2
1y2

1 � 2x1y1

= x2
1 + y2

1 � 2x1y1 = (x1 � y1)
2.



2007 Bernstein–Lange

completeness proof

for all non-square d:
If x2

1 + y2
1 = 1 + dx2

1y2
1

and x2
2 + y2

2 = 1 + dx2
2y2

2

and dx1x2y1y2 = �1

then dx2
1y2

1(x2 + y2)
2

= dx2
1y2

1(x2
2 + y2

2 + 2x2y2)

= dx2
1y2

1(dx2
2y2

2 + 1 + 2x2y2)

= d2x2
1y2

1x2
2y2

2+dx2
1y2

1+2dx2
1y2

1x2y2

= 1 + dx2
1y2

1 � 2x1y1

= x2
1 + y2

1 � 2x1y1 = (x1 � y1)
2.

Have x2 + y2 6= 0 or x2 � y2 6= 0;

either way d is a square. Q.E.D.



1995 Bosma–Lenstra theorem:

“The smallest cardinality of a

complete system of addition laws

on E equals two.”



1995 Bosma–Lenstra theorem:

“The smallest cardinality of a

complete system of addition laws

on E equals two.” : : : meaning:

Any addition formula

for a Weierstrass curve E
in projective coordinates

must have exceptional cases

in E(k)� E(k), where

k = algebraic closure of k.



1995 Bosma–Lenstra theorem:

“The smallest cardinality of a

complete system of addition laws

on E equals two.” : : : meaning:

Any addition formula

for a Weierstrass curve E
in projective coordinates

must have exceptional cases

in E(k)� E(k), where

k = algebraic closure of k.

Edwards addition formula has

exceptional cases for E(k)

: : : but not for E(k).

We do computations in E(k).



Summary: Assume k field;

2 6= 0 in k; non-square d 2 k.

Then f(x; y) 2 k� k :

x2 + y2 = 1 + dx2y2g
is a commutative group with

(x1; y1) + (x2; y2) = (x3; y3)

defined by Edwards addition law:

x3 =
x1y2 + y1x2

1 + dx1x2y1y2
,

y3 =
y1y2 � x1x2

1� dx1x2y1y2
.

Terminology: “Edwards curves”

allow arbitrary d 2 k�; d = 4
are “original Edwards curves”;

non-square d are “complete.”



d = 0: “the clock group.”

x2 + y2 = 1, parametrized

by (x; y) = (sin; cos).

Gauss parametrized

x2 + y2 = 1� x2y2 by

(x; y) = (“lemn sin”; “lemn cos”).

Abel, Jacobi “sn, cn, dn”

handle all elliptic curves,

but (sn; cn) does not

specialize to (lemn sin; lemn cos).

Bad generalization of (sin; cos).

Edwards x is sn;

Edwards y is cn/dn.

Theta view: see Edwards paper.



Every elliptic curve over k
with a point of order 4

is birationally equivalent

to an Edwards curve.

Unique order-2 point ) complete.

Convenient for implementors:

no need to worry about

accidentally bumping into

exceptional inputs.

Particularly nice for cryptography:

no need to worry about

attackers manufacturing

exceptional inputs,

hearing case distinctions, etc.



What about elliptic curves

without points of order 4?

What about elliptic curves

over binary fields?

Continuing project (B.–L.):

For every elliptic curve E,

find complete addition law for E
with best possible speeds.

Complete laws are useful

even if slower than Edwards!



2008 B.–Birkner–L.–Peters:

“twisted Edwards curves”

ax2 + y2 = 1 + dx2y2

cover all Montgomery curves.

Almost as fast as a = 1;

brings Edwards speed

to larger class of curves.

2008 B.–B.–Joye–L.–P.:

every elliptic curve over Fp
where 4 divides group order

is (1 or 2)-isogenous

to a twisted Edwards curve.



Statistics for many p 2 1 + 4Z,

� number of pairs (j(E);#E):

Curves total odd 2odd 4odd 8odd

orig 1
24p 0 0 0 0

compl 1
2p 0 0 1

4p 1
8p

Ed 2
3p 0 0 1

4p 3
16p

twist 5
6p 0 0 5

12p 3
16p

4Z 5
6p 0 0 5

12p 3
16p

all 2p 2
3p 1

2p 5
12p 3

16p
Different statistics for 3 + 4Z.

Bad news:

complete twisted Edwards

� complete Edwards!



Some Newton polygons
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Edwards

1893 Baker: genus is generically

number of interior points.

2000 Poonen–Rodriguez-Villegas

classified genus-1 polygons.



How to generalize Edwards?

Design decision: want

quadratic in x and in y.

Design decision: want

x$ y symmetry.

d00

d10

d20

d10

d11

d21

d20

d21

d22

Curve shape d00 + d10(x + y) +

d11xy + d20(x2 + y2) +

d21xy(x + y) + d22x2y2 = 0.



Suppose that d22 = 0:

d00

d10

d20

d10

d11

d21

d20

d21

�

Genus 1 ) (1; 1) is an

interior point ) d21 6= 0.

Homogenize:

d00Z3 + d10(X + Y )Z2 +

d11XY Z + d20(X2 + Y 2)Z +

d21XY (X + Y ) = 0.



Points at 1 are (X : Y : 0)

with d21XY (X + Y ) = 0: i.e.,

(1 : 0 : 0), (0 : 1 : 0), (1 : �1 : 0).

Study (1 : 0 : 0) by setting

y = Y=X, z = Z=X
in homogeneous curve equation:

d00z3 + d10(1 + y)z2 +

d11yz + d20(1 + y2)z +

d21y(1 + y) = 0.

Nonzero coefficient of y
so (1 : 0 : 0) is nonsingular.

Addition law cannot be complete

(unless k is tiny).



So we require d22 6= 0.

Points at 1 are (X : Y : 0)

with d22X2Y 2 = 0: i.e.,

(1 : 0 : 0), (0 : 1 : 0).

Study (1 : 0 : 0) again:

d00z4 + d10(1 + y)z3 +

d11yz2 + d20(1 + y2)z2 +

d21y(1 + y)z + d22y2 = 0.

Coefficients of 1; y; z are 0

so (1 : 0 : 0) is singular.



Put y = uz, divide by z2

to blow up singularity:

d00z2 + d10(1 + uz)z +

d11uz + d20(1 + u2z2) +

d21u(1 + uz) + d22u2 = 0.

Substitute z = 0 to find

points above singularity:

d20 + d21u + d22u2 = 0.

We require the quadratic

d20 + d21u + d22u2

to be irreducible in k.

Special case: complete Edwards,

1� du2 irreducible in k.



In particular d20 6= 0:

d00

d10

d20

d10

d11

d21

d20

d21

d22

Design decision: Explore

a deviation from Edwards.

Choose neutral element (0; 0).

d00 = 0; d10 6= 0.

Can vary neutral element.

Warning: bad choice can produce

surprisingly expensive negation.



Now have a Newton polygon

for generalized Edwards curves:

�

d10

d20

d10

d11

d21

d20

d21

d22

?
?
?
?
?
?
?
?

By scaling x; y
and scaling curve equation

can limit d10; d11; d20; d21; d22

to three degrees of freedom.



2008 B.–L.–Rezaeian Farashahi:

complete addition law for

“binary Edwards curves”

d1(x + y) + d2(x2 + y2) =

(x + x2)(y + y2).

Covers all ordinary elliptic curves

over F2n for n � 3.

Also surprisingly fast,

especially if d1 = d2.



2008 B.–L.–Rezaeian Farashahi:

complete addition law for

“binary Edwards curves”

d1(x + y) + d2(x2 + y2) =

(x + x2)(y + y2).

Covers all ordinary elliptic curves

over F2n for n � 3.

Also surprisingly fast,

especially if d1 = d2.

2009 B.–L.:

complete addition law for

another specialization

covering all the “NIST curves”

over non-binary fields.



Consider, e.g., the curve

x2 + y2 = x + y + txy + dx2y2

with d = �1 and

t =
78751018041117252545420999954767176464538545060814630202841395651175859201799

over Fp where p = 2256 � 2224 +

2192 + 296 � 1.

Note: d is non-square in Fp.
Birationally equivalent to

standard “NIST P-256” curve

v2 = u3 � 3u + a6 where

a6 =
41058363725152142129326129780047268409114441015993725554835256314039467401291.



An addition law for

x2 + y2 = x + y + txy + dx2y2,

complete if d is not a square:

x3 =

x1 + x2 + (t� 2)x1x2 +

(x1 � y1)(x2 � y2) +

dx2
1(x2y1 + x2y2 � y1y2)

1� 2dx1x2y2 �
dx2

1(x2 + y2 + (t� 2)x2y2)

;

y3 =

y1 + y2 + (t� 2)y1y2 +

(y1 � x1)(y2 � x2) +

dy2
1(y2x1 + y2x2 � x1x2)

1� 2dy1y2x2 �
dy2

1(y2 + x2 + (t� 2)y2x2)

.



Note on computing addition laws:

An easy Magma script uses

Riemann–Roch to find addition

law given a curve shape.

Are those laws nice? No!

Find lower-degree laws by

Monagan–Pearce algorithm,

ISSAC 2006; or by evaluation at

random points on random curves.

Are those laws complete? No!

But always seems easy to

find complete addition laws

among low-degree laws where

denominator constant term 6= 0.



Birational equivalence from

x2 + y2 = x+ y + txy + dx2y2 to

v2 � (t + 2)uv + dv =

u3� (t+2)u2�du+(t+2)d
i.e. v2 � (t + 2)uv + dv =

(u2 � d)(u� (t + 2)):

u = (dxy + t + 2)=(x + y);

v =
((t + 2)2 � d)x

(t + 2)xy + x + y .

Assuming t + 2 square, d not:

only exceptional point is

(0; 0), mapping to 1.

Inverse: x = v=(u2 � d);
y = ((t + 2)u� v � d)=(u2 � d).



Completeness

x3 =

x1 + x2 + (t� 2)x1x2 +

(x1 � y1)(x2 � y2) +

dx2
1(x2y1 + x2y2 � y1y2)

1� 2dx1x2y2 �
dx2

1(x2 + y2 + (t� 2)x2y2)

;

y3 =

y1 + y2 + (t� 2)y1y2 +

(y1 � x1)(y2 � x2) +

dy2
1(y2x1 + y2x2 � x1x2)

1� 2dy1y2x2 �
dy2

1(y2 + x2 + (t� 2)y2x2)

.

Can denominators be 0?



Only if d is a square!

Theorem: Assume that

k is a field with 2 6= 0;

d; t; x1; y1; x2; y2 2 k;

d is not a square in k;

27d 6= (2� t)3;
x2

1 +y2
1 = x1 +y1 +tx1y1 +dx2

1y2
1 ;

x2
2 +y2

2 = x2 +y2 +tx2y2 +dx2
2y2

2 .

Then 1� 2dx1x2y2 �
dx2

1(x2 + y2 + (t� 2)x2y2) 6= 0.



Only if d is a square!

Theorem: Assume that

k is a field with 2 6= 0;

d; t; x1; y1; x2; y2 2 k;

d is not a square in k;

27d 6= (2� t)3;
x2

1 +y2
1 = x1 +y1 +tx1y1 +dx2

1y2
1 ;

x2
2 +y2

2 = x2 +y2 +tx2y2 +dx2
2y2

2 .

Then 1� 2dx1x2y2 �
dx2

1(x2 + y2 + (t� 2)x2y2) 6= 0.

By x$ y symmetry

also 1� 2dy1y2x2 �
dy2

1(y2 + x2 + (t� 2)y2x2) 6= 0.



Proof: Suppose that

1� 2dx1x2y2 �
dx2

1(x2 + y2 + (t� 2)x2y2) = 0.



Proof: Suppose that

1� 2dx1x2y2 �
dx2

1(x2 + y2 + (t� 2)x2y2) = 0.

Note that x1 6= 0.



Proof: Suppose that

1� 2dx1x2y2 �
dx2

1(x2 + y2 + (t� 2)x2y2) = 0.

Note that x1 6= 0.

Use curve equation2 to see that

(1� dx1x2y2)
2 = dx2

1(x2 � y2)
2.



Proof: Suppose that

1� 2dx1x2y2 �
dx2

1(x2 + y2 + (t� 2)x2y2) = 0.

Note that x1 6= 0.

Use curve equation2 to see that

(1� dx1x2y2)
2 = dx2

1(x2 � y2)
2.

By hypothesis d is non-square

so x2
1(x2 � y2)

2 = 0

and (1� dx1x2y2)
2 = 0.



Proof: Suppose that

1� 2dx1x2y2 �
dx2

1(x2 + y2 + (t� 2)x2y2) = 0.

Note that x1 6= 0.

Use curve equation2 to see that

(1� dx1x2y2)
2 = dx2

1(x2 � y2)
2.

By hypothesis d is non-square

so x2
1(x2 � y2)

2 = 0

and (1� dx1x2y2)
2 = 0.

Hence x2 = y2 and 1 = dx1x2y2.



Curve equation1 times 1=x2
1:

1 + y2
1=x2

1 =

1=x1 + y1(1=x2
1 + t=x1) + dy2

1 .



Curve equation1 times 1=x2
1:

1 + y2
1=x2

1 =

1=x1 + y1(1=x2
1 + t=x1) + dy2

1 .

Substitute 1=x1 = dx2
2:

1 + d2y2
1x4

2 =

dx2
2 + dy1(dx4

2 + x2
2t) + dy2

1 .



Curve equation1 times 1=x2
1:

1 + y2
1=x2

1 =

1=x1 + y1(1=x2
1 + t=x1) + dy2

1 .

Substitute 1=x1 = dx2
2:

1 + d2y2
1x4

2 =

dx2
2 + dy1(dx4

2 + x2
2t) + dy2

1 .

Substitute 2x2
2 = 2x2 + tx2

2 + dx4
2:

(1� dy1x2
2)

2 = d(x2 � y1)
2.



Curve equation1 times 1=x2
1:

1 + y2
1=x2

1 =

1=x1 + y1(1=x2
1 + t=x1) + dy2

1 .

Substitute 1=x1 = dx2
2:

1 + d2y2
1x4

2 =

dx2
2 + dy1(dx4

2 + x2
2t) + dy2

1 .

Substitute 2x2
2 = 2x2 + tx2

2 + dx4
2:

(1� dy1x2
2)

2 = d(x2 � y1)
2.

Thus x2 = y1 and 1 = dy1x2
2.

Hence 1 = dx3
2.



Curve equation1 times 1=x2
1:

1 + y2
1=x2

1 =

1=x1 + y1(1=x2
1 + t=x1) + dy2

1 .

Substitute 1=x1 = dx2
2:

1 + d2y2
1x4

2 =

dx2
2 + dy1(dx4

2 + x2
2t) + dy2

1 .

Substitute 2x2
2 = 2x2 + tx2

2 + dx4
2:

(1� dy1x2
2)

2 = d(x2 � y1)
2.

Thus x2 = y1 and 1 = dy1x2
2.

Hence 1 = dx3
2.

Now 2x2
2 = 2x2 + tx2

2 + x2

so 3 = (2�t)x2 so 27d = (2�t)3.
Contradiction.



What’s next?

Make the mathematicians happy:

Prove that all curves

are covered; should be easy

using Weil and rational param.

Make the computer happy:

Find faster complete laws.

Latest news, B.–Kohel–L.:

Have complete addition law

for twisted Hessian curves

ax3 + y3 + 1 = 3dxy
when a is non-cube.

Close in speed to Edwards

and covers different curves.


