ECM speed records on CPU and GPU

D. J. BernsteinUniversity of Illinois at Chicago

NSF ITR-0716498

New EECM web site: http://eecm.cr.yp.to Joint work with:

1	2	3	Tanja Lange
1			Peter Birkner
1			Christiane Peters
	2	3	Chen-Mou Cheng
	2	3	Bo-Yin Yang
	2		Tien-Ren Chen
		3	Hsueh-Chung Chen
		3	Ming-Shing Chen
		3	Chun-Hung Hsiao
		3	Zong-Cing Lin

"ECM using Edwards curves."
 Prototype software: GMP-EECM.
 New rewrite: EECM-MPFQ;
 first announcement today!
 Available now for download.

EUROCRYPT 2009:
 "ECM on graphics cards."
 Prototype CUDA-EECM.

3. SHARCS 2009: "The billion-mulmod-per-second PC."

Current CUDA-EECM, plus fast mulmods on Core 2, Phenom II, and Cell.

Fewer mulmods

Measurements of EECM-MPFQ for $B_1 = 1000000$:

- b = 1442099 bits in
- $s = \operatorname{lcm}\{1, 2, 3, 4, \ldots, B_1\}.$

 $P \mapsto sP$ is computed using 1442085 (= 0.99999b) DBL + 98341 (0.06819b) ADD.

These DBLs and ADDs use **M** (3.61371*b***M**) + **S** (3.99996*b***S**) + **add** (6.47729*b***add**). Compare to GMP-ECM 6.2.3:

 $P \mapsto sP$ is computed using 2001915 (1.38820b) DADD + 194155 (0.13463b) DBL.

These DADDs use **M** (5.95669*b***M**) + **S** (3.04566*b***S**) + **add** (8.86772*b***add**). Compare to GMP-ECM 6.2.3:

 $P \mapsto sP$ is computed using 2001915 (1.38820b) DADD + 194155 (0.13463b) DBL.

These DADDs use **M** (5.95669*b***M**) + **S** (3.04566*b***S**) + **add** (8.86772*b***add**).

Could do better! 0.13463b**M** are actually 0.13463b**D**.

D: mult by curve constant. Small curve, small *P*, ladder

 $\Rightarrow 4b\mathbf{M} + 4b\mathbf{S} + 2b\mathbf{D} + 8b\mathbf{add}.$ EECM still wins.

HECM handles 2 curves using $2b\mathbf{M} + 6b\mathbf{S} + 8b\mathbf{D} + \cdots$ (1986 Chudnovsky–Chudnovsky,

et al.); again EECM is better.

HECM handles 2 curves using $2b\mathbf{M} + 6b\mathbf{S} + 8b\mathbf{D} + \cdots$ (1986 Chudnovsky–Chudnovsky, et al.); again EECM is better.

What about NFS? $B_1 = 1000$? Measurements of EECM-MPFQ:

b = 1438 bits in s.

 $P \mapsto sP$ is computed using 1432 (0.99583b) DBL + 211 (0.14673b) ADD.

These DBLs and ADDs use **M** (4.31433*b***M**) + **S** (3.98331*b***S**) + **add** (7.00209*b***add**). Note: smaller window size in addition chain, so more ADDs per bit.

Compare to GMP-ECM 6.2.3:

Note: smaller window size in addition chain,

so more ADDs per bit.

Compare to GMP-ECM 6.2.3:

 $P \mapsto sP$ is computed using **M** (5.75661*b***M**) + **S** (2.99374*b***S**) + **add** (8.50070*b***add**).

Even for this small B_1 , EECM beats Montgomery ECM in operation count. Advantage grows with B_1 . Notes on current stage 2:

 EECM-MPFQ jumps through the j's coprime to d₁.
 GMP-ECM: coprime to 6.

EECM-MPFQ computes
 Dickson polynomial values using
 Bos-Coster addition chains.
 GMP-ECM: ad-hoc, relying on
 arithmetic progression of *j*.

3. EECM-MPFQ doesn't bother converting to affine coordinates until the end of stage 2.

4. EECM-MPFQ uses NTL for poly arith in "big" stage 2.

<u>More primes per mulmod</u>

1987/1992 Montgomery, 1993 Atkin–Morain had suggested using torsion Z/12 or $(Z/2) \times (Z/8)$.

GMP-ECM went back to $\mathbf{Z}/6$.

"ECM using Edwards curves" introduced new small curves with $\mathbf{Z}/12$, $(\mathbf{Z}/2) \times (\mathbf{Z}/8)$.

Does big torsion really help? Let's look at what matters: number of mulmods used to find an average prime. e.g. Try all 7530 primes between $2^{25} - 2^{17}$ and 2^{25} .

EECM-MPFQ $B_1 = 128 \ d_1 = 120$ with a **Z**/4 Edwards curve uses 21774749**M** + 5509272**S** to find 2070 of these primes. Cost per prime found: 10519**M** + 2661**S**. e.g. Try all 7530 primes between $2^{25} - 2^{17}$ and 2^{25} .

EECM-MPFQ $B_1 = 128 \ d_1 = 120$ with a **Z**/4 Edwards curve uses 21774749**M** + 5509272**S** to find 2070 of these primes. Cost per prime found: 10519**M** + 2661**S**.

EECM-MPFQ $B_1 = 96 d_1 = 60$ with a **Z**/12 Edwards curve uses 10607297**M** + 3883056**S** to find 1605 of these primes. Cost per prime found: 6608**M** + 2419**S**.

Cost per prime found for 30-bit primes, as function of B_1 :

Between $2^{35} - 2^{17}$ and 2^{35} :

 $B_1 = 640 \ d_1 = 210 \ \mathbf{Z}/4 \Rightarrow$ 107045**M** per prime found.

 $B_1 = 384 \ d_1 = 150 \ \mathbf{Z}/12 \Rightarrow$ 75769**M** per prime found.

Some upcoming experiments:

1. Try a = -1 curves.

2. Replace some **M** with **D**; account for resulting speedup.

3. Check many more primes for robust statistics.

Faster mulmods

ECM is bottlenecked by mulmods:

- practically all of stage 1;
- curve operations in stage 2 (pumped up by Dickson!);
- final product in stage 2, except fast poly arith.

GMP-ECM does mulmods with the GMP library.

... but GMP has slow API, so GMP-ECM has \geq 20000 lines of new mulmod code.

\$ wc -c<eecm-mpfq.tar.bz2</pre>

8853

Obviously EECM-MPFQ doesn't include new mulmod code! \$ wc -c<eecm-mpfq.tar.bz2
8853</pre>

Obviously EECM-MPFQ doesn't include new mulmod code!

MPFQ library (Gaudry–Thomé) does arithmetic in \mathbf{Z}/n where number of n words is known at compile time. Better API than GMP: most importantly, n in advance.

EECM-MPFQ uses MPFQ for essentially all mulmods.

GMP-ECM 6.2.3 (2009.04) using GMP 4.3.1 (2009.05), both current today:

Tried 1000 curves, $B_1 = 1024$, typical 240-bit n, on 2.4GHz Core 2 Quad 6fb. Stage 1: 5.84 · 10⁶ cycles/curve. GMP-ECM 6.2.3 (2009.04) using GMP 4.3.1 (2009.05), both current today:

Tried 1000 curves, $B_1 = 1024$, typical 240-bit n, on 2.4GHz Core 2 Quad 6fb. Stage 1: $5.84 \cdot 10^6$ cycles/curve. EECM-MPFQ, same 240-bit n, same CPU, 1000 curves, $B_1 = 1024$: $3.92 \cdot 10^6$ cycles/curve.

Some speedup from Edwards; some speedup from MPFQ.

What about stage 2?

GMP-ECM, 100 curves, $B_2 = 443706$, Dickson polynomial degree 1: 28.2 \cdot 10⁶ cycles/curve. Degree 3: 34.7 \cdot 10⁶. Some speedup from Edwards; some speedup from MPFQ.

What about stage 2?

GMP-ECM, 100 curves, $B_2 = 443706$, Dickson polynomial degree 1: 28.2 \cdot 10⁶ cycles/curve. Degree 3: 34.7 \cdot 10⁶.

EECM-MPFQ, 100 curves, $d_1 = 990$, range 506880 for primes $990i \pm j$: $23.8 \cdot 10^6$ cycles/curve. Degree 3: $30.9 \cdot 10^6$. Summary: EECM-MPFQ uses fewer mulmods than GMP-ECM; takes less time than GMP-ECM; and finds more primes. Summary: EECM-MPFQ uses fewer mulmods than GMP-ECM; takes less time than GMP-ECM; and finds more primes.

Are GMP-ECM and EECM-MPFQ fully exploiting the CPU? No!

Three ongoing efforts to speed up mulmods for ECM: Thorsten Kleinjung, for RSA-768; Alexander Kruppa, for CADO; and ours—see next slide. Our latest mulmod speeds, interleaving vector threads with integer threads:

4×3GHz Phenom II 940: 202 · 10⁶ 192-bit mulmods/sec.

 4×2.83 GHz Core 2 Quad Q9550: 114 · 10⁶ 192-bit mulmods/sec.

 6×3.2 GHz Cell (Playstation 3): $102 \cdot 10^{6}$ 195-bit mulmods/sec.

6400 MHz

6400 MHz

How do we gain more speed if clock speeds have stalled? Answer: Massive parallelism!

\$500 GTX 295 is one card with two GPUs.

Total 480 32-bit ALUs running at 1.242GHz.

Our latest CUDA-EECM speed: 481 · 10⁶ 210-bit mulmods/sec.

For \approx \$2000 can build PC with one CPU and two GPUs: 1300 \cdot 10⁶ 192-bit mulmods/sec.