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Certicom challenges

I The �exercises�
I 79-bit: SOLVED December 1997
I 89-bit: SOLVED February 1998
I 97-bit: SOLVED September 1999

I Level I
I ECC2K-108: SOLVED April 2000
I ECCp-109: SOLVED Nov. 2002
I ECC2-109: SOLVED April 2004
I 131-bit: (ECC2K-130, ECC2-131, ECCp-131) still open

I Level II
I 163-bit: (ECC2K-163, ECC2-163, ECCp-162) still open
I 191-bit, 239-bit, 359-bit: still open
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ECC2-XXX

I Our paper covers the binary challenges ECC2K-130, ECC2-131,
ECC2K-163, and ECC2-163.

I The easiest of these is ECC2K-130, a Koblitz curve de�ned over
F2131 .

I Challenge data for ECC2K-130:
Px=05 1C99BFA6 F18DE467 C80C23B9 8C7994AA

Py=04 2EA2D112 ECEC71FC F7E000D7 EFC978BD

Qx=06 C997F3E7 F2C66A4A 5D2FDA13 756A37B1

Qy=04 A38D1182 9D32D347 BD0C0F58 4D546E9A

I Certicom:

�The 109-bit Level I challenges are feasible using a very large
network of computers. The 131-bit Level I challenges are expected
to be infeasible against realistic software and hardware attacks,
unless of course, a new algorithm for the ECDLP is discovered. The
Level II challenges are infeasible given today's computer technology
and knowledge.�

The Certicom Challenges ECC2-X 5



DLPs on ECC
I No index-calculus-type attacks known for general elliptic curves.
I Pollard's rho method best generic attack (no memory needed).
I We have many platforms, each with many execution units.

Use parallelized Pollard rho method:

I All units need to use the same step function and distinguished
points.
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Hardness of ECC2K-130

I Curve has cofactor 4.

I Koblitz curves are de�ned over F2 and thus the (small) Frobenius
endomorphism operates on the F2131 -rational points. The operation
is simply squaring the coordinates.

I Can de�ne 'random' walk on classes under ± and Frobenius.

I Complexity of attack: √
π · 2131

2 · 4 · 2 · 131
≈ 260.9

iterations . . . provided that the the iteration works on the classes.

I Easy: P and −P have same x coordinate.

I Harder: x(P ), x(P )2, x(P )2
2
, . . . look quite di�erent.

I Even more fun: can choose normal basis or polynomial basis
representation of �nite �eld; this changes the representation of the
points.
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Handling Frobenius

I In polynomial basis could compute all Frobenius powers and choose
lexicographically smallest of these � but this needs 130 squarings
and does not work well with normal basis.

I In normal basis, x(P ) and x(P )2
j

have same Hamming weight.
Convenient to use this. Polynomial basis has to convert for testing.

I Our step function:
Pi+1 = Pi ⊕ σj(Pi),

where j = (HW(x(P ))/2 mod 8) + 3.
I This nicely avoids short, fruitless cycles.

I Iteration consists of
I converting x(P ) to normal basis (if necessary),
I computing the Hamming weight HW(x(P )) of the normal basis

representation of x(P ),
I checking that HW(x(P )) > 28, computing j,
I computing P ⊕ σj(P ) (in the usual representation of P ).

I Speed up by running multiple instances and combining inversion
using Montgomery's trick.

The Certicom Challenges ECC2-X 8



General set-up (Tanja Lange)

ASIC implementations (Frank Gurkaynak)

FPGA implementations (Daniel V. Bailey)

General-purpose CPU implementation (Daniel J. Bernstein)

Cell implementations (Peter Schwabe)

The Certicom Challenges ECC2-X 9



Can we break ECC2K-130 using ASICs?

Our goals

I Determine the rough cost of the attack

I Find out if the attack is feasible using ASICs

I Provide an outline of what needs to be done.

What we did not do

I Exact implementation

I Address issues with o�-chip communication for distinguished points
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Our estimation methodology

I Select an a�ordable technology to implement the ASIC

I Take individual sub-components that will make up one step
calculation

I Determine the post-layout performance limits of these
sub-components.

I Leave healthy margins for real-life implementations.

I Compose one ASIC using multiple parallel instances that compute a
single step

I Find out the performance obtained by a single ASIC

I Calculate how many ASICs you would need for such an attack
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Cost and performance of 1 ASIC

I Selected UMC 90nm
No special reason, could as well be any other technology.

I MPW cost: 45,000 Euros
Standard cost for prototyping, no mass production. 200-300 dies can
be produced this way.

I Cost for packaging: 10,000 Euros
Cost for packaging roughly same for 50-250 dies.

I Available core area: 2,000,000 gates
Total core area is 12mm2. Space for I/O, PLL, Mem. etc

I Internal clock speed: 1.2 - 1.5 GHz possible
I/O at 200-300 MHz, PLL required for internal clock.

I Power is not issue in this project
Proper power distribution, heat removal required
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Cost of calculating 1 step in the Pollard rho

For the ECC130-2K

I Assuming normal basis
For a real application the tradeo� between the normal and
polynomial basis should be investigated further.

I One step consumes 1 inversion, 2 multiplications, 131
squarings and 1 multiple squarings

I This can be realized within 1,572 clock cycles
I At the chosen technology, this function can be clocked as fast as 1.5

GHz
I Can be implemented using 6,000 gates

I More detailed numbers can be found in manuscript
Estimates were made with post-layout numbers
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Cost of Attack

I One ASIC can support 300-400 cores
Leaving room for PLLs, I/O, room for distinguished point evaluation.

I Clock rate 1.25 GHz
Conservative estimation.

I One ASIC will have a throughput of 300-400 Million steps per second

I I/O bandwidth of one chip will be around 30 Gb/s
Should be su�cient for point distribution

I To attack ECC2K-130 in one year approx. 69,000 Million steps per
second are required
This throughput can be achieved by 200-300 ASICs
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Conclusions

I ASIC implementation possible with reasonable cost
Around 200 ASICs, costing less than 60.000 Euros will be able to
mount a successful attack in a year

I Currently no one is working on a concrete implementation
These numbers suggest that the project is feasible, however, at the
moment we do not have someone working on the project.

I Practical implementation will be even faster
As soon as, someone starts working in earnest, more e�cient
implementations will almost certainly be developed.

I Practical implementation will also su�er from technical issues
Such as I/O and memory bandwidth, overall routing etc. The last
two points will probably balance each other out
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COPACOBANA

I A battery of low-cost FPGAs aimed at high-computation,
low-communication tasks

I Cost-optimized parallel code breaker introduced (Copa) at SHARCS
2006

I New and Improved for 2009: COPA5000

I Contains 128 Spartan-3 5000 FPGAs (XC3S5000-4FG676)

I Faster communication infrastructure and 32MB of external RAM per
FPGA
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How Best to Use Copa?

I 1 inversion, 2 mults, 1 squaring, 1 repeated-squaring needed for one
step of the Rho method

I As with the Cell implementation, two teams

I One implementation operates on elements in polynomial basis and
converts to check if a DP has been generated

I Another operates directly in normal basis � no need to convert

I Which is a better �t for Copa (time-area product)?

The Certicom Challenges ECC2-X 18



Polynomial Basis

I More literature on PB: generally beats NB for e�cient
implementation

I But attacking ECC2K-130 is di�erent: the Frobenius map is free in
NB

I PB implementation aims for the best of both worlds: faster PB
multiplication followed by conversion and Frobenius

I Engine uses Montgomery's trick to process 64 inversions
simultaneously

I Engine Total: 3,656 slices, 1,468 slices for multiplier, 75 slices for
square, 1,206 slices for conversion

I 9 engines can �t in one FPGA, yielding 23.4 DPs/day
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Normal Basis

I Normal Basis has fast squaring and Frobenius

I But multiplication is much more expensive

I Inversion uses Itoh-Tsujii, (8 multiplications!) so the design task
becomes keeping the inversion unit busy

I 32 inversions simultaneously: then 32 dedicated multipliers recover
individual inverses

I Only 4 engines �t on-chip, but one chip still yields an estimated 24
DPs/day

I Next step: better multiplication!
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What about software?

Have an implementation for the amd64 architecture.

Have an implementation for the amd64 architecture.

Have an implementation for the amd64 architecture.
Architecture provides 16 128-bit vector registers.
Two-operand vector instructions: a ^= b, a &= b, etc.

Some targeted CPUs:

I 2200MHz 4-core AMD Phenom 9550 100f23.

I 2210MHz 2-core AMD Opteron 875 20f10.

I 2404MHz 4-core Intel Core 2 Q6600 6fb.

I 2668MHz 4-core Intel Core i7 920 106a4.

I 3000MHz 4-core Intel Core 2 Q6850 6fb.

Initial focus: Core 2. Each core has 3 ALUs.
Each ALU does ≤ 1 vector operation per cycle.
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Bitslicing

f0 = 1;
f1 = 0;
g0 = 1;
g1 = 1;

c = f0 & g1;
d = f1 & g0;
h0 = f0 & g0;
h1 = c ^ d;
h2 = f1 & g1;

5 bit operations.
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Bitslicing

f0 = bitvector(1,1,0);
f1 = bitvector(0,1,1);
g0 = bitvector(1,0,0);
g1 = bitvector(1,1,1);

c = f0 & g1;
d = f1 & g0;
h0 = f0 & g0;
h1 = c ^ d;
h2 = f1 & g1;

5 vector operations.
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Counting bit operations for ECC2K-130

Software represents �eld element as 131 bits in poly basis:
f0, f1, . . . , f130 represents

∑
i fix

i mod x131 +x13 +x2 +x+1.

Costs of arithmetic as implemented �

batching 48 inversions:

I 14149 bit ops for f, g 7→ fg.

×5 = 70745

I 203 bit ops for f 7→ f 2.

×21 = 4263

I 3380 bit ops for conversion to normal basis.

×1 = 3380

http://binary.cr.yp.to/linearmod2.html

I 393 bit ops for f, g, ? 7→ f + ?(g − f).

×6 = 2358

I 139582 bit ops for f 7→ 1/f .

(· · · − 3M)/48 = 2024

I 131 bit ops for f, g 7→ f + g.

×7 = 917

I 654 bit ops for weight computation, comparison.

×1 = 654
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Counting cycles for ECC2K-130

84341 bit ops for iteration. Con�rmed by computer.
84341 vector ops handle 128 parallel iterations.
On one core: ≥ 84341/3 cycles for 128 iterations; i.e.,

≥ 219 cycles per iteration.

3GHz Core 2 Q6850 actually uses 694 cycles per iteration.
4 cores: 17.29 M iterations/sec. 3943 CPUs: done in 1 year.

Main bottleneck: loads, stores. Need better scheduling!
Other directions for improvements:

I Faster poly mult. Should save ≈ 10%.

I Faster reduction. Try x131 + x36 + x27 + x18 + 1.

I Normal-basis mult. Use 2007 vzG�Shokrollahi2.

I Larger batch size. Make sure to prefetch from DRAM.
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The Cell Broadband Engine

Well known architecture (from the previous talk)

The Cell's SPUs

I Running at 3.2 GHz

I Register �le with 128 128-bit registers

I All arithmetic instructions are SIMD instructions

I At most one arithmetic instruction per cycle

I At most one load/store instruction per cycle

I The Playstation makes 6 of these SPUs available

�Fast 128-bit vector operations =⇒ bitsliced implementation?�
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Shall we go bitsliced?

I Bitsliced implementation requires more memory (because we always
have to store 128 values)

I Only one arithmetic instruction per cycle

I Cell's SPUs do in-order execution

I Unrolling and inlining yield huge speed-ups (but increase code size)

I �Everything� (code, data segment, stack, heap) has to �t into
256 KB of local storage.

=⇒ It's not obvious that bitsliced implementations are faster
=⇒ Two teams independently implemented bitsliced and non-bitsliced
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I Cell's SPUs do in-order execution

I Unrolling and inlining yield huge speed-ups (but increase code size)

I �Everything� (code, data segment, stack, heap) has to �t into
256 KB of local storage.

=⇒ It's not obvious that bitsliced implementations are faster
=⇒ Two teams independently implemented bitsliced and non-bitsliced
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Cycles per �step� on one SPU

not bitsliced

I 31 Jul: 2565

I 03 Aug: 1735

I void

I void

I void

I 19 Aug: 1426

I 19 Aug: 1293

I void

I 04 Sep: 1157

I void

I void

I Next week?

bitsliced

I void

I void

I 06 Aug: 6488

I 10 Aug: 1587

I 13 Aug: 1389

I void

I void

I 30 Aug: 1180

I void

I 5 Sep: 1051

I 7 Sep: 1047

I Next week?

=⇒ Currently: < 3800 PS3 years for ECC2K-130

The Certicom Challenges ECC2-X 30



Cycles per �step� on one SPU

not bitsliced

I 31 Jul: 2565

I 03 Aug: 1735

I void

I void

I void

I 19 Aug: 1426

I 19 Aug: 1293

I void

I 04 Sep: 1157

I void

I void

I Next week?

bitsliced

I void

I void

I 06 Aug: 6488

I 10 Aug: 1587

I 13 Aug: 1389

I void

I void

I 30 Aug: 1180

I void

I 5 Sep: 1051

I 7 Sep: 1047

I Next week?

=⇒ Currently: < 3800 PS3 years for ECC2K-130

The Certicom Challenges ECC2-X 30



Cycles per �step� on one SPU

not bitsliced

I 31 Jul: 2565

I 03 Aug: 1735

I void

I void

I void

I 19 Aug: 1426

I 19 Aug: 1293

I void

I 04 Sep: 1157

I void

I void

I Next week?

bitsliced

I void

I void

I 06 Aug: 6488

I 10 Aug: 1587

I 13 Aug: 1389

I void

I void

I 30 Aug: 1180

I void

I 5 Sep: 1051

I 7 Sep: 1047

I Next week?

=⇒ Currently: < 3800 PS3 years for ECC2K-130

The Certicom Challenges ECC2-X 30



Cycles per �step� on one SPU

not bitsliced

I 31 Jul: 2565

I 03 Aug: 1735

I void

I void

I void

I 19 Aug: 1426

I 19 Aug: 1293

I void

I 04 Sep: 1157

I void

I void

I Next week?

bitsliced

I void

I void

I 06 Aug: 6488

I 10 Aug: 1587

I 13 Aug: 1389

I void

I void

I 30 Aug: 1180

I void

I 5 Sep: 1051

I 7 Sep: 1047

I Next week?

=⇒ Currently: < 3800 PS3 years for ECC2K-130

The Certicom Challenges ECC2-X 30



Cycles per �step� on one SPU

not bitsliced

I 31 Jul: 2565

I 03 Aug: 1735

I void

I void

I void

I 19 Aug: 1426

I 19 Aug: 1293

I void

I 04 Sep: 1157

I void

I void

I Next week?

bitsliced

I void

I void

I 06 Aug: 6488

I 10 Aug: 1587

I 13 Aug: 1389

I void

I void

I 30 Aug: 1180

I void

I 5 Sep: 1051

I 7 Sep: 1047

I Next week?

=⇒ Currently: < 3800 PS3 years for ECC2K-130

The Certicom Challenges ECC2-X 30



Cycles per �step� on one SPU

not bitsliced

I 31 Jul: 2565

I 03 Aug: 1735

I void

I void

I void

I 19 Aug: 1426

I 19 Aug: 1293

I void

I 04 Sep: 1157

I void

I void

I Next week?

bitsliced

I void

I void

I 06 Aug: 6488

I 10 Aug: 1587

I 13 Aug: 1389

I void

I void

I 30 Aug: 1180

I void

I 5 Sep: 1051

I 7 Sep: 1047

I Next week?

=⇒ Currently: < 3800 PS3 years for ECC2K-130

The Certicom Challenges ECC2-X 30



Cycles per �step� on one SPU

not bitsliced

I 31 Jul: 2565

I 03 Aug: 1735

I void

I void

I void

I 19 Aug: 1426

I 19 Aug: 1293

I void

I 04 Sep: 1157

I void

I void

I Next week?

bitsliced

I void

I void

I 06 Aug: 6488

I 10 Aug: 1587

I 13 Aug: 1389

I void

I void

I 30 Aug: 1180

I void

I 5 Sep: 1051

I 7 Sep: 1047

I Next week?

=⇒ Currently: < 3800 PS3 years for ECC2K-130

The Certicom Challenges ECC2-X 30



Cycles per �step� on one SPU

not bitsliced

I 31 Jul: 2565

I 03 Aug: 1735

I void

I void

I void

I 19 Aug: 1426

I 19 Aug: 1293

I void

I 04 Sep: 1157

I void

I void

I Next week?

bitsliced

I void

I void

I 06 Aug: 6488

I 10 Aug: 1587

I 13 Aug: 1389

I void

I void

I 30 Aug: 1180

I void

I 5 Sep: 1051

I 7 Sep: 1047

I Next week?

=⇒ Currently: < 3800 PS3 years for ECC2K-130

The Certicom Challenges ECC2-X 30



Cycles per �step� on one SPU

not bitsliced

I 31 Jul: 2565

I 03 Aug: 1735

I void

I void

I void

I 19 Aug: 1426

I 19 Aug: 1293

I void

I 04 Sep: 1157

I void

I void

I Next week?

bitsliced

I void

I void

I 06 Aug: 6488

I 10 Aug: 1587

I 13 Aug: 1389

I void

I void

I 30 Aug: 1180

I void

I 5 Sep: 1051

I 7 Sep: 1047

I Next week?

=⇒ Currently: < 3800 PS3 years for ECC2K-130

The Certicom Challenges ECC2-X 30



Cycles per �step� on one SPU

not bitsliced

I 31 Jul: 2565

I 03 Aug: 1735

I void

I void

I void

I 19 Aug: 1426

I 19 Aug: 1293

I void

I 04 Sep: 1157

I void

I void

I Next week?

bitsliced

I void

I void

I 06 Aug: 6488

I 10 Aug: 1587

I 13 Aug: 1389

I void

I void

I 30 Aug: 1180

I void

I 5 Sep: 1051

I 7 Sep: 1047

I Next week?

=⇒ Currently: < 3800 PS3 years for ECC2K-130

The Certicom Challenges ECC2-X 30



Cycles per �step� on one SPU

not bitsliced

I 31 Jul: 2565

I 03 Aug: 1735

I void

I void

I void

I 19 Aug: 1426

I 19 Aug: 1293

I void

I 04 Sep: 1157

I void

I void

I Next week?

bitsliced

I void

I void

I 06 Aug: 6488

I 10 Aug: 1587

I 13 Aug: 1389

I void

I void

I 30 Aug: 1180

I void

I 5 Sep: 1051

I 7 Sep: 1047

I Next week?

=⇒ Currently: < 3800 PS3 years for ECC2K-130

The Certicom Challenges ECC2-X 30



Cycles per �step� on one SPU

not bitsliced

I 31 Jul: 2565

I 03 Aug: 1735

I void

I void

I void

I 19 Aug: 1426

I 19 Aug: 1293

I void

I 04 Sep: 1157

I void

I void

I Next week?

bitsliced

I void

I void

I 06 Aug: 6488

I 10 Aug: 1587

I 13 Aug: 1389

I void

I void

I 30 Aug: 1180

I void

I 5 Sep: 1051

I 7 Sep: 1047

I Next week?

=⇒ Currently: < 3800 PS3 years for ECC2K-130

The Certicom Challenges ECC2-X 30



Cycles per �step� on one SPU

not bitsliced

I 31 Jul: 2565

I 03 Aug: 1735

I void

I void

I void

I 19 Aug: 1426

I 19 Aug: 1293

I void

I 04 Sep: 1157

I void

I void

I Next week?

bitsliced

I void

I void

I 06 Aug: 6488

I 10 Aug: 1587

I 13 Aug: 1389

I void

I void

I 30 Aug: 1180

I void

I 5 Sep: 1051

I 7 Sep: 1047

I Next week?

=⇒ Currently: < 3800 PS3 years for ECC2K-130

The Certicom Challenges ECC2-X 30



Thank you for your attention.
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