
The Certicom Challenges ECC2-X

Daniel V. Bailey, Brian Baldwin, Lejla Batina, Daniel J. Bernstein,
Peter Birkner, Joppe W. Bos, Gauthier van Damme, Giacomo de

Meulenaer, Junfeng Fan, Tim Güneysu, Frank Gurkaynak, Thorsten
Kleinjung, Tanja Lange, Nele Mentens, Christof Paar, Francesco

Regazzoni, Peter Schwabe, and Leif Uhsadel

ECRYPT VAMPIRE I

September 9, 2009

SHARCS 2009



Overview

General set-up (Tanja Lange)

ASIC implementations (Frank Gurkaynak)

FPGA implementations (Daniel V. Bailey)

General-purpose CPU implementation (Daniel J. Bernstein)

Cell implementations (Peter Schwabe)

The Certicom Challenges ECC2-X 2



General set-up (Tanja Lange)

ASIC implementations (Frank Gurkaynak)

FPGA implementations (Daniel V. Bailey)

General-purpose CPU implementation (Daniel J. Bernstein)

Cell implementations (Peter Schwabe)

The Certicom Challenges ECC2-X 3



Certicom challenges

I The �exercises�
I 79-bit: SOLVED December 1997
I 89-bit: SOLVED February 1998
I 97-bit: SOLVED September 1999

I Level I
I ECC2K-108: SOLVED April 2000
I ECCp-109: SOLVED Nov. 2002
I ECC2-109: SOLVED April 2004
I 131-bit: (ECC2K-130, ECC2-131, ECCp-131) still open

I Level II
I 163-bit: (ECC2K-163, ECC2-163, ECCp-162) still open
I 191-bit, 239-bit, 359-bit: still open

The Certicom Challenges ECC2-X 4



ECC2-XXX

I Our paper covers the binary challenges ECC2K-130, ECC2-131,
ECC2K-163, and ECC2-163.

I The easiest of these is ECC2K-130, a Koblitz curve de�ned over
F2131 .

I Challenge data for ECC2K-130:
Px=05 1C99BFA6 F18DE467 C80C23B9 8C7994AA

Py=04 2EA2D112 ECEC71FC F7E000D7 EFC978BD

Qx=06 C997F3E7 F2C66A4A 5D2FDA13 756A37B1

Qy=04 A38D1182 9D32D347 BD0C0F58 4D546E9A

I Certicom:

�The 109-bit Level I challenges are feasible using a very large
network of computers. The 131-bit Level I challenges are expected
to be infeasible against realistic software and hardware attacks,
unless of course, a new algorithm for the ECDLP is discovered. The
Level II challenges are infeasible given today's computer technology
and knowledge.�

The Certicom Challenges ECC2-X 5



DLPs on ECC
I No index-calculus-type attacks known for general elliptic curves.
I Pollard's rho method best generic attack (no memory needed).
I We have many platforms, each with many execution units.

Use parallelized Pollard rho method:

I All units need to use the same step function and distinguished
points.

The Certicom Challenges ECC2-X 6



Hardness of ECC2K-130

I Curve has cofactor 4.

I Koblitz curves are de�ned over F2 and thus the (small) Frobenius
endomorphism operates on the F2131 -rational points. The operation
is simply squaring the coordinates.

I Can de�ne 'random' walk on classes under ± and Frobenius.

I Complexity of attack: √
π · 2131

2 · 4 · 2 · 131
≈ 260.9

iterations . . . provided that the the iteration works on the classes.

I Easy: P and −P have same x coordinate.

I Harder: x(P ), x(P )2, x(P )2
2
, . . . look quite di�erent.

I Even more fun: can choose normal basis or polynomial basis
representation of �nite �eld; this changes the representation of the
points.

The Certicom Challenges ECC2-X 7



Handling Frobenius

I In polynomial basis could compute all Frobenius powers and choose
lexicographically smallest of these � but this needs 130 squarings
and does not work well with normal basis.

I In normal basis, x(P ) and x(P )2
j

have same Hamming weight.
Convenient to use this. Polynomial basis has to convert for testing.

I Our step function:
Pi+1 = Pi ⊕ σj(Pi),

where j = (HW(x(P ))/2 mod 8) + 3.
I This nicely avoids short, fruitless cycles.

I Iteration consists of
I converting x(P ) to normal basis (if necessary),
I computing the Hamming weight HW(x(P )) of the normal basis

representation of x(P ),
I checking that HW(x(P )) > 28, computing j,
I computing P ⊕ σj(P ) (in the usual representation of P ).

I Speed up by running multiple instances and combining inversion
using Montgomery's trick.

The Certicom Challenges ECC2-X 8



General set-up (Tanja Lange)

ASIC implementations (Frank Gurkaynak)

FPGA implementations (Daniel V. Bailey)

General-purpose CPU implementation (Daniel J. Bernstein)

Cell implementations (Peter Schwabe)

The Certicom Challenges ECC2-X 9



Can we break ECC2K-130 using ASICs?

Our goals

I Determine the rough cost of the attack

I Find out if the attack is feasible using ASICs

I Provide an outline of what needs to be done.

What we did not do

I Exact implementation

I Address issues with o�-chip communication for distinguished points

The Certicom Challenges ECC2-X 10



Can we break ECC2K-130 using ASICs?

Our goals

I Determine the rough cost of the attack

I Find out if the attack is feasible using ASICs

I Provide an outline of what needs to be done.

What we did not do

I Exact implementation

I Address issues with o�-chip communication for distinguished points

The Certicom Challenges ECC2-X 10



Our estimation methodology

I Select an a�ordable technology to implement the ASIC

I Take individual sub-components that will make up one step
calculation

I Determine the post-layout performance limits of these
sub-components.

I Leave healthy margins for real-life implementations.

I Compose one ASIC using multiple parallel instances that compute a
single step

I Find out the performance obtained by a single ASIC

I Calculate how many ASICs you would need for such an attack

The Certicom Challenges ECC2-X 11



Cost and performance of 1 ASIC

I Selected UMC 90nm
No special reason, could as well be any other technology.

I MPW cost: 45,000 Euros
Standard cost for prototyping, no mass production. 200-300 dies can
be produced this way.

I Cost for packaging: 10,000 Euros
Cost for packaging roughly same for 50-250 dies.

I Available core area: 2,000,000 gates
Total core area is 12mm2. Space for I/O, PLL, Mem. etc

I Internal clock speed: 1.2 - 1.5 GHz possible
I/O at 200-300 MHz, PLL required for internal clock.

I Power is not issue in this project
Proper power distribution, heat removal required

The Certicom Challenges ECC2-X 12



Cost of calculating 1 step in the Pollard rho

For the ECC130-2K

I Assuming normal basis
For a real application the tradeo� between the normal and
polynomial basis should be investigated further.

I One step consumes 1 inversion, 2 multiplications, 131
squarings and 1 multiple squarings

I This can be realized within 1,572 clock cycles
I At the chosen technology, this function can be clocked as fast as 1.5

GHz
I Can be implemented using 6,000 gates

I More detailed numbers can be found in manuscript
Estimates were made with post-layout numbers

The Certicom Challenges ECC2-X 13



Cost of Attack

I One ASIC can support 300-400 cores
Leaving room for PLLs, I/O, room for distinguished point evaluation.

I Clock rate 1.25 GHz
Conservative estimation.

I One ASIC will have a throughput of 300-400 Million steps per second

I I/O bandwidth of one chip will be around 30 Gb/s
Should be su�cient for point distribution

I To attack ECC2K-130 in one year approx. 69,000 Million steps per
second are required
This throughput can be achieved by 200-300 ASICs

The Certicom Challenges ECC2-X 14



Conclusions

I ASIC implementation possible with reasonable cost
Around 200 ASICs, costing less than 60.000 Euros will be able to
mount a successful attack in a year

I Currently no one is working on a concrete implementation
These numbers suggest that the project is feasible, however, at the
moment we do not have someone working on the project.

I Practical implementation will be even faster
As soon as, someone starts working in earnest, more e�cient
implementations will almost certainly be developed.

I Practical implementation will also su�er from technical issues
Such as I/O and memory bandwidth, overall routing etc. The last
two points will probably balance each other out

The Certicom Challenges ECC2-X 15



General set-up (Tanja Lange)

ASIC implementations (Frank Gurkaynak)

FPGA implementations (Daniel V. Bailey)

General-purpose CPU implementation (Daniel J. Bernstein)

Cell implementations (Peter Schwabe)

The Certicom Challenges ECC2-X 16



COPACOBANA

I A battery of low-cost FPGAs aimed at high-computation,
low-communication tasks

I Cost-optimized parallel code breaker introduced (Copa) at SHARCS
2006

I New and Improved for 2009: COPA5000

I Contains 128 Spartan-3 5000 FPGAs (XC3S5000-4FG676)

I Faster communication infrastructure and 32MB of external RAM per
FPGA

The Certicom Challenges ECC2-X 17



How Best to Use Copa?

I 1 inversion, 2 mults, 1 squaring, 1 repeated-squaring needed for one
step of the Rho method

I As with the Cell implementation, two teams

I One implementation operates on elements in polynomial basis and
converts to check if a DP has been generated

I Another operates directly in normal basis � no need to convert

I Which is a better �t for Copa (time-area product)?

The Certicom Challenges ECC2-X 18



Polynomial Basis

I More literature on PB: generally beats NB for e�cient
implementation

I But attacking ECC2K-130 is di�erent: the Frobenius map is free in
NB

I PB implementation aims for the best of both worlds: faster PB
multiplication followed by conversion and Frobenius

I Engine uses Montgomery's trick to process 64 inversions
simultaneously

I Engine Total: 3,656 slices, 1,468 slices for multiplier, 75 slices for
square, 1,206 slices for conversion

I 9 engines can �t in one FPGA, yielding 23.4 DPs/day

The Certicom Challenges ECC2-X 19



Normal Basis

I Normal Basis has fast squaring and Frobenius

I But multiplication is much more expensive

I Inversion uses Itoh-Tsujii, (8 multiplications!) so the design task
becomes keeping the inversion unit busy

I 32 inversions simultaneously: then 32 dedicated multipliers recover
individual inverses

I Only 4 engines �t on-chip, but one chip still yields an estimated 24
DPs/day

I Next step: better multiplication!

The Certicom Challenges ECC2-X 20



General set-up (Tanja Lange)

ASIC implementations (Frank Gurkaynak)

FPGA implementations (Daniel V. Bailey)

General-purpose CPU implementation (Daniel J. Bernstein)

Cell implementations (Peter Schwabe)

The Certicom Challenges ECC2-X 21



What about software?

Have an implementation for the amd64 architecture.

Have an implementation for the amd64 architecture.

Have an implementation for the amd64 architecture.
Architecture provides 16 128-bit vector registers.
Two-operand vector instructions: a ^= b, a &= b, etc.

Some targeted CPUs:

I 2200MHz 4-core AMD Phenom 9550 100f23.

I 2210MHz 2-core AMD Opteron 875 20f10.

I 2404MHz 4-core Intel Core 2 Q6600 6fb.

I 2668MHz 4-core Intel Core i7 920 106a4.

I 3000MHz 4-core Intel Core 2 Q6850 6fb.

Initial focus: Core 2. Each core has 3 ALUs.
Each ALU does ≤ 1 vector operation per cycle.

The Certicom Challenges ECC2-X 22



What about software?

Have an implementation for the amd64 architecture.

Have an implementation for the amd64 architecture.

Have an implementation for the amd64 architecture.
Architecture provides 16 128-bit vector registers.
Two-operand vector instructions: a ^= b, a &= b, etc.

Some targeted CPUs:

I 2200MHz 4-core AMD Phenom 9550 100f23.

I 2210MHz 2-core AMD Opteron 875 20f10.

I 2404MHz 4-core Intel Core 2 Q6600 6fb.

I 2668MHz 4-core Intel Core i7 920 106a4.

I 3000MHz 4-core Intel Core 2 Q6850 6fb.

Initial focus: Core 2. Each core has 3 ALUs.
Each ALU does ≤ 1 vector operation per cycle.

The Certicom Challenges ECC2-X 22



What about software?

Have an implementation for the amd64 architecture.Have an implementation for the amd64 architecture.

Have an implementation for the amd64 architecture.
Architecture provides 16 128-bit vector registers.
Two-operand vector instructions: a ^= b, a &= b, etc.

Some targeted CPUs:

I 2200MHz 4-core AMD Phenom 9550 100f23.

I 2210MHz 2-core AMD Opteron 875 20f10.

I 2404MHz 4-core Intel Core 2 Q6600 6fb.

I 2668MHz 4-core Intel Core i7 920 106a4.

I 3000MHz 4-core Intel Core 2 Q6850 6fb.

Initial focus: Core 2. Each core has 3 ALUs.
Each ALU does ≤ 1 vector operation per cycle.

The Certicom Challenges ECC2-X 22



Bitslicing

f0 = 1;
f1 = 0;
g0 = 1;
g1 = 1;

c = f0 & g1;
d = f1 & g0;
h0 = f0 & g0;
h1 = c ^ d;
h2 = f1 & g1;

5 bit operations.

f0 = 1;
f1 = 1;
g0 = 0;
g1 = 1;

c = f0 & g1;
d = f1 & g0;
h0 = f0 & g0;
h1 = c ^ d;
h2 = f1 & g1;

5 bit operations.

f0 = 0;
f1 = 1;
g0 = 0;
g1 = 1;

c = f0 & g1;
d = f1 & g0;
h0 = f0 & g0;
h1 = c ^ d;
h2 = f1 & g1;

5 bit operations.

The Certicom Challenges ECC2-X 23



Bitslicing

f0 = 1;
f1 = 0;
g0 = 1;
g1 = 1;

c = f0 & g1;
d = f1 & g0;
h0 = f0 & g0;
h1 = c ^ d;
h2 = f1 & g1;

5 bit operations.

f0 = 1;
f1 = 1;
g0 = 0;
g1 = 1;

c = f0 & g1;
d = f1 & g0;
h0 = f0 & g0;
h1 = c ^ d;
h2 = f1 & g1;

5 bit operations.

f0 = 0;
f1 = 1;
g0 = 0;
g1 = 1;

c = f0 & g1;
d = f1 & g0;
h0 = f0 & g0;
h1 = c ^ d;
h2 = f1 & g1;

5 bit operations.

The Certicom Challenges ECC2-X 23



Bitslicing

f0 = 1;
f1 = 0;
g0 = 1;
g1 = 1;

c = f0 & g1;
d = f1 & g0;
h0 = f0 & g0;
h1 = c ^ d;
h2 = f1 & g1;

5 bit operations.

f0 = 1;
f1 = 1;
g0 = 0;
g1 = 1;

c = f0 & g1;
d = f1 & g0;
h0 = f0 & g0;
h1 = c ^ d;
h2 = f1 & g1;

5 bit operations.

f0 = 0;
f1 = 1;
g0 = 0;
g1 = 1;

c = f0 & g1;
d = f1 & g0;
h0 = f0 & g0;
h1 = c ^ d;
h2 = f1 & g1;

5 bit operations.

The Certicom Challenges ECC2-X 23



Bitslicing

f0 = bitvector(1,1,0);
f1 = bitvector(0,1,1);
g0 = bitvector(1,0,0);
g1 = bitvector(1,1,1);

c = f0 & g1;
d = f1 & g0;
h0 = f0 & g0;
h1 = c ^ d;
h2 = f1 & g1;

5 vector operations.

The Certicom Challenges ECC2-X 24



Counting bit operations for ECC2K-130

Software represents �eld element as 131 bits in poly basis:
f0, f1, . . . , f130 represents

∑
i fix

i mod x131 +x13 +x2 +x+1.

Costs of arithmetic as implemented �

batching 48 inversions:

I 14149 bit ops for f, g 7→ fg.

×5 = 70745

I 203 bit ops for f 7→ f 2.

×21 = 4263

I 3380 bit ops for conversion to normal basis.

×1 = 3380

http://binary.cr.yp.to/linearmod2.html

I 393 bit ops for f, g, ? 7→ f + ?(g − f).

×6 = 2358

I 139582 bit ops for f 7→ 1/f .

(· · · − 3M)/48 = 2024

I 131 bit ops for f, g 7→ f + g.

×7 = 917

I 654 bit ops for weight computation, comparison.

×1 = 654

The Certicom Challenges ECC2-X 25

http://binary.cr.yp.to/linearmod2.html


Counting bit operations for ECC2K-130

Software represents �eld element as 131 bits in poly basis:
f0, f1, . . . , f130 represents

∑
i fix

i mod x131 +x13 +x2 +x+1.

Costs of arithmetic as implemented �

batching 48 inversions:

I 14149 bit ops for f, g 7→ fg.

×5 = 70745

I 203 bit ops for f 7→ f 2.

×21 = 4263

I 3380 bit ops for conversion to normal basis.

×1 = 3380

http://binary.cr.yp.to/linearmod2.html

I 393 bit ops for f, g, ? 7→ f + ?(g − f).

×6 = 2358

I 139582 bit ops for f 7→ 1/f .

(· · · − 3M)/48 = 2024

I 131 bit ops for f, g 7→ f + g.

×7 = 917

I 654 bit ops for weight computation, comparison.

×1 = 654

The Certicom Challenges ECC2-X 25

http://binary.cr.yp.to/linearmod2.html


Counting bit operations for ECC2K-130

Software represents �eld element as 131 bits in poly basis:
f0, f1, . . . , f130 represents

∑
i fix

i mod x131 +x13 +x2 +x+1.

Costs of arithmetic as implemented �

batching 48 inversions:

I 14149 bit ops for f, g 7→ fg.

×5 = 70745

I 203 bit ops for f 7→ f 2.

×21 = 4263

I 3380 bit ops for conversion to normal basis.

×1 = 3380

http://binary.cr.yp.to/linearmod2.html

I 393 bit ops for f, g, ? 7→ f + ?(g − f).

×6 = 2358

I 139582 bit ops for f 7→ 1/f .

(· · · − 3M)/48 = 2024

I 131 bit ops for f, g 7→ f + g.

×7 = 917

I 654 bit ops for weight computation, comparison.

×1 = 654

The Certicom Challenges ECC2-X 25

http://binary.cr.yp.to/linearmod2.html


Counting bit operations for ECC2K-130

Software represents �eld element as 131 bits in poly basis:
f0, f1, . . . , f130 represents

∑
i fix

i mod x131 +x13 +x2 +x+1.

Costs of arithmetic as implemented �

batching 48 inversions:

I 14149 bit ops for f, g 7→ fg.

×5 = 70745

I 203 bit ops for f 7→ f 2.

×21 = 4263

I 3380 bit ops for conversion to normal basis.

×1 = 3380

http://binary.cr.yp.to/linearmod2.html

I 393 bit ops for f, g, ? 7→ f + ?(g − f).

×6 = 2358

I 139582 bit ops for f 7→ 1/f .

(· · · − 3M)/48 = 2024

I 131 bit ops for f, g 7→ f + g.

×7 = 917

I 654 bit ops for weight computation, comparison.

×1 = 654

The Certicom Challenges ECC2-X 25

http://binary.cr.yp.to/linearmod2.html


Counting bit operations for ECC2K-130

Software represents �eld element as 131 bits in poly basis:
f0, f1, . . . , f130 represents

∑
i fix

i mod x131 +x13 +x2 +x+1.

Costs of arithmetic as implemented �

batching 48 inversions:

I 14149 bit ops for f, g 7→ fg.

×5 = 70745

I 203 bit ops for f 7→ f 2.

×21 = 4263

I 3380 bit ops for conversion to normal basis.

×1 = 3380

http://binary.cr.yp.to/linearmod2.html

I 393 bit ops for f, g, ? 7→ f + ?(g − f).

×6 = 2358

I 139582 bit ops for f 7→ 1/f .

(· · · − 3M)/48 = 2024

I 131 bit ops for f, g 7→ f + g.

×7 = 917

I 654 bit ops for weight computation, comparison.

×1 = 654

The Certicom Challenges ECC2-X 25

http://binary.cr.yp.to/linearmod2.html


Counting bit operations for ECC2K-130

Software represents �eld element as 131 bits in poly basis:
f0, f1, . . . , f130 represents

∑
i fix

i mod x131 +x13 +x2 +x+1.

Costs of arithmetic as implemented �

batching 48 inversions:

I 14149 bit ops for f, g 7→ fg.

×5 = 70745

I 203 bit ops for f 7→ f 2.

×21 = 4263

I 3380 bit ops for conversion to normal basis.

×1 = 3380

http://binary.cr.yp.to/linearmod2.html

I 393 bit ops for f, g, ? 7→ f + ?(g − f).

×6 = 2358

I 139582 bit ops for f 7→ 1/f .

(· · · − 3M)/48 = 2024

I 131 bit ops for f, g 7→ f + g.

×7 = 917

I 654 bit ops for weight computation, comparison.

×1 = 654

The Certicom Challenges ECC2-X 25

http://binary.cr.yp.to/linearmod2.html


Counting bit operations for ECC2K-130

Software represents �eld element as 131 bits in poly basis:
f0, f1, . . . , f130 represents

∑
i fix

i mod x131 +x13 +x2 +x+1.

Costs of arithmetic as implemented �

batching 48 inversions:

I 14149 bit ops for f, g 7→ fg.

×5 = 70745

I 203 bit ops for f 7→ f 2.

×21 = 4263

I 3380 bit ops for conversion to normal basis.

×1 = 3380

http://binary.cr.yp.to/linearmod2.html

I 393 bit ops for f, g, ? 7→ f + ?(g − f).

×6 = 2358

I 139582 bit ops for f 7→ 1/f .

(· · · − 3M)/48 = 2024

I 131 bit ops for f, g 7→ f + g.

×7 = 917

I 654 bit ops for weight computation, comparison.

×1 = 654

The Certicom Challenges ECC2-X 25

http://binary.cr.yp.to/linearmod2.html


Counting bit operations for ECC2K-130

Software represents �eld element as 131 bits in poly basis:
f0, f1, . . . , f130 represents

∑
i fix

i mod x131 +x13 +x2 +x+1.

Costs of arithmetic as implemented � batching 48 inversions:

I 14149 bit ops for f, g 7→ fg. ×5 = 70745

I 203 bit ops for f 7→ f 2. ×21 = 4263

I 3380 bit ops for conversion to normal basis. ×1 = 3380
http://binary.cr.yp.to/linearmod2.html

I 393 bit ops for f, g, ? 7→ f + ?(g − f). ×6 = 2358

I 139582 bit ops for f 7→ 1/f . (· · · − 3M)/48 = 2024

I 131 bit ops for f, g 7→ f + g. ×7 = 917

I 654 bit ops for weight computation, comparison.×1 = 654

The Certicom Challenges ECC2-X 25

http://binary.cr.yp.to/linearmod2.html


Counting cycles for ECC2K-130

84341 bit ops for iteration. Con�rmed by computer.
84341 vector ops handle 128 parallel iterations.
On one core: ≥ 84341/3 cycles for 128 iterations; i.e.,

≥ 219 cycles per iteration.

3GHz Core 2 Q6850 actually uses 694 cycles per iteration.
4 cores: 17.29 M iterations/sec. 3943 CPUs: done in 1 year.

Main bottleneck: loads, stores. Need better scheduling!
Other directions for improvements:

I Faster poly mult. Should save ≈ 10%.

I Faster reduction. Try x131 + x36 + x27 + x18 + 1.

I Normal-basis mult. Use 2007 vzG�Shokrollahi2.

I Larger batch size. Make sure to prefetch from DRAM.

The Certicom Challenges ECC2-X 26



Counting cycles for ECC2K-130

84341 bit ops for iteration. Con�rmed by computer.
84341 vector ops handle 128 parallel iterations.
On one core: ≥ 84341/3 cycles for 128 iterations; i.e.,

≥ 219 cycles per iteration.

3GHz Core 2 Q6850 actually uses 694 cycles per iteration.
4 cores: 17.29 M iterations/sec. 3943 CPUs: done in 1 year.

Main bottleneck: loads, stores. Need better scheduling!
Other directions for improvements:

I Faster poly mult. Should save ≈ 10%.

I Faster reduction. Try x131 + x36 + x27 + x18 + 1.

I Normal-basis mult. Use 2007 vzG�Shokrollahi2.

I Larger batch size. Make sure to prefetch from DRAM.

The Certicom Challenges ECC2-X 26



General set-up (Tanja Lange)

ASIC implementations (Frank Gurkaynak)

FPGA implementations (Daniel V. Bailey)

General-purpose CPU implementation (Daniel J. Bernstein)

Cell implementations (Peter Schwabe)

The Certicom Challenges ECC2-X 27



The Cell Broadband Engine

Well known architecture (from the previous talk)

The Cell's SPUs

I Running at 3.2 GHz

I Register �le with 128 128-bit registers

I All arithmetic instructions are SIMD instructions

I At most one arithmetic instruction per cycle

I At most one load/store instruction per cycle

I The Playstation makes 6 of these SPUs available

�Fast 128-bit vector operations =⇒ bitsliced implementation?�

The Certicom Challenges ECC2-X 28



The Cell Broadband Engine

Well known architecture (from the previous talk)

The Cell's SPUs

I Running at 3.2 GHz

I Register �le with 128 128-bit registers

I All arithmetic instructions are SIMD instructions

I At most one arithmetic instruction per cycle

I At most one load/store instruction per cycle

I The Playstation makes 6 of these SPUs available

�Fast 128-bit vector operations =⇒ bitsliced implementation?�

The Certicom Challenges ECC2-X 28



The Cell Broadband Engine

Well known architecture (from the previous talk)

The Cell's SPUs

I Running at 3.2 GHz

I Register �le with 128 128-bit registers

I All arithmetic instructions are SIMD instructions

I At most one arithmetic instruction per cycle

I At most one load/store instruction per cycle

I The Playstation makes 6 of these SPUs available

�Fast 128-bit vector operations =⇒ bitsliced implementation?�

The Certicom Challenges ECC2-X 28



Shall we go bitsliced?

I Bitsliced implementation requires more memory (because we always
have to store 128 values)

I Only one arithmetic instruction per cycle

I Cell's SPUs do in-order execution

I Unrolling and inlining yield huge speed-ups (but increase code size)

I �Everything� (code, data segment, stack, heap) has to �t into
256 KB of local storage.

=⇒ It's not obvious that bitsliced implementations are faster
=⇒ Two teams independently implemented bitsliced and non-bitsliced

The Certicom Challenges ECC2-X 29



Shall we go bitsliced?

I Bitsliced implementation requires more memory (because we always
have to store 128 values)

I Only one arithmetic instruction per cycle

I Cell's SPUs do in-order execution

I Unrolling and inlining yield huge speed-ups (but increase code size)

I �Everything� (code, data segment, stack, heap) has to �t into
256 KB of local storage.

=⇒ It's not obvious that bitsliced implementations are faster
=⇒ Two teams independently implemented bitsliced and non-bitsliced

The Certicom Challenges ECC2-X 29



Cycles per �step� on one SPU

not bitsliced

I 31 Jul: 2565

I 03 Aug: 1735

I void

I void

I void

I 19 Aug: 1426

I 19 Aug: 1293

I void

I 04 Sep: 1157

I void

I void

I Next week?

bitsliced

I void

I void

I 06 Aug: 6488

I 10 Aug: 1587

I 13 Aug: 1389

I void

I void

I 30 Aug: 1180

I void

I 5 Sep: 1051

I 7 Sep: 1047

I Next week?

=⇒ Currently: < 3800 PS3 years for ECC2K-130

The Certicom Challenges ECC2-X 30



Cycles per �step� on one SPU

not bitsliced

I 31 Jul: 2565

I 03 Aug: 1735

I void

I void

I void

I 19 Aug: 1426

I 19 Aug: 1293

I void

I 04 Sep: 1157

I void

I void

I Next week?

bitsliced

I void

I void

I 06 Aug: 6488

I 10 Aug: 1587

I 13 Aug: 1389

I void

I void

I 30 Aug: 1180

I void

I 5 Sep: 1051

I 7 Sep: 1047

I Next week?

=⇒ Currently: < 3800 PS3 years for ECC2K-130

The Certicom Challenges ECC2-X 30



Cycles per �step� on one SPU

not bitsliced

I 31 Jul: 2565

I 03 Aug: 1735

I void

I void

I void

I 19 Aug: 1426

I 19 Aug: 1293

I void

I 04 Sep: 1157

I void

I void

I Next week?

bitsliced

I void

I void

I 06 Aug: 6488

I 10 Aug: 1587

I 13 Aug: 1389

I void

I void

I 30 Aug: 1180

I void

I 5 Sep: 1051

I 7 Sep: 1047

I Next week?

=⇒ Currently: < 3800 PS3 years for ECC2K-130

The Certicom Challenges ECC2-X 30



Cycles per �step� on one SPU

not bitsliced

I 31 Jul: 2565

I 03 Aug: 1735

I void

I void

I void

I 19 Aug: 1426

I 19 Aug: 1293

I void

I 04 Sep: 1157

I void

I void

I Next week?

bitsliced

I void

I void

I 06 Aug: 6488

I 10 Aug: 1587

I 13 Aug: 1389

I void

I void

I 30 Aug: 1180

I void

I 5 Sep: 1051

I 7 Sep: 1047

I Next week?

=⇒ Currently: < 3800 PS3 years for ECC2K-130

The Certicom Challenges ECC2-X 30



Cycles per �step� on one SPU

not bitsliced

I 31 Jul: 2565

I 03 Aug: 1735

I void

I void

I void

I 19 Aug: 1426

I 19 Aug: 1293

I void

I 04 Sep: 1157

I void

I void

I Next week?

bitsliced

I void

I void

I 06 Aug: 6488

I 10 Aug: 1587

I 13 Aug: 1389

I void

I void

I 30 Aug: 1180

I void

I 5 Sep: 1051

I 7 Sep: 1047

I Next week?

=⇒ Currently: < 3800 PS3 years for ECC2K-130

The Certicom Challenges ECC2-X 30



Cycles per �step� on one SPU

not bitsliced

I 31 Jul: 2565

I 03 Aug: 1735

I void

I void

I void

I 19 Aug: 1426

I 19 Aug: 1293

I void

I 04 Sep: 1157

I void

I void

I Next week?

bitsliced

I void

I void

I 06 Aug: 6488

I 10 Aug: 1587

I 13 Aug: 1389

I void

I void

I 30 Aug: 1180

I void

I 5 Sep: 1051

I 7 Sep: 1047

I Next week?

=⇒ Currently: < 3800 PS3 years for ECC2K-130

The Certicom Challenges ECC2-X 30



Cycles per �step� on one SPU

not bitsliced

I 31 Jul: 2565

I 03 Aug: 1735

I void

I void

I void

I 19 Aug: 1426

I 19 Aug: 1293

I void

I 04 Sep: 1157

I void

I void

I Next week?

bitsliced

I void

I void

I 06 Aug: 6488

I 10 Aug: 1587

I 13 Aug: 1389

I void

I void

I 30 Aug: 1180

I void

I 5 Sep: 1051

I 7 Sep: 1047

I Next week?

=⇒ Currently: < 3800 PS3 years for ECC2K-130

The Certicom Challenges ECC2-X 30



Cycles per �step� on one SPU

not bitsliced

I 31 Jul: 2565

I 03 Aug: 1735

I void

I void

I void

I 19 Aug: 1426

I 19 Aug: 1293

I void

I 04 Sep: 1157

I void

I void

I Next week?

bitsliced

I void

I void

I 06 Aug: 6488

I 10 Aug: 1587

I 13 Aug: 1389

I void

I void

I 30 Aug: 1180

I void

I 5 Sep: 1051

I 7 Sep: 1047

I Next week?

=⇒ Currently: < 3800 PS3 years for ECC2K-130

The Certicom Challenges ECC2-X 30



Cycles per �step� on one SPU

not bitsliced

I 31 Jul: 2565

I 03 Aug: 1735

I void

I void

I void

I 19 Aug: 1426

I 19 Aug: 1293

I void

I 04 Sep: 1157

I void

I void

I Next week?

bitsliced

I void

I void

I 06 Aug: 6488

I 10 Aug: 1587

I 13 Aug: 1389

I void

I void

I 30 Aug: 1180

I void

I 5 Sep: 1051

I 7 Sep: 1047

I Next week?

=⇒ Currently: < 3800 PS3 years for ECC2K-130

The Certicom Challenges ECC2-X 30



Cycles per �step� on one SPU

not bitsliced

I 31 Jul: 2565

I 03 Aug: 1735

I void

I void

I void

I 19 Aug: 1426

I 19 Aug: 1293

I void

I 04 Sep: 1157

I void

I void

I Next week?

bitsliced

I void

I void

I 06 Aug: 6488

I 10 Aug: 1587

I 13 Aug: 1389

I void

I void

I 30 Aug: 1180

I void

I 5 Sep: 1051

I 7 Sep: 1047

I Next week?

=⇒ Currently: < 3800 PS3 years for ECC2K-130

The Certicom Challenges ECC2-X 30



Cycles per �step� on one SPU

not bitsliced

I 31 Jul: 2565

I 03 Aug: 1735

I void

I void

I void

I 19 Aug: 1426

I 19 Aug: 1293

I void

I 04 Sep: 1157

I void

I void

I Next week?

bitsliced

I void

I void

I 06 Aug: 6488

I 10 Aug: 1587

I 13 Aug: 1389

I void

I void

I 30 Aug: 1180

I void

I 5 Sep: 1051

I 7 Sep: 1047

I Next week?

=⇒ Currently: < 3800 PS3 years for ECC2K-130

The Certicom Challenges ECC2-X 30



Cycles per �step� on one SPU

not bitsliced

I 31 Jul: 2565

I 03 Aug: 1735

I void

I void

I void

I 19 Aug: 1426

I 19 Aug: 1293

I void

I 04 Sep: 1157

I void

I void

I Next week?

bitsliced

I void

I void

I 06 Aug: 6488

I 10 Aug: 1587

I 13 Aug: 1389

I void

I void

I 30 Aug: 1180

I void

I 5 Sep: 1051

I 7 Sep: 1047

I Next week?

=⇒ Currently: < 3800 PS3 years for ECC2K-130

The Certicom Challenges ECC2-X 30



Cycles per �step� on one SPU

not bitsliced

I 31 Jul: 2565

I 03 Aug: 1735

I void

I void

I void

I 19 Aug: 1426

I 19 Aug: 1293

I void

I 04 Sep: 1157

I void

I void

I Next week?

bitsliced

I void

I void

I 06 Aug: 6488

I 10 Aug: 1587

I 13 Aug: 1389

I void

I void

I 30 Aug: 1180

I void

I 5 Sep: 1051

I 7 Sep: 1047

I Next week?

=⇒ Currently: < 3800 PS3 years for ECC2K-130

The Certicom Challenges ECC2-X 30



Thank you for your attention.

The Certicom Challenges ECC2-X 31


	General set-up (Tanja Lange)
	ASIC implementations (Frank Gurkaynak)
	FPGA implementations (Daniel V. Bailey)
	General-purpose CPU implementation (Daniel J. Bernstein)
	Cell implementations (Peter Schwabe)

