Batch binary Edwards

D. J. Bernstein

University of Illinois at Chicago

NSF ITR-0716498

Nonnegative elements of **Z**:

0	meaning	0
1	meaning	2 ⁰
10	meaning	2 ¹
11	meaning	$2^0 + 2^1$
100	meaning	2 ²
101	meaning	$2^0 + 2^2$
110	meaning	$2^1 + 2^2$
111	meaning	$2^0 + 2^1 + 2^2$
1000	meaning	2 ³
1001	meaning	$2^0 + 2^3$
1010	meaning	$2^1 + 2^3$
ſ		

etc.

Addition: $2^e + 2^e = 2^{e+1}$. Multiplication: $2^e 2^f = 2^{e+f}$.

Elements of $\mathbf{F}_2[t]$: 0 0 meaning t^0 1 meaning t^1 10 meaning meaning $t^0 + t^1$ 11 100 meaning t^2 meaning $t^0 + t^2$ 101 meaning $t^1 + t^2$ 110 $t^0 + t^1 + t^2$ 111 meaning meaning t^3 1000 meaning $t^0 + t^3$ 1001 $t^{1} + t^{3}$ 1010 meaning etc.

Addition: $t^e + t^e = 0$. Multiplication: $t^e t^f = t^{e+f}$.

Modular arithmetic in **Z**: e.g., $\mathbf{Z}/12 = \{0, 1, \dots, 11\}$ with $+, \cdot$ reduced mod 12. Modular arithmetic in $\mathbf{F}_2[t]$: e.g., $\mathbf{F}_2[t]/(t^4+t) =$ $\{0, 1, \dots, t^3 + t^2 + t + 1\}$ with +, \cdot reduced mod $t^4 + t$. Primes of **Z**: 2, 3, 5, 7, 11, ... Primes of $\mathbf{F}_2[t]$: t, t+1, $t^2 + t + 1$. $t^3 + t + 1$

Can build finite fields from arithmetic modulo primes.

e.g.
$$\mathbf{Z}/(2^{127}-1)$$
.
e.g. $\mathbf{F}_2[t]/(t^{127}+t+1)$.

Many decades of literature have explored number-theoretic analogies between **Z** and $\mathbf{F}_2|t|$. Often $\mathbf{F}_2[t]$ is simpler than \mathbf{Z} . e.g. Breaking $\mathbf{F}_2[t]$ RSA is much faster than breaking Z RSA. Fastest known algorithm to compute prime factors of a *b*-bit element of **Z**: worst-case time $2^{b^{1/3+o(1)}}$. Fastest known algorithm to compute prime factors

of a *b*-bit element of $F_2[t]$: time $2^{(c+o(1)) \lg b}$ with c < 2.

In some cryptographic contexts, $\mathbf{F}_2[t]$ and \mathbf{Z} have same security.

e.g. Message authentication using shared secret key.

Take
$$k = \mathbf{Z}/(2^{127} - 1)$$

or $k = \mathbf{F}_2[t]/(t^{127} + t + 1).$

Message $m \in k[x]$. One-time key $(r, s) \in k^2$: use for only one message! Authenticator $s + rm(r) \in k$.

Standard security proof \Rightarrow chance of successful forgery $< 2^{-128} \cdot \#$ {attack bits}. Hardware designers prefer $F_2[t]$ because its costs are lower for the same security level. Example: GMAC, inside GCM.

Lack of carries $(t^e + t^e = 0)$ makes addition and multiplication smaller and faster; also makes squaring much smaller and faster. Hardware designers prefer $F_2[t]$ because its costs are lower for the same security level. Example: GMAC, inside GCM.

Lack of carries $(t^e + t^e = 0)$ makes addition and multiplication smaller and faster; also makes squaring much smaller and faster.

But software is different! For many years, **Z** has held crypto software speed records. Examples: Poly1305, UMAC. Why is **Z** faster than $F_2[t]$? Standard answer: CPUs are designed for video games, movie decompression, etc.

These applications rely heavily on multiplication in **Z**. CPUs devote large area to **Z** multiplication circuits, speeding up these applications. Conventional wisdom: Advantages of $\mathbf{F}_2|t|$ are outweighed by speed of CPU's built-in **Z** multipliers, especially big 64-bit multipliers. Next generation of Intel CPUs devote some circuit area to $F_2[t]$ multiplier "PCLMULQDQ". Maybe still slower than Z, but maybe fast enough to make

 $\mathbf{F}_2[t]$ set new speed records

for some crypto applications.

Next generation of Intel CPUs devote some circuit area to $F_2[t]$ multiplier "PCLMULQDQ". Maybe still slower than **Z**,

but maybe fast enough to make $F_2[t]$ set new speed records for some crypto applications.

This talk: New speed records for elliptic-curve cryptography on **current** Intel CPUs. These records use $F_2[t]$. User: busy server bottlenecked by public-key cryptography.

Throughput: tens of thousands of $n, P \mapsto nP$ per second.

Latency: a few milliseconds. Software handles input batch $(n_1, P_1), (n_2, P_2), \ldots, (n_{128}, P_{128}).$ No need for related inputs.

Security level: $\approx 2^{128}$, assuming standard conjectures; twist-secure; constant-time.

Free software: binary.cr.yp.to

New software is bitsliced. Advantage: low-cost shifts. Disadvantage: high-cost branches.

Low-cost shifts allow very fast squarings, reductions.

Low-cost shifts minimize overhead for Karatsuba etc.

See paper for details of improved Karatsuba, Toom; often 20% fewer operations than previous literature. What about branches?

2007 Bernstein–Lange: The Edwards addition law

$$egin{aligned} x_3 &= rac{x_1y_2 + y_1x_2}{1 + dx_1x_2y_1y_2}, \ y_3 &= rac{y_1y_2 - x_1x_2}{1 - dx_1x_2y_1y_2}. \end{aligned}$$

works for *all* inputs on the Edwards curve $x^2 + y^2 = 1 + dx^2y^2$ over \mathbf{Z}/p if *d* is non-square in \mathbf{Z}/p .

Also extremely fast.

Completeness helps against various side-channel attacks; simplifies implementations; and helps bitslicing.

Same for binary curves?

Completeness helps against various side-channel attacks; simplifies implementations; and helps bitslicing.

Same for binary curves?

2008 B.-L.-Rezaeian Farashahi: Fast complete addition on "binary Edwards curve" $d(x+x^2+y+y^2) = (x+x^2)(y+y^2)$ over field $\mathbf{F}_2[t]/(\cdots)$ if $x^2 + x + d$ has no roots. Continuing work on fast $\mathbf{F}_2[t]$:

1. Subfield applications. Maybe $\approx 1.5 imes$ faster ECC?

2. Genus-2 applications. Maybe pprox 1.5imes faster than ECC?

3. Better code scheduling. Maybe $\approx 2 \times$ faster?

4. Other curve applications; e.g., faster ECC2K-130.

Other crypto applications;
e.g., faster McEliece.