## Batch binary Edwards

D. J. Bernstein

University of Illinois at Chicago
NSF ITR-0716498

Nonnegative elements of $\mathbf{Z}$ :
0 meaning 0
1 meaning $2^{0}$
10 meaning $2^{1}$
11 meaning $2^{0}+2^{1}$
100 meaning $2^{2}$
101 meaning $2^{0}+2^{2}$
110 meaning $2^{1}+2^{2}$
111 meaning $2^{0}+2^{1}+2^{2}$
1000 meaning $2^{3}$
1001 meaning $2^{0}+2^{3}$
1010 meaning $2^{1}+2^{3}$
etc.
Addition: $2^{e}+2^{e}=2^{e+1}$. Multiplication: $2^{e} 2^{f}=2^{e+f}$.

Elements of $\mathbf{F}_{2}[t]$ :

$$
\begin{array}{lll}
0 & \text { meaning } & 0 \\
1 & \text { meaning } & t^{0}
\end{array}
$$

10 meaning $t^{1}$
11 meaning $t^{0}+t^{1}$
100 meaning $t^{2}$
101 meaning $t^{0}+t^{2}$
110 meaning $t^{1}+t^{2}$
111 meaning $t^{0}+t^{1}+t^{2}$
1000 meaning $t^{3}$
1001 meaning $t^{0}+t^{3}$
1010 meaning $t^{1}+t^{3}$
etc.
Addition: $t^{e}+t^{e}=0$.
Multiplication: $t^{e} t^{f}=t^{e+f}$.

Modular arithmetic in $\mathbf{Z}$ :
egg., $\mathbf{Z} / 12=\{0,1, \ldots, 11\}$ with + , reduced mod 12. Modular arithmetic in $\mathbf{F}_{2}[t]$ : egg., $\mathbf{F}_{2}[t] /\left(t^{4}+t\right)=$
$\left\{0,1, \ldots, t^{3}+t^{2}+t+1\right\}$ with + , reduced $\bmod t^{4}+t$.

Primes of $\mathbf{Z}: 2,3,5,7,11, \ldots$.
Primes of $\mathbf{F}_{2}[t]: t, t+1$,

$$
t^{2}+t+1, t^{3}+t+1, \ldots
$$

Can build finite fields from arithmetic modulo primes. egg. $\mathbf{Z} /\left(2^{127}-1\right)$.
egg. $\mathbf{F}_{2}[t] /\left(t^{127}+t+1\right)$.

Many decades of literature have explored number-theoretic analogies between $\mathbf{Z}$ and $\mathbf{F}_{2}[t]$.

Often $\mathbf{F}_{2}[t]$ is simpler than $\mathbf{Z}$.
egg. Breaking $\mathbf{F}_{2}[t]$ RSA is much faster than breaking $\mathbf{Z}$ NSA.

Fastest known algorithm to compute prime factors of a $b$-bit element of $\mathbf{Z}$ : worst-case time $2^{b^{1 / 3+o(1)}}$

Fastest known algorithm to compute prime factors of a $b$-bit element of $\mathbf{F}_{2}[t]$ : time $2^{(c+o(1)) \lg b}$ with $c<2$.

In some cryptographic contexts, $\mathbf{F}_{2}[t]$ and $\mathbf{Z}$ have same security.
e.g. Message authentication using shared secret key.

$$
\begin{aligned}
& \text { Take } k=\mathbf{Z} /\left(2^{127}-1\right) \\
& \text { or } k=\mathbf{F}_{2}[t] /\left(t^{127}+t+1\right)
\end{aligned}
$$

Message $m \in k[x]$.
One-time key $(r, s) \in k^{2}$ : use for only one message!
Authenticator $s+r m(r) \in k$.
Standard security proof $\Rightarrow$
chance of successful forgery
$<2^{-128} \cdot \#\{$ attack bits $\}$.

Hardware designers prefer $\mathbf{F}_{2}[t]$ because its costs are lower for the same security level. Example: GMAC, inside GCM. Lack of carries $\left(t^{e}+t^{e}=0\right)$ makes addition and multiplication smaller and faster; also makes squaring much smaller and faster.

Hardware designers prefer $\mathbf{F}_{2}[t]$ because its costs are lower for the same security level. Example: GMAC, inside GCM.

Lack of carries $\left(t^{e}+t^{e}=0\right)$ makes addition and multiplication smaller and faster; also makes squaring much smaller and faster.

But software is different!
For many years, $\mathbf{Z}$ has held crypto software speed records. Examples: Poly1305, UMAC.

Why is $\mathbf{Z}$ faster than $\mathbf{F}_{2}[t]$ ?
Standard answer: CPUs are designed for video games, movie decompression, etc.

These applications rely heavily on multiplication in $\mathbf{Z}$.
CPUs devote large area to
Z multiplication circuits, speeding up these applications.

Conventional wisdom:
Advantages of $\mathbf{F}_{2}[t]$ are outweighed by speed of CPU's built-in Z multipliers, especially big 64-bit multipliers.

Next generation of Intel CPUs devote some circuit area to $F_{2}[t]$ multiplier "PCLMULQDQ".

Maybe still slower than $\mathbf{Z}$, but maybe fast enough to make $\mathbf{F}_{2}[t]$ set new speed records for some crypto applications.

Next generation of Intel CPUs devote some circuit area to $F_{2}[t]$ multiplier "PCLMULQDQ".

Maybe still slower than Z,
but maybe fast enough to make $F_{2}[t]$ set new speed records for some crypto applications.

This talk: New speed records for elliptic-curve cryptography on current Intel CPUs.

These records use $\mathbf{F}_{2}[t]$.

User: busy server bottlenecked by public-key cryptography.

Throughput: tens of thousands of $n, P \mapsto n P$ per second.

Latency: a few milliseconds.
Software handles input batch
$\left(n_{1}, P_{1}\right),\left(n_{2}, P_{2}\right), \ldots,\left(n_{128}, P_{128}\right)$. No need for related inputs.

Security level: $\approx 2^{128}$ assuming standard conjectures; twist-secure; constant-time.

Free software: binary.cr.yp.to

New software is bitsliced.
Advantage: low-cost shifts.
Disadvantage: high-cost branches.
Low-cost shifts allow very fast squarings, reductions.

Low-cost shifts minimize overhead for Karatsuba etc.

See paper for details of improved Karatsuba, Toom; often $20 \%$ fewer operations than previous literature.

What about branches?
2007 Bernstein-Lange:
The Edwards addition law
$x_{3}=\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}}$,
$y_{3}=\frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}$.
works for all inputs
on the Edwards curve
$x^{2}+y^{2}=1+d x^{2} y^{2}$ over $\mathbf{Z} / p$
if $d$ is non-square in $\mathbf{Z} / p$.
Also extremely fast.

Completeness helps against various side-channel attacks; simplifies implementations; and helps bitslicing.

Same for binary curves?

Completeness helps against various side-channel attacks; simplifies implementations; and helps bitslicing.

Same for binary curves?
2008 B.-L.-Rezaeian Farashahi:
Fast complete addition on "binary Edwards curve"
$d\left(x+x^{2}+y+y^{2}\right)=\left(x+x^{2}\right)\left(y+y^{2}\right)$
over field $\mathbf{F}_{2}[t] /(\cdots)$
if $x^{2}+x+d$ has no roots.

## Continuing work on fast $\mathbf{F}_{2}[t]$ :

1. Subfield applications.

Maybe $\approx 1.5 \times$ faster ECC?
2. Genus-2 applications.

Maybe $\approx 1.5 \times$ faster than ECC?
3. Better code scheduling.

Maybe $\approx 2 \times$ faster?
4. Other curve applications; e.g., faster ECC2K-130.
5. Other crypto applications; e.g., faster McEliece.

