How to improve the price-performance ratio of quantum collision search

D. J. Bernstein
University of Illinois at Chicago

NSF ITR–0716498

Warning: Complexity estimates in this talk are approximate; small factors are suppressed.
What is the fastest algorithm that, given \(s \), finds collision in \(x \mapsto \text{MD5}(s, x) \)?

i.e. finds \((x, x')\) with \(x \neq x' \)
and \(\text{MD5}(s, x) = \text{MD5}(s, x') \)?

Now have a very fast algorithm, leading to many attacks.
MD5 is thoroughly broken.
What is the fastest algorithm that, given s, finds collision in $x \mapsto \text{MD5}(s, x)$?

i.e. finds (x, x') with $x \neq x'$ and $\text{MD5}(s, x) = \text{MD5}(s, x')$?

Now have a very fast algorithm, leading to many attacks. MD5 is thoroughly broken.

Surprised by the collisions? Fact: By 1996, a few years after the introduction of MD5, Preneel, Dobbertin, et al. were calling for MD5 to be scrapped.
What is the fastest algorithm that, given s, finds collision in $x \mapsto \text{SHA-256}(s, x)$?

SHA-256 is an NSA design. Seems much better than MD5, but confidence isn’t high.

Ongoing SHA-3 competition will lead to much higher public confidence in SHA-3.

But should SHA-3 produce 256-bit output? 512-bit output? How do quantum computers affect the answer?
Guessing a collision

For any classical circuit H producing b-bit output:

Generate random $(b + 1)$-bit strings x, x'.

Chance $\geq 1/2^{b+1}$ that (x, x') is a collision in H, i.e., $x \neq x'$ and $H(x) = H(x')$. Otherwise try again.

Good chance of success within 2^b evaluations of H.
1996 Grover, 1997 Grover:

Take classical circuit F using f bit operations to produce 1-bit output from b-bit input.

Explicit construction of quantum circuit $G(F)$ using $2^{b/2}f$ qubit operations to compute a root of F with high probability if F has a unique root.
1996 Boyer–Brassard–Høyer–Tapp, generalizing Grover: $2^{(b-u)/2} f$ qubit operations to find some root of F with high probability if there are $\approx 2^u$ roots.

Can easily use for collisions: Given classical circuit H using h bit operations, define $F(x, x')$ as 0 iff (x, x') is a collision in H.

Obtain some collision with high probability using $2^{b/2} h$ qubit operations.
Table lookups

Another classical approach:

Generate many random inputs x_1, x_2, \ldots, x_M; e.g. $M = 2^{b/2}$.

Compute and sort M pairs $(H(x_1), x_1), (H(x_2), x_2), \ldots, (H(x_M), x_M)$ in lex order.

Generate many random inputs y_1, y_2, \ldots, y_N; e.g. $N = 2^{b/2}$.

After generating y_j, check for $H(y_j)$ in sorted list.
Same effect as searching all MN pairs (x_i, y_j).

For $M = N = 2^{b/2}$, good chance of success. Only $2^{b/2}$ evaluations of H.

Define $F(y)$ as 0 iff there is a collision among $(x_1, y), (x_2, y), \ldots, (x_M, y)$. This algorithm is finding root of F by classical search.

1998 Brassard–Høyer–Tapp: Instead use quantum search; e.g., $2^{b/3}h$ qubit operations if $M = 2^{b/3}$.
2003 Grover–Rudolph, “How significant are the known collision and element distinctness quantum algorithms?”:

Brassard–Høyer–Tapp algorithm uses $\approx 2^{b/3}$ qubits!

With such a huge machine, can simply run $2^{b/3}$ parallel quantum searches for collisions (x, x').

High probability of success within time $2^{b/3} \hbar$.
What if our quantum circuit has only $2^{b/5}$ qubits?

Again Grover–Rudolph, mindless parallelism: high probability of success within time $2^{2b/5} \cdot h$.

Grover–Rudolph advantage: no need for communication across the parallel searches.

Brassard–Høyer–Tapp needs huge RAM lookups using quantum indices. How expensive is this?
Realistic model of computation developed thirty years ago:

A circuit is a 2-dimensional mesh of small parallel gates. Have fast communication between neighboring gates. Try to optimize time T as function of area A.

See, e.g., 1981 Brent–Kung for definition of model and proof that optimal circuits for length-N convolution have $A = N$ and $T = N^{1/2}$.
Can model *quantum* circuits in the same way to understand speedups from parallelism, slowdowns from communication.

Have a 2-dimensional mesh of small parallel quantum gates. Try to optimize time T as function of area A.

(Warning: Model is optimistic about quantum computation. Assumes that quantum-computer scalability problems are solved without poly slowdowns.)
e.g. area $2^{b/5}$:

Have $2^{b/10} \times 2^{b/10}$ mesh of small quantum gates all operating in parallel.

Size-$2^{b/5}$ table lookup using quantum index can be handled in time $2^{b/10}$.

Brassard–Høyer–Tapp takes total time $2^{b/2}$.

Grover–Rudolph is faster (despite having more “queries”): total time $2^{2b/5}$.
Parallel tables

Generate x_1, x_2, \ldots, x_M.
Compute
$H(x_1), H(x_2), \ldots, H(x_M)$.

Generate y_1, y_2, \ldots, y_M.
Compute
$H(y_1), H(y_2), \ldots, H(y_M)$.

Sort all hash outputs to easily find collisions.
Repeat $2^b / M^2$ times;
high probability of success.
Mesh-sorting algorithms (e.g., 1987 Schimmler) sort these hash outputs in time $M^{1/2}$ on classical circuit of area M.

Computation of hash outputs takes time h; negligible if M is large.

Total time $2^b/M^{3/2}$.

e.g. area $2^b/5$, time $2^{7b}/10$.
Now Grover-ize this algorithm.

Define $F(x_1, \ldots, x_M, y_1, \ldots, y_M)$ as 0 iff some (x_i, y_j) is a collision in H.

Original algorithm used mesh-sorting circuit for F of size M taking time $M^{1/2}$. Convert circuit into quantum mesh-sorting circuit of size M taking time $M^{1/2}$.
Find root of F using $2^{b/2}/M$ evaluations of F on quantum superpositions. Total time $2^{b/2}/M^{1/2}$.

e.g. area $2^{b/5}$, time $2^{2b/5}$.

Would beat Grover–Rudolph in a three-dimensional model of parallel quantum computation, or in a naive parallel model without communication delays.
Faster; maybe optimal?

Do better by iterating H.

Choose a $(b + 1)$-bit string x_0. Compute b-bit string $H(x_0)$; $(b + 1)$-bit string $x_1 = \pi(H(x_0))$ where π is a padding function; b-bit string $H(x_1)$; $(b + 1)$-bit string $x_2 = \pi(H(x_1))$; b-bit string $H(x_2)$; etc.

Proving time estimates here needs good π randomization, but experiments show simple π working for every interesting H.
After $2^{b/2}$ steps, expect to find a “distinguished point”: a string x_i whose first $b/2$ bits are all 0.

Choose another string y_0, iterate in the same way until a distinguished point.

2^b pairs (x_i, y_j), so expect some collision.

If there is a collision then the distinguished points are the same. Seeing this quickly reveals the collision.
More generally, redefine “distinguished point” as having $b/2 - \lceil \log M \rceil$ bits 0.

Build M parallel iterating units from M different strings.
Expect time $2^{b/2}/M$
to find M distinguished points.

Good chance of collision.
Easily find collision by sorting distinguished points.
Summary:
area M, conj. time $2^{b/2}/M$.
e.g. area $2^{b/5}$, conj. time $2^{3b/10}$.

Analogous quantum circuit:
area M, conj. time $2^{b/2}/M$.
e.g. area $2^{b/5}$, conj. time $2^{3b/10}$.
Quantum-search speedup matches iteration speedup!

Compare to Grover–Rudolph:
area $2^{b/5}$, time $2^{2b/5}$.

Or Brassard–Høyer–Tapp:
area $2^{b/5}$, time $2^{b/2}$.
Concretely: \(b = 500 \).

Brassard–Høyer–Tapp, quantum:
area \(2^{100} \), time \(2^{250} \).

Grover–Rudolph, quantum:
area \(2^{100} \), time \(2^{200} \).

Iteration, quantum or classical:
area \(2^{100} \), conj. time \(2^{150} \).

\(T = 2^{b/2}/A \) is optimal
for generic classical algorithms.
Conjecture: also for quantum.
Naive free-communication model:

Brassard–Høyer–Tapp, quantum:
area 2^{100}, time 2^{200}.

Grover–Rudolph, quantum:
area 2^{100}, time 2^{200}.

Parallel tables (new), quantum:
area 2^{100}, time 2^{150}.

Iteration, quantum or classical:
area 2^{100}, conj. time 2^{150}.
Important notes:

1. Optimal quantum computers seem to be classical computers! Clear quantum impact upon factorization, preimages, et al. but not upon collisions.
Important notes:

1. Optimal quantum computers seem to be classical computers! Clear quantum impact upon factorization, preimages, et al. but not upon collisions.