Complete addition laws for all elliptic curves over finite fields

D. J. Bernstein
University of Illinois at Chicago

NSF ITR–0716498

Joint work with:
Tanja Lange
Technische Universiteit Eindhoven
Memories of graduate school

Early 1990s, Berkeley: Hendrik Lenstra teaches a rather strange course on algebraic number theory.
Memories of graduate school

Early 1990s, Berkeley: Hendrik Lenstra teaches a rather strange course on algebraic number theory.

His central objects of study: orders in number fields. Primes, class groups, etc.
Memories of graduate school

Early 1990s, Berkeley: Hendrik Lenstra teaches a rather strange course on algebraic number theory.

His central objects of study: orders in number fields. Primes, class groups, etc.

Normal textbooks and courses focus on *maximal* orders, i.e., orders without singularities:

“Have a non-maximal $\mathbb{Z}[x]/f$? Yikes! Blow it up!”
Edwards curves

2007 Edwards:

Every elliptic curve over \(\overline{\mathbb{Q}} \) is birationally equivalent to
\[
x^2 + y^2 = a^2(1 + x^2y^2)
\]
for some \(a \in \overline{\mathbb{Q}} - \{0, \pm 1, \pm i\} \).

\(x^2 + y^2 = a^2(1 + x^2y^2) \) has neutral element \((0, a)\), addition
\((x_1, y_1) + (x_2, y_2) = (x_3, y_3) \) with
\[
x_3 = \frac{x_1y_2 + y_1x_2}{a(1 + x_1x_2y_1y_2)},
\]
\[
y_3 = \frac{y_1y_2 - x_1x_2}{a(1 - x_1x_2y_1y_2)}.
\]
2007 Bernstein–Lange:

Over a non-binary finite field k, $x^2 + y^2 = c^2(1 + dx^2y^2)$ covers more elliptic curves. Here $c, d \in k^*$ with $dc^4 \neq 1$.

$$x_3 = \frac{x_1y_2 + y_1x_2}{c(1 + dx_1x_2y_1y_2)},$$

$$y_3 = \frac{y_1y_2 - x_1x_2}{c(1 - dx_1x_2y_1y_2)}.$$

Can always take $c = 1$. Then $10M + 1S + 1D$ for addition, $3M + 4S$ for doubling.

Latest news, comparisons:

hyperelliptic.org/EFD
Completeness

2007 Bernstein–Lange:

If \(d \) is not a square in \(k \) then
\[
\{(x, y) \in k \times k : \quad x^2 + y^2 = c^2(1 + dx^2y^2)\}
\]
is a commutative group under this addition law.

The denominators
\[
c (1 + dx_1x_2y_1y_2),
\]
\[
c (1 - dx_1x_2y_1y_2)
\]
are never zero.

No exceptional cases!
Compare to Weierstrass form
\[y^2 = x^3 + a_4 x + a_6. \]

Standard explicit formulas for Weierstrass addition have several different cases: "chord"; "tangent"; vertical chord; etc.

Conventional wisdom: Beyond genus 0, explicit formulas for multiplication in class group always need case distinctions.
1995 Bosma–Lenstra theorem: “The smallest cardinality of a complete system of addition laws on E equals two.” . . . meaning: Any addition formula for a Weierstrass curve E in projective coordinates must have exceptional cases in $E(\overline{k}) \times E(\overline{k})$, where $\overline{k} = \text{algebraic closure of } k$.
1995 Bosma–Lenstra theorem: “The smallest cardinality of a complete system of addition laws on E equals two.” . . . meaning: Any addition formula for a Weierstrass curve E in projective coordinates must have exceptional cases in $E(\overline{k}) \times E(\overline{k})$, where $\overline{k} = \text{algebraic closure of } k$.

Edwards addition formula has exceptional cases for $E(\overline{k})$. . . but not for $E(k)$. We do computations in $E(k)$.
Completeness eases implementations, avoids some cryptographic problems.

What about elliptic curves without points of order 4? What about elliptic curves over binary fields?

Continuing project (B.–L.): For every elliptic curve E, find complete addition law for E with best possible speeds.

Complete laws are useful even if slower than Edwards!
Some Newton polygons

- Short Weierstrass
- Jacobi quartic
- Hessian
- Edwards

1893 Baker: genus is generically number of interior points.

How to generalize Edwards?

Design decision: want quadratic in x and in y.

Design decision: want $x \leftrightarrow y$ symmetry.

Curve shape $d_{00} + d_{10}(x + y) + d_{11}xy + d_{20}(x^2 + y^2) + d_{21}xy(x + y) + d_{22}x^2y^2 = 0.$
Suppose that $d_{22} = 0$:

\[
\begin{pmatrix}
 d_{20} & d_{21} \\
 d_{10} & d_{11} & d_{21} \\
 d_{00} & d_{10} & d_{20}
\end{pmatrix}
\]

Genus 1 $\Rightarrow (1, 1)$ is an interior point $\Rightarrow d_{21} \neq 0$.

Homogenize:
\[
d_{00}Z^3 + d_{10}(X + Y)Z^2 + d_{11}XYZ + d_{20}(X^2 + Y^2)Z + d_{21}XY(X + Y) = 0.
\]
Points at ∞ are $(X : Y : 0)$ with $d_{21}XY(X + Y) = 0$: i.e., $(1 : 0 : 0), (0 : 1 : 0), (1 : -1 : 0)$.

Study $(1 : 0 : 0)$ by setting $y = Y/X, z = Z/X$ in homogeneous curve equation:

$$d_{00}z^3 + d_{10}(1 + y)z^2 + d_{11}yz + d_{20}(1 + y^2)z + d_{21}y(1 + y) = 0.$$

Nonzero coefficient of y so $(1 : 0 : 0)$ is nonsingular.

Addition law cannot be complete (unless k is tiny).
So we require $d_{22} \neq 0$.

Points at ∞ are $(X : Y : 0)$ with $d_{22}X^2Y^2 = 0$: i.e.,
$(1 : 0 : 0), (0 : 1 : 0)$.

Study $(1 : 0 : 0)$ again:
\[
d_{00}z^4 + d_{10}(1 + y)z^3 + d_{11}yz^2 + d_{20}(1 + y^2)z^2 + d_{21}y(1 + y)z + d_{22}y^2 = 0.
\]

Coefficients of $1, y, z$ are 0 so $(1 : 0 : 0)$ is singular.
Put $y = uz$, divide by z^2 to blow up singularity:

$$d_{00}z^2 + d_{10}(1 + uz)z + d_{11}uz + d_{20}(1 + u^2z^2) + d_{21}u(1 + uz) + d_{22}u^2 = 0.$$

Substitute $z = 0$ to find points above singularity:

$$d_{20} + d_{21}u + d_{22}u^2 = 0.$$

We require the quadratic $d_{20} + d_{21}u + d_{22}u^2$ to be irreducible in k.

Special case: complete Edwards, $1 - du^2$ irreducible in k.

In particular $d_{20} \neq 0$:

$$
\begin{array}{ccc}
 d_{20} & d_{21} & d_{22} \\
 d_{10} & d_{11} & d_{21} \\
 d_{00} & d_{10} & d_{20}
\end{array}
$$

Design decision: Explore a deviation from Edwards. Choose neutral element $(0, 0)$.

$\quad d_{00} = 0; \quad d_{10} \neq 0$. Can vary neutral element.

Warning: bad choice can produce surprisingly expensive negation.
Now have a Newton polygon for generalized Edwards curves:

By scaling \(x, y \) and scaling curve equation can limit \(d_{10}, d_{11}, d_{20}, d_{21}, d_{22} \) to three degrees of freedom.
\[d_1(x + y) + d_2(x^2 + y^2) = (x + x^2)(y + y^2). \]
Covers all ordinary elliptic curves over \(F_{2^n} \) for \(n \geq 3 \).
Also surprisingly fast, especially if \(d_1 = d_2 \).
\[d_1(x + y) + d_2(x^2 + y^2) = (x + x^2)(y + y^2).\]
Covers all ordinary elliptic curves over \(\mathbb{F}_{2^n} \) for \(n \geq 3 \).
Also surprisingly fast, especially if \(d_1 = d_2 \).

2009 B.–L.:
complete addition law for another specialization covering all the “NIST curves” over non-binary fields.
Consider, e.g., the curve
\[x^2 + y^2 = x + y + t x y + d x^2 y^2 \]
with \(d = -1 \) and
\[
78751018041117252545420999954
\]
\[
t = 76717646453854506081463020284
1395651175859201799
\]
over \(\mathbb{F}_p \) where \(p = 2^{256} - 2^{224} + 2^{192} + 2^{96} - 1 \).

Note: \(d \) is non-square in \(\mathbb{F}_p \).

Birationally equivalent to standard “NIST P-256” curve
\[v^2 = u^3 - 3u + a_6 \] where
\[
41058363725152142129326129780
\]
\[
a_6 = 04726840911444101599372555483.5256314039467401291
\]
An addition law for

\[x^2 + y^2 = x + y + txy + dx^2y^2, \]

complete if \(d \) is not a square:

\[
x_3 = \frac{x_1 + x_2 + (t - 2)x_1x_2 + (x_1 - y_1)(x_2 - y_2) +
\quad dx_1^2(x_2y_1 + x_2y_2 - y_1y_2)}{1 - 2dx_1x_2y_2 -
\quad dx_1^2(x_2 + y_2 + (t - 2)x_2y_2)};
\]

\[
y_3 = \frac{y_1 + y_2 + (t - 2)y_1y_2 + (y_1 - x_1)(y_2 - x_2) +
\quad dy_1^2(y_2x_1 + y_2x_2 - x_1x_2)}{1 - 2dy_1y_2x_2 -
\quad dy_1^2(y_2 + x_2 + (t - 2)y_2x_2)}.
\]
Note on computing addition laws:
An easy Magma script uses Riemann–Roch to find addition law given a curve shape.

Are those laws nice? No!
Find lower-degree laws by Monagan–Pearce algorithm, ISSAC 2006; or by evaluation at random points on random curves.

Are those laws complete? No!
But always seems easy to find complete addition laws among low-degree laws where
denominator constant term \(\neq 0 \).
Birational equivalence from
\[x^2 + y^2 = x + y + txy + dx^2y^2 \] to
\[v^2 - (t + 2)uv + dv = u^3 - (t + 2)u^2 - du + (t + 2)d \]
i.e. \[v^2 - (t + 2)uv + dv = (u^2 - d)(u - (t + 2)) \]:
\[u = (dx + t + 2)/(x + y) \];
\[v = ((t + 2)^2 - d)x/(t + 2)xy + x + y \].

Assuming \(t + 2 \) square, \(d \) not:

only exceptional point is \((0, 0)\), mapping to \(\infty \).

Inverse: \(x = v/(u^2 - d) \);
\[y = ((t + 2)u - v - d)/(u^2 - d) \).
Completeness

\[
x_3 = \frac{dx_1^2 (x_2 y_1 + x_2 y_2 - y_1 y_2)}{1 - 2 dx_1 x_2 y_2 - dx_1^2 (x_2 + y_2 + (t - 2) x_2 y_2)};
\]

\[
y_3 = \frac{dy_1^2 (y_2 x_1 + y_2 x_2 - x_1 x_2)}{1 - 2 dy_1 y_2 x_2 - dy_1^2 (y_2 + x_2 + (t - 2) y_2 x_2)}.
\]

Can denominators be 0?
Only if d is a square!

Theorem: Assume that k is a field with $2 \neq 0$;
$d, t, x_1, y_1, x_2, y_2 \in k$;
d is not a square in k;
$27d \neq (2 - t)^3$;
\[x_1^2 + y_1^2 = x_1 + y_1 + tx_1y_1 + dx_1^2y_1^2;\]
\[x_2^2 + y_2^2 = x_2 + y_2 + tx_2y_2 + dx_2^2y_2^2.\]
Then $1 - 2dx_1x_2y_2 - dx_1^2(x_2 + y_2 + (t - 2)x_2y_2) \neq 0$.
Only if d is a square!

Theorem: Assume that k is a field with $2 \neq 0$;
$d, t, x_1, y_1, x_2, y_2 \in k$;
d is not a square in k;
$27d \neq (2 - t)^3$;
$x_1^2 + y_1^2 = x_1 + y_1 + tx_1y_1 + dx_1^2y_1^2$;
$x_2^2 + y_2^2 = x_2 + y_2 + tx_2y_2 + dx_2^2y_2^2$.
Then $1 - 2dx_1x_2y_2 - dx_1^2(x_2 + y_2 + (t - 2)x_2y_2) \neq 0$.

By $x \leftrightarrow y$ symmetry
also $1 - 2dy_1y_2x_2 - dy_1^2(y_2 + x_2 + (t - 2)y_2x_2) \neq 0$.
Proof: Suppose that
\[1 - 2dx_1x_2y_2 - dx_1^2(x_2 + y_2 + (t - 2)x_2y_2) = 0. \]
Proof: Suppose that
\[1 - 2dx_1 x_2 y_2 - dx_1^2 (x_2 + y_2 + (t - 2)x_2 y_2) = 0.\]
Note that \(x_1 \neq 0\).
Proof: Suppose that

\[1 - 2dx_1x_2y_2 - dx_1^2(x_2 + y_2 + (t - 2)x_2y_2) = 0. \]

Note that \(x_1 \neq 0 \).

Use curve equation \(2 \) to see that

\[(1 - dx_1x_2y_2)^2 = dx_1^2(x_2 - y_2)^2. \]
Proof: Suppose that
\[1 - 2dx_1x_2y_2 - dx_1^2(x_2 + y_2 + (t - 2)x_2y_2) = 0. \]

Note that \(x_1 \neq 0 \).

Use curve equation\textsubscript{2} to see that
\[(1 - dx_1x_2y_2)^2 = dx_1^2(x_2 - y_2)^2. \]

By hypothesis \(d \) is non-square so
\[x_1^2(x_2 - y_2)^2 = 0 \]
and \((1 - dx_1x_2y_2)^2 = 0. \)
Proof: Suppose that
\[1 - 2dx_1x_2y_2 - dx_1^2(x_2 + y_2 + (t - 2)x_2y_2) = 0. \]

Note that \(x_1 \neq 0 \).

Use curve equation 2 to see that
\[(1 - dx_1x_2y_2)^2 = dx_1^2(x_2 - y_2)^2. \]

By hypothesis \(d \) is non-square so
\[x_1^2(x_2 - y_2)^2 = 0 \]
and \((1 - dx_1x_2y_2)^2 = 0. \)

Hence \(x_2 = y_2 \) and \(1 = dx_1x_2y_2. \)
Curve equation times $1/x_1^2$:

$$1 + \frac{y_1^2}{x_1^2} = \frac{1}{x_1} + y_1\left(\frac{1}{x_1^2} + \frac{t}{x_1}\right) + dy_1^2.$$
Curve equation times $1/x_1^2$:

$$1 + y_1^2/x_1^2 =$$

$$1/x_1 + y_1(1/x_1^2 + t/x_1) + dy_1^2.$$

Substitute $1/x_1 = dx_2^2$:

$$1 + d^2 y_1^2 x_2^4 =$$

$$dx_2^2 + dy_1(dx_2^4 + x_2^2 t) + dy_1^2.$$
Curve equation times $1/x_1^2$:

$$1 + y_1^2/x_1^2 = 1/x_1 + y_1(1/x_1^2 + t/x_1) + dy_1^2.$$

Substitute $1/x_1 = dx_2^2$:

$$1 + d^2y_1^2x_2^4 = dx_2^2 + dy_1(dx_2^4 + x_2^2t) + dy_1^2.$$

Substitute $2x_2^2 = 2x_2 + tx_2^2 + dx_2^4$:

$$(1 - dy_1x_2^2)^2 = d(x_2 - y_1)^2.$$
Curve equation \(1/x_1^2\) times \(1/x_1^2\):
\[
1 + y_1^2/x_1^2 = \\
1/x_1 + y_1(1/x_1^2 + t/x_1) + dy_1^2.
\]

Substitute \(1/x_1 = dx_2^2\):
\[
1 + \frac{d^2 y_1^2 x_2^4}{x_2^2} = \\
dx_2^2 + dy_1(dx_2^4 + x_2^2 t) + dy_1^2.
\]

Substitute \(2x_2^2 = 2x_2 + tx_2^2 + dx_2^4\):
\[
(1 - dy_1 x_2^2)^2 = d(x_2 - y_1)^2.
\]

Thus \(x_2 = y_1\) and \(1 = dy_1 x_2^2\).
Hence \(1 = dx_2^3\).
Curve equation times $1/x_1^2$:
$$1 + y_1^2/x_1^2 =$$
$$1/x_1 + y_1(1/x_1 + t/x_1) + dy_1^2.$$

Substitute $1/x_1 = dx_2^2$:
$$1 + d^2y_1^2x_2^4 =$$
$$dx_2^2 + dy_1(dx_2^4 + x_2^2t) + dy_1^2.$$

Substitute $2x_2^2 = 2x_2 + tx_2^2 + dx_2^4$:
$$(1 - dy_1x_2^2)^2 = d(x_2 - y_1)^2.$$

Thus $x_2 = y_1$ and $1 = dy_1x_2^2.$
Hence $1 = dx_2^3.$

Now $2x_2^2 = 2x_2 + tx_2^2 + x_2$
so $3 = (2-t)x_2$ so $27d = (2-t)^3.$
Contradiction.
What’s next?

Make the mathematicians happy: Prove that all curves are covered; should be easy using Weil and rational param.

Make the computer happy: Find faster complete laws.

Latest news, B.–Kohel–L.: Have complete addition law for twisted Hessian curves

\[ax^3 + y^3 + 1 = 3dxy \]

when \(a \) is non-cube.

Close in speed to Edwards and covers different curves.