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Weierstrass coordinates

Fix a field k with 2 6= 0.

Fix a; b 2 k with 4a3 + 27b2 6= 0.

Well-known fact:

The points of the “elliptic curve”

E : y2 = x3 + ax + b over k
form a commutative group E(k).

“So the group is f(x; y) 2 k� k :

y2 = x3 + ax + bg?”
Not exactly! It’s f(x; y) 2 k� k :

y2 = x3 + ax + bg [ f1g.



To add (x1; y1); (x2; y2) 2 E(k):

Define x3 = �2 � x1 � x2

and y3 = �(x1 � x3)� y1

where � = (y2 � y1)=(x2 � x1).

Then (x3; y3) 2 E(k).

Geometric interpretation:

(x1; y1); (x2; y2); (x3;�y3) are

on the curve y2 = x3 + ax + b
and on a line;

(x3; y3); (x3;�y3) are

on a vertical line.

“So that’s the group law?

(x1; y1) + (x2; y2) = (x3; y3)?”



Not exactly! Definition of �
assumes that x2 6= x1.

To add (x1; y1); (x1; y1) 2 E(k):

Define x3 = �2 � x1 � x2

and y3 = �(x1 � x3)� y1

where � = (3x2
1 + a)=2y1.

Then (x3; y3) 2 E(k).

Geometric interpretation:

The curve’s tangent line at

(x1; y1) passes through (x3;�y3).

“So that’s the group law?

One special case for doubling?”



Not exactly! More exceptions:

e.g., y1 could be 0.

Six cases overall: 1+1 = 1;

1+ (x2; y2) = (x2; y2);

(x1; y1) +1 = (x1; y1);

(x1; y1) + (x1;�y1) = 1;

for y1 6= 0, (x1; y1) + (x1; y1) =

(x3; y3) with x3 = �2 � x1 � x2,

y3 = �(x1 � x3)� y1,

� = (3x2
1 + a)=2y1;

for x1 6= x2, (x1; y1) + (x2; y2) =

(x3; y3) with x3 = �2 � x1 � x2,

y3 = �(x1 � x3)� y1,

� = (y2 � y1)=(x2 � x1).



E(k) is a commutative group:

Has neutral element 1, and �:

�1 = 1; �(x; y) = (x;�y).

Commutativity: P + Q = Q + P .

Associativity:

(P + Q) + R = P + (Q + R).

Straightforward but tedious:

use a computer-algebra system

to check each possible case.

Or relate each P + Q case

to “ideal-class product.”

Many other proofs,

but can’t escape case analysis.



Projective coordinates

Can eliminate some exceptions.

Define (X : Y : Z), for

(X; Y; Z) 2 k� k� k�f(0; 0; 0)g,
as f(rX; rY; rZ) : r 2 k� f0gg.
Could split into cases:

(X : Y : Z) =

(X=Z : Y=Z : 1) if Z 6= 0;

(X : Y : 0) =

(X=Y : 1 : 0) if Y 6= 0;

(X : 0 : 0) = (1 : 0 : 0).

But scaling unifies all cases.



Write P2(k) = f(X : Y : Z)g.
Revised definition: E(k) =

f(X : Y : Z) 2 P2(k) :

Y 2Z = X3 + aXZ2 + bZ3g.
Could split into cases:

If (X : Y : Z) 2 E(k) and Z 6= 0:

(X : Y : Z) = (x : y : 1)

where x = X=Z, y = Y=Z.

Note that y2 = x3 + ax + b.
Corresponds to previous (x; y).

If (X : Y : Z) 2 E(k) and Z = 0:

X3 = 0 so X = 0 so Y 6= 0

so (X : Y : Z) = (0 : 1 : 0).

Corresponds to previous 1.



(X1 : Y1 : Z1) + (X2 : Y2 : Z2)

= (X3 : Y3 : Z3) where

U = Y2Z1 � Y1Z2,

V = X2Z1 �X1Z2,

W = U2Z1Z2 � V 3 � 2V 2X1Z2,

X3 = V W ,

Y3 = U(V 2X1Z2 �W )� V 3Y1Z2,

Z3 = V 3Z1Z2.

“Aha! No more divisions by 0.”

Compare to previous formulas:

x3 = �2 � x1 � x2

and y3 = �(x1 � x3)� y1

where � = (y2 � y1)=(x2 � x1).



Oops, still have exceptions!

Formulas give bogus

(X3; Y3; Z3) = (0; 0; 0)

if (X1 : Y1 : Z1) = (0 : 1 : 0).

Same problem for doubling.

Formulas produce (0 : 1 : 0) for

(X1 : Y1 : Z1) + (X1 : �Y1 : Z1)

if Y1 6= 0 and Z1 6= 0

but not if Y1 = 0.

To define complete group law,

use six cases as before.



Jacobian coordinates

“Weighted projective coordinates

using weights 2; 3; 1”:

Redefine (X : Y : Z) as�
(r2X; r3Y; rZ) : r 2 k� f0g	.

Redefine E(k)

using Y 2 = X3 + aXZ4 + bZ6.

Could again split into cases

for (X : Y : Z) 2 E(k):

if Z 6= 0 then (X : Y : Z) =

(X=Z2 : Y=Z3 : 1); if Z = 0

then (X : Y : Z) = (1 : 1 : 0).



(X1 : Y1 : Z1) + (X2 : Y2 : Z2)

= (X3 : Y3 : Z3) where

U1 = X1Z2
2 , U2 = X2Z2

1 ,

S1 = Y1Z3
2 , S2 = Y2Z3

1 ,

H = U2 � U1, J = S2 � S1,

X3 = �H3 � 2U1H2 + J2,

Y3 = �S1H3 + J(U1H2 �X3),

Z3 = Z1Z2H.

Streamlined algorithm

uses 12M + 4S, where

S is squaring in k and

M is general multiplication in k.

(1986 Chudnovsky–Chudnovsky)

11M + 5S. (2001 Bernstein)



Still need all six cases.

Why use Jacobian coordinates?

Answer: Only 3M + 5S

for Jacobian-coordinate doubling

if a = �3 (e.g. NIST curves).

Formulas: If Y1 6= 0 then

(X1 : Y1 : Z1) + (X1 : Y1 : Z1)

= (X3; Y3; Z3) where

T = Z2
1 , U = Y 2

1 , V = X1U,

W = 3(X1 � T )(X1 + T ),

X3 = W 2 � 8V ,

Z3 = (Y1 + Z1)
2 � U � T ,

Y3 = W (4V �X3)� 8U2.



Unified addition laws

Do addition laws

have to fail for doublings?

Not necessarily!

Example: “Jacobi intersection”

s2 + 2 = 1, as2 + d2 = 1

has 17M addition formula

that works for doublings.

(1986 Chudnovsky–Chudnovsky)

16M. (2001 Liardet–Smart)

Many more “unified formulas.”

But always find exceptions:

points not added by formulas.



“Is this Jacobi intersection

related to y2 = x3 + � � �?”
Yes: s2 + 2 = 1, as2 + d2 = 1

is birationally equivalent to

y2 = x3 + (2� a)x2 + (1� a)x.

(s; ; d) 7! (x; y):

x = (d�1)(1�a)=(a�d+1�a);
y = s(1� a)a=(a� d+ 1� a).
(x; y) 7! (s; ; d):
s = �2y=((y2=x2 + a)x);

 = 1� 2=(y2=x2 + a)�
2(1� a)=((y2=x2 + a)x);

d = 1� 2a=(y2=x2 + a).



Do we need 6 cases? No!

Can cover E(k)� E(k)

using 3 addition laws.

(1985 H. Lange–Ruppert)

How about just one law

that covers E(k)� E(k)?

One complete addition law?

Bad news: “Theorem 1.

The smallest cardinality of a

complete system of addition laws

on E equals two.”

(1995 Bosma–H. Lenstra)



Edwards curves

2007 Edwards:

Every elliptic curve over Q

is birationally equivalent to

x2 + y2 = 2(1 + x2y2)

for some  2 Q� f0;�1;�ig.
x2 + y2 = 2(1 + x2y2) has

neutral element (0; ), addition

(x1; y1) + (x2; y2) = (x3; y3) with

x3 =
x1y2 + y1x2

(1 + x1x2y1y2)
,

y3 =
y1y2 � x1x2

(1� x1x2y1y2)
.



2007 Bernstein–Lange:

Over a non-binary finite field k,

x2 + y2 = 2(1 + dx2y2)

covers more elliptic curves.

Here ; d 2 k� with d4 6= 1.

x3 =
x1y2 + y1x2

(1 + dx1x2y1y2)
,

y3 =
y1y2 � x1x2

(1� dx1x2y1y2)
.

Can always take  = 1. Then

10M + 1S + 1D for addition,

3M + 4S for doubling.

Latest news, comparisons:

hyperelliptic.org/EFD



Completeness

2007 Bernstein–Lange:

If d is not a square in k then

f(x; y) 2 k� k :

x2 + y2 = 2(1 + dx2y2)g
is a commutative group

under this addition law.

The denominators

(1 + dx1x2y1y2),

(1� dx1x2y1y2)

are never zero.

No exceptional cases!



Recall Bosma–Lenstra theorem:

“The smallest cardinality of a

complete system of addition laws

on E equals two.”



Recall Bosma–Lenstra theorem:

“The smallest cardinality of a

complete system of addition laws

on E equals two.” : : : meaning:

Any addition formula

for a Weierstrass curve E
in projective coordinates

must have exceptional cases

in E(k)� E(k), where

k = algebraic closure of k.



Recall Bosma–Lenstra theorem:

“The smallest cardinality of a

complete system of addition laws

on E equals two.” : : : meaning:

Any addition formula

for a Weierstrass curve E
in projective coordinates

must have exceptional cases

in E(k)� E(k), where

k = algebraic closure of k.

Edwards addition formula has

exceptional cases for E(k)
: : : but not for E(k).

We do computations in E(k).



Cryptographic impact

Advantages for cryptography

of choosing Edwards curves:

Very high speed.

Completeness eases

implementations, avoids

simple side-channel attacks.



Cryptographic impact

Advantages for cryptography

of choosing Edwards curves:

Very high speed.

Completeness eases

implementations, avoids

simple side-channel attacks.

Oops, hardware people

want binary fields!

2008 B.–L.–Rezaeian Farashahi:

binary analogue to Edwards

curves; complete, very fast.



Still one reason for complaint.

Edwards curves always have

point of order 4.

Standard NIST curves

were chosen to have

prime order.



Still one reason for complaint.

Edwards curves always have

point of order 4.

Standard NIST curves

were chosen to have

prime order.

NIST curves can’t take advantage

of Edwards speed and don’t have

complete addition formulas.



Still one reason for complaint.

Edwards curves always have

point of order 4.

Standard NIST curves

were chosen to have

prime order.

NIST curves can’t take advantage

of Edwards speed and don’t have

complete addition formulas.

2009 Bernstein–Lange, this talk:

Have a complete addition law

for all of these curves.



Today’s curve shape

Fix a field k with 2 6= 0.

Fix t; d 2 k with d 6= 0,

d 6= (t + 2)2, 27d 6= (2� t)3.
Consider the curve

x2 + y2 = x + y + txy + dx2y2

with neutral element (0; 0).

Warning: We’re still studying

choices of curve shapes; we don’t

promise that this is the best.

For comparison, Edwards:

x2 + y2 = 1 + dx2y2

with neutral element (0; 1).



Birational equivalence from

x2 + y2 = x+ y + txy + dx2y2 to

v2 � (t + 2)uv + dv =

u3� (t+2)u2�du+(t+2)d
i.e. v2 � (t + 2)uv + dv =

(u2 � d)(u� (t + 2)):

u = (dxy + t + 2)=(x + y);

v =
((t + 2)2 � d)x

(t + 2)xy + x + y .

Assuming t + 2 square, d not:

only exceptional point is

(0; 0), mapping to 1.

Inverse: x = v=(u2 � d);
y = ((t + 2)u� v � d)=(u2 � d).



Example: the NIST curves

Consider curve with d = �1 and

t = 778560582526665440982277592018607150561834371823249249461
over Fp where p = 2192 � 264 � 1.

Note: d is non-square in Fp.
Birationally equivalent to

standard “NIST P-192” curve

v2 = u3 � 3u + a6 where

a6 = 2455155546008943817740293915197451784769108058161191238065.



Consider curve with d = 11 and

t =
89561265817923268463529369784596533377983200667502092330236009670

over Fp where p = 2224 � 296 + 1.

Note: d is non-square in Fp.
Birationally equivalent to

standard “NIST P-224” curve

v2 = u3 � 3u + a6 where

a6 =
18958286285566608000408668544493926415504680968679321075787234672564.



Consider curve with d = �1 and

t =
78751018041117252545420999954767176464538545060814630202841395651175859201799

over Fp where p = 2256 � 2224 +

2192 + 296 � 1.

Note: d is non-square in Fp.
Birationally equivalent to

standard “NIST P-256” curve

v2 = u3 � 3u + a6 where

a6 =
41058363725152142129326129780047268409114441015993725554835256314039467401291.



Consider curve with d = �1 and

t =
8590929636431093563403036676937570960716721909626687223623195967682940265166240863364480501907705272975221538249252

over Fp where p = 2384 � 2128 �
296 + 232 � 1.

Note: d is non-square in Fp.
Birationally equivalent to

standard “NIST P-384” curve

v2 = u3 � 3u + a6 where

a6 =

7580193559959705877849011840389048093056905856361568521428707301988689241309860865136260764883745107765439761230575.



Consider curve with d = 3 and

t =

282554915491598511392915669291442322225341750644132632718278098467340130883832560776891278815932983899342135279891231387189263227247236090030835304279675250
over Fp where p = 2521 � 1.

Note: d is non-square in Fp.
Birationally equivalent to

standard “NIST P-521” curve

v2 = u3 � 3u + a6 where

a6 =

1093849038073734274511112390766805569936207598951683748994586394495953116150735016013708737573759623248592132296706313309438452531591012912142327488478985984.



Today’s addition law

x3 =

x1 + x2 + (t� 2)x1x2 +

(x1 � y1)(x2 � y2) +

dx2
1(x2y1 + x2y2 � y1y2)

1� 2dx1x2y2 �
dx2

1(x2 + y2 + (t� 2)x2y2)

;

y3 =

y1 + y2 + (t� 2)y1y2 +

(y1 � x1)(y2 � x2) +

dy2
1(y2x1 + y2x2 � x1x2)

1� 2dy1y2x2 �
dy2

1(y2 + x2 + (t� 2)y2x2)

.



Exercise: On curve,

if denominators are nonzero.

Exercise: (x; y) + (0; 0) = (x; y).

Exercise: (x; y) + (y; x) = (0; 0).

Exercise: Compute projectively

using 26M + 8S + 8D.

: : : Clearly can be improved;

we’re not done optimizing yet.

Exercise: Corresponds to

addition on Weierstrass curve.



Completeness

x3 =

x1 + x2 + (t� 2)x1x2 +

(x1 � y1)(x2 � y2) +

dx2
1(x2y1 + x2y2 � y1y2)

1� 2dx1x2y2 �
dx2

1(x2 + y2 + (t� 2)x2y2)

;

y3 =

y1 + y2 + (t� 2)y1y2 +

(y1 � x1)(y2 � x2) +

dy2
1(y2x1 + y2x2 � x1x2)

1� 2dy1y2x2 �
dy2

1(y2 + x2 + (t� 2)y2x2)

.

Can denominators be 0?



Only if d is a square!

Theorem: Assume that

k is a field with 2 6= 0;

d; t; x1; y1; x2; y2 2 k;

d is not a square in k;

27d 6= (2� t)3;
x2

1 +y2
1 = x1 +y1 +tx1y1 +dx2

1y2
1 ;

x2
2 +y2

2 = x2 +y2 +tx2y2 +dx2
2y2

2 .

Then 1� 2dx1x2y2 �
dx2

1(x2 + y2 + (t� 2)x2y2) 6= 0.



Only if d is a square!

Theorem: Assume that

k is a field with 2 6= 0;

d; t; x1; y1; x2; y2 2 k;

d is not a square in k;

27d 6= (2� t)3;
x2

1 +y2
1 = x1 +y1 +tx1y1 +dx2

1y2
1 ;

x2
2 +y2

2 = x2 +y2 +tx2y2 +dx2
2y2

2 .

Then 1� 2dx1x2y2 �
dx2

1(x2 + y2 + (t� 2)x2y2) 6= 0.

By x$ y symmetry

also 1� 2dy1y2x2 �
dy2

1(y2 + x2 + (t� 2)y2x2) 6= 0.



Proof: Suppose that

1� 2dx1x2y2 �
dx2

1(x2 + y2 + (t� 2)x2y2) = 0.



Proof: Suppose that

1� 2dx1x2y2 �
dx2

1(x2 + y2 + (t� 2)x2y2) = 0.

Note that x1 6= 0.



Proof: Suppose that
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dx2

1(x2 + y2 + (t� 2)x2y2) = 0.

Note that x1 6= 0.

Use curve equation2 to see that

(1� dx1x2y2)
2 = dx2

1(x2 � y2)
2.
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Use curve equation2 to see that
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1(x2 � y2)
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2 = 0

and (1� dx1x2y2)
2 = 0.



Proof: Suppose that

1� 2dx1x2y2 �
dx2

1(x2 + y2 + (t� 2)x2y2) = 0.

Note that x1 6= 0.

Use curve equation2 to see that

(1� dx1x2y2)
2 = dx2

1(x2 � y2)
2.

By hypothesis d is non-square

so x2
1(x2 � y2)

2 = 0

and (1� dx1x2y2)
2 = 0.

Hence x2 = y2 and 1 = dx1x2y2.



Curve equation1 times 1=x2
1:

1 + y2
1=x2

1 =

1=x1 + y1(1=x2
1 + t=x1) + dy2

1 .



Curve equation1 times 1=x2
1:

1 + y2
1=x2

1 =

1=x1 + y1(1=x2
1 + t=x1) + dy2

1 .

Substitute 1=x1 = dx2
2:

1 + d2y2
1x4

2 =

dx2
2 + dy1(dx4

2 + x2
2t) + dy2

1 .



Curve equation1 times 1=x2
1:

1 + y2
1=x2

1 =

1=x1 + y1(1=x2
1 + t=x1) + dy2

1 .

Substitute 1=x1 = dx2
2:

1 + d2y2
1x4

2 =

dx2
2 + dy1(dx4

2 + x2
2t) + dy2

1 .

Substitute 2x2
2 = 2x2 + tx2

2 + dx4
2:

(1� dy1x2
2)

2 = d(x2 � y1)
2.



Curve equation1 times 1=x2
1:

1 + y2
1=x2

1 =

1=x1 + y1(1=x2
1 + t=x1) + dy2

1 .

Substitute 1=x1 = dx2
2:

1 + d2y2
1x4

2 =

dx2
2 + dy1(dx4

2 + x2
2t) + dy2

1 .

Substitute 2x2
2 = 2x2 + tx2

2 + dx4
2:

(1� dy1x2
2)

2 = d(x2 � y1)
2.

Thus x2 = y1 and 1 = dy1x2
2.

Hence 1 = dx3
2.



Curve equation1 times 1=x2
1:

1 + y2
1=x2

1 =

1=x1 + y1(1=x2
1 + t=x1) + dy2

1 .

Substitute 1=x1 = dx2
2:

1 + d2y2
1x4

2 =

dx2
2 + dy1(dx4

2 + x2
2t) + dy2

1 .

Substitute 2x2
2 = 2x2 + tx2

2 + dx4
2:

(1� dy1x2
2)

2 = d(x2 � y1)
2.

Thus x2 = y1 and 1 = dy1x2
2.

Hence 1 = dx3
2.

Now 2x2
2 = 2x2 + tx2

2 + x2

so 3 = (2�t)x2 so 27d = (2�t)3.
Contradiction.




