Complete addition laws for elliptic curves
D. J. Bernstein University of Illinois at Chicago

Tanja Lange
Technische Universiteit Eindhoven

Weierstrass coordinates

Fix a field k with $2 \neq 0$.
Fix $a, b \in k$ with $4 a^{3}+27 b^{2} \neq 0$.
Well-known fact:
The points of the "elliptic curve"
$E: y^{2}=x^{3}+a x+b$ over k
form a commutative group $E(k)$.
"So the group is $\{(x, y) \in k \times k$: $\left.y^{2}=x^{3}+a x+b\right\} ? "$

Not exactly! It's $\{(x, y) \in k \times k$: $\left.y^{2}=x^{3}+a x+b\right\} \cup\{\infty\}$.

To add $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in E(k)$:
Define $x_{3}=\lambda^{2}-x_{1}-x_{2}$ and $y_{3}=\lambda\left(x_{1}-x_{3}\right)-y_{1}$
where $\lambda=\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right)$.
Then $\left(x_{3}, y_{3}\right) \in E(k)$.
Geometric interpretation:
$\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3},-y_{3}\right)$ are on the curve $y^{2}=x^{3}+a x+b$ and on a line;
$\left(x_{3}, y_{3}\right),\left(x_{3},-y_{3}\right)$ are on a vertical line.
"So that's the group law?
$\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{3}, y_{3}\right) ? "$

Not exactly! Definition of λ assumes that $x_{2} \neq x_{1}$.

To add $\left(x_{1}, y_{1}\right),\left(x_{1}, y_{1}\right) \in E(k)$:
Define $x_{3}=\lambda^{2}-x_{1}-x_{2}$ and $y_{3}=\lambda\left(x_{1}-x_{3}\right)-y_{1}$
where $\lambda=\left(3 x_{1}^{2}+a\right) / 2 y_{1}$.
Then $\left(x_{3}, y_{3}\right) \in E(k)$.
Geometric interpretation:
The curve's tangent line at
$\left(x_{1}, y_{1}\right)$ passes through $\left(x_{3},-y_{3}\right)$.
"So that's the group law?
One special case for doubling?"

Not exactly! More exceptions: e.g., y_{1} could be 0 .

Six cases overall: $\infty+\infty=\infty$; $\infty+\left(x_{2}, y_{2}\right)=\left(x_{2}, y_{2}\right) ;$
$\left(x_{1}, y_{1}\right)+\infty=\left(x_{1}, y_{1}\right)$;
$\left(x_{1}, y_{1}\right)+\left(x_{1},-y_{1}\right)=\infty$;
for $y_{1} \neq 0,\left(x_{1}, y_{1}\right)+\left(x_{1}, y_{1}\right)=$
$\left(x_{3}, y_{3}\right)$ with $x_{3}=\lambda^{2}-x_{1}-x_{2}$,
$y_{3}=\lambda\left(x_{1}-x_{3}\right)-y_{1}$,
$\lambda=\left(3 x_{1}^{2}+a\right) / 2 y_{1}$;
for $x_{1} \neq x_{2},\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=$ $\left(x_{3}, y_{3}\right)$ with $x_{3}=\lambda^{2}-x_{1}-x_{2}$,
$y_{3}=\lambda\left(x_{1}-x_{3}\right)-y_{1}$,
$\lambda=\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right)$.
$E(k)$ is a commutative group:
Has neutral element ∞, and - :
$-\infty=\infty ;-(x, y)=(x,-y)$.
Commutativity: $P+Q=Q+P$.
Associativity:
$(P+Q)+R=P+(Q+R)$.
Straightforward but tedious: use a computer-algebra system to check each possible case.

Or relate each $P+Q$ case to "ideal-class product."

Many other proofs,
but can't escape case analysis.

Projective coordinates

Can eliminate some exceptions.
Define $(X: Y: Z)$, for
$(X, Y, Z) \in k \times k \times k-\{(0,0,0)\}$,
as $\{(r X, r Y, r Z): r \in k-\{0\}\}$.
Could split into cases:
$(X: Y: Z)=$
$(X / Z: Y / Z: 1)$ if $Z \neq 0$;
$(X: Y: 0)=$
$(X / Y: 1: 0)$ if $Y \neq 0$;
$(X: 0: 0)=(1: 0: 0)$.
But scaling unifies all cases.

Write $\mathbf{P}^{2}(k)=\{(X: Y: Z)\}$. Revised definition: $E(k)=$ $\left\{(X: Y: Z) \in \mathbf{P}^{2}(k):\right.$

$$
\left.Y^{2} Z=X^{3}+a X Z^{2}+b Z^{3}\right\}
$$

Could split into cases:
If $(X: Y: Z) \in E(k)$ and $Z \neq 0$:
$(X: Y: Z)=(x: y: 1)$
where $x=X / Z, y=Y / Z$.
Note that $y^{2}=x^{3}+a x+b$.
Corresponds to previous (x, y).
If $(X: Y: Z) \in E(k)$ and $Z=0$:
$X^{3}=0$ so $X=0$ so $Y \neq 0$
so $(X: Y: Z)=(0: 1: 0)$.
Corresponds to previous ∞.
$\left(X_{1}: Y_{1}: Z_{1}\right)+\left(X_{2}: Y_{2}: Z_{2}\right)$
$=\left(X_{3}: Y_{3}: Z_{3}\right)$ where
$U=Y_{2} Z_{1}-Y_{1} Z_{2}$,
$V=X_{2} Z_{1}-X_{1} Z_{2}$,
$W=U^{2} Z_{1} Z_{2}-V^{3}-2 V^{2} X_{1} Z_{2}$,
$X_{3}=V W$,
$Y_{3}=U\left(V^{2} X_{1} Z_{2}-W\right)-V^{3} Y_{1} Z_{2}$,
$Z_{3}=V^{3} Z_{1} Z_{2}$.
"Aha! No more divisions by 0."
Compare to previous formulas:
$x_{3}=\lambda^{2}-x_{1}-x_{2}$
and $y_{3}=\lambda\left(x_{1}-x_{3}\right)-y_{1}$
where $\lambda=\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right)$.

Oops, still have exceptions!

Formulas give bogus
$\left(X_{3}, Y_{3}, Z_{3}\right)=(0,0,0)$
if $\left(X_{1}: Y_{1}: Z_{1}\right)=(0: 1: 0)$.
Same problem for doubling.
Formulas produce (0:1:0) for
$\left(X_{1}: Y_{1}: Z_{1}\right)+\left(X_{1}:-Y_{1}: Z_{1}\right)$
if $Y_{1} \neq 0$ and $Z_{1} \neq 0$
but not if $Y_{1}=0$.
To define complete group law, use six cases as before.

Jacobian coordinates

"Weighted projective coordinates using weights $2,3,1$ ":

Redefine $(X: Y: Z)$ as
$\left\{\left(r^{2} X, r^{3} Y, r Z\right): r \in k-\{0\}\right\}$.
Redefine $E(k)$
using $Y^{2}=X^{3}+a X Z^{4}+b Z^{6}$.
Could again split into cases
for $(X: Y: Z) \in E(k)$:
if $Z \neq 0$ then $(X: Y: Z)=$
$\left(X / Z^{2}: Y / Z^{3}: 1\right)$; if $Z=0$
then $(X: Y: Z)=(1: 1: 0)$.
$\left(X_{1}: Y_{1}: Z_{1}\right)+\left(X_{2}: Y_{2}: Z_{2}\right)$
$=\left(X_{3}: Y_{3}: Z_{3}\right)$ where
$U_{1}=X_{1} Z_{2}^{2}, U_{2}=X_{2} Z_{1}^{2}$,
$S_{1}=Y_{1} Z_{2}^{3}, S_{2}=Y_{2} Z_{1}^{3}$,
$H=U_{2}-U_{1}, J=S_{2}-S_{1}$,
$X_{3}=-H^{3}-2 U_{1} H^{2}+J^{2}$,
$Y_{3}=-S_{1} H^{3}+J\left(U_{1} H^{2}-X_{3}\right)$,
$Z_{3}=Z_{1} Z_{2} H$.
Streamlined algorithm uses $12 \mathrm{M}+4 \mathrm{~S}$, where
\mathbf{S} is squaring in k and M is general multiplication in k. (1986 Chudnovsky-Chudnovsky)

11M + 5S. (2001 Bernstein)

Still need all six cases.
Why use Jacobian coordinates?
Answer: Only 3M + 5S
for Jacobian-coordinate doubling if $a=-3$ (e.g. NIST curves).

Formulas: If $Y_{1} \neq 0$ then
$\left(X_{1}: Y_{1}: Z_{1}\right)+\left(X_{1}: Y_{1}: Z_{1}\right)$
$=\left(X_{3}, Y_{3}, Z_{3}\right)$ where
$T=Z_{1}^{2}, U=Y_{1}^{2}, V=X_{1} U$,
$W=3\left(X_{1}-T\right)\left(X_{1}+T\right)$,
$X_{3}=W^{2}-8 V$,
$Z_{3}=\left(Y_{1}+Z_{1}\right)^{2}-U-T$,
$Y_{3}=W\left(4 V-X_{3}\right)-8 U^{2}$.

Unified addition laws

Do addition laws
have to fail for doublings?
Not necessarily!
Example: "Jacobi intersection"
$s^{2}+c^{2}=1, a s^{2}+d^{2}=1$
has 17 M addition formula that works for doublings.
(1986 Chudnovsky-Chudnovsky)
16M. (2001 Liardet-Smart)
Many more "unified formulas."
But always find exceptions:
points not added by formulas.
"Is this Jacobi intersection related to $y^{2}=x^{3}+\cdots$?"

Yes: $s^{2}+c^{2}=1, a s^{2}+d^{2}=1$ is birationally equivalent to
$y^{2}=x^{3}+(2-a) x^{2}+(1-a) x$.
$(s, c, d) \mapsto(x, y):$
$x=(d-1)(1-a) /(c a-d+1-a)$;
$y=s(1-a) a /(c a-d+1-a)$.
$(x, y) \mapsto(s, c, d):$
$s=-2 y /\left(\left(y^{2} / x^{2}+a\right) x\right) ;$
$c=1-2 /\left(y^{2} / x^{2}+a\right)-$

$$
2(1-a) /\left(\left(y^{2} / x^{2}+a\right) x\right)
$$

$$
d=1-2 a /\left(y^{2} / x^{2}+a\right)
$$

Do we need 6 cases? No!

Can cover $E(k) \times E(k)$ using 3 addition laws.
(1985 H. Lange-Ruppert)
How about just one law that covers $E(k) \times E(k)$?
One complete addition law?
Bad news: "Theorem 1.
The smallest cardinality of a complete system of addition laws on E equals two."
(1995 Bosma-H. Lenstra)

Edwards curves

2007 Edwards:
Every elliptic curve over $\overline{\mathbf{Q}}$ is birationally equivalent to
$x^{2}+y^{2}=c^{2}\left(1+x^{2} y^{2}\right)$
for some $c \in \overline{\mathbf{Q}}-\{0, \pm 1, \pm i\}$.
$x^{2}+y^{2}=c^{2}\left(1+x^{2} y^{2}\right)$ has neutral element $(0, c)$, addition $\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{3}, y_{3}\right)$ with
$x_{3}=\frac{x_{1} y_{2}+y_{1} x_{2}}{c\left(1+x_{1} x_{2} y_{1} y_{2}\right)}$,
$y_{3}=\frac{y_{1} y_{2}-x_{1} x_{2}}{c\left(1-x_{1} x_{2} y_{1} y_{2}\right)}$.

2007 Bernstein-Lange:
Over a non-binary finite field k, $x^{2}+y^{2}=c^{2}\left(1+d x^{2} y^{2}\right)$
covers more elliptic curves. Here $c, d \in k^{*}$ with $d c^{4} \neq 1$.
$x_{3}=\frac{x_{1} y_{2}+y_{1} x_{2}}{c\left(1+d x_{1} x_{2} y_{1} y_{2}\right)}$,
$y_{3}=\frac{y_{1} y_{2}-x_{1} x_{2}}{c\left(1-d x_{1} x_{2} y_{1} y_{2}\right)}$.
Can always take $c=1$. Then $10 \mathrm{M}+1 \mathrm{~S}+1 \mathrm{D}$ for addition, $3 M+4 S$ for doubling.

Latest news, comparisons:
hyperelliptic.org/EFD

Completeness

2007 Bernstein-Lange:
If d is not a square in k then
$\{(x, y) \in k \times k:$

$$
\left.x^{2}+y^{2}=c^{2}\left(1+d x^{2} y^{2}\right)\right\}
$$

is a commutative group under this addition law.

The denominators
$c\left(1+d x_{1} x_{2} y_{1} y_{2}\right)$,
$c\left(1-d x_{1} x_{2} y_{1} y_{2}\right)$
are never zero.
No exceptional cases!

Recall Bosma-Lenstra theorem:
"The smallest cardinality of a complete system of addition laws
on E equals two."

Recall Bosma-Lenstra theorem:
"The smallest cardinality of a complete system of addition laws
on E equals two." ... meaning:
Any addition formula
for a Weierstrass curve E in projective coordinates must have exceptional cases in $E(\bar{k}) \times E(\bar{k})$, where $\bar{k}=$ algebraic closure of k.

Recall Bosma-Lenstra theorem:
"The smallest cardinality of a complete system of addition laws on E equals two." ... meaning:
Any addition formula
for a Weierstrass curve E in projective coordinates must have exceptional cases in $E(\bar{k}) \times E(\bar{k})$, where $\bar{k}=$ algebraic closure of k.

Edwards addition formula has exceptional cases for $E(\bar{k})$... but not for $E(k)$.
We do computations in $E(k)$.

Cryptographic impact

Advantages for cryptography of choosing Edwards curves:

Very high speed.
Completeness eases
implementations, avoids simple side-channel attacks.

Cryptographic impact

Advantages for cryptography of choosing Edwards curves:

Very high speed.
Completeness eases
implementations, avoids simple side-channel attacks.

Oops, hardware people want binary fields!

2008 B.-L.-Rezaeian Farashahi: binary analogue to Edwards curves; complete, very fast.

Still one reason for complaint.
Edwards curves always have point of order 4.

Standard NIST curves were chosen to have prime order.

Still one reason for complaint.
Edwards curves always have point of order 4.

Standard NIST curves were chosen to have prime order.

NIST curves can't take advantage of Edwards speed and don't have complete addition formulas.

Still one reason for complaint.
Edwards curves always have point of order 4.

Standard NIST curves were chosen to have prime order.

NIST curves can't take advantage of Edwards speed and don't have complete addition formulas.

2009 Bernstein-Lange, this talk: Have a complete addition law for all of these curves.

Today's curve shape

Fix a field k with $2 \neq 0$.
Fix $t, d \in k$ with $d \neq 0$,
$d \neq(t+2)^{2}, 27 d \neq(2-t)^{3}$.
Consider the curve
$x^{2}+y^{2}=x+y+t x y+d x^{2} y^{2}$ with neutral element $(0,0)$.

Warning: We're still studying choices of curve shapes; we don't promise that this is the best.

For comparison, Edwards:
$x^{2}+y^{2}=1+d x^{2} y^{2}$
with neutral element $(0,1)$.

Birational equivalence from
$x^{2}+y^{2}=x+y+t x y+d x^{2} y^{2}$ to $v^{2}-(t+2) u v+d v=$

$$
u^{3}-(t+2) u^{2}-d u+(t+2) d
$$

ie. $v^{2}-(t+2) u v+d v=$

$$
\left(u^{2}-d\right)(u-(t+2))
$$

$u=(d x y+t+2) /(x+y) ;$
$v=\frac{\left((t+2)^{2}-d\right) x}{(t+2) x y+x+y}$.
Assuming $t+2$ square, d not: only exceptional point is $(0,0)$, mapping to ∞.

Inverse: $x=v /\left(u^{2}-d\right)$;
$y=((t+2) u-v-d) /\left(u^{2}-d\right)$.

Example: the NIST curves

Consider curve with $d=-1$ and
$t=77856058252666544098227759201$ 8607150561834371823249249461
over \mathbf{F}_{p} where $p=2^{192}-2^{64}-1$.
Note: d is non-square in \mathbf{F}_{p}.
Birationally equivalent to standard "NIST P-192" curve $v^{2}=u^{3}-3 u+a_{6}$ where $a_{6}={ }_{9}^{24551555460089438177402939151}{ }_{9745178769108058161191238065}$.

Consider curve with $d=11$ and 89561265817923268463529369784
$t=59653337798320066750209233023$ 6009670
over \mathbf{F}_{p} where $p=2^{224}-2^{96}+1$. Note: d is non-square in \mathbf{F}_{p}.

Birationally equivalent to

 standard "NIST P-224" curve $v^{2}=u^{3}-3 u+a_{6}$ where> 18958286285566608000408668544 $a_{6}=49392641550468096867932107578$. 7234672564

Consider curve with $d=-1$ and 78751018041117252545420999954
76717646453854506081463020284
1395651175859201799
over \mathbf{F}_{p} where $p=2^{256}-2^{224}+$ $2^{192}+2^{96}-1$.
Note: d is non-square in F_{p}.
Birationally equivalent to standard "NIST P-256" curve $v^{2}=u^{3}-3 u+a_{6}$ where $a_{6}=\begin{array}{r}41058363725152142129326129780 \\ 04726840911444101599372555483 . \\ 5256314039467401291\end{array}$

Consider curve with $d=-1$ and

 $t=\begin{array}{r}85909296364310935634030366769 \\ 37570960716721909626687223623 \\ 19596768294026516024086336448 \\ 0501907705272975221538249252\end{array}$ over F_{p} where $p=2^{384}-2^{128}-$ $2^{96}+2^{32}-1$.Note: d is non-square in \mathbf{F}_{p}.

Birationally equivalent to

 standard "NIST P-384" curve $v^{2}=u^{3}-3 u+a_{6}$ where 75801935595597058778490118403 $a_{6}={ }^{89048093056905856361568521428}{ }_{70730198868924130986086513626}$. 0764883745107765439761230575
Consider curve with $d=3$ and

 28255491549159851139291566929 14423222253417506441326327182 $t=78098467340130883832560776891$ 27881593298389934213527989123 13871892632272472360900308353 04279675250over \mathbf{F}_{p} where $p=2^{521}-1$.
Note: d is non-square in \mathbf{F}_{p}.

Birationally equivalent to

 standard "NIST P-521" curve $v^{2}=u^{3}-3 u+a_{6}$ where 10938490380737342745111123907 66805569936207598551683748994 58639449595311615073501601370$87375737596232485921322967063^{\circ}$ 13309438452531591012912142327 488478985984

Today's addition law

$$
\begin{gathered}
x_{1}+x_{2}+(t-2) x_{1} x_{2}+ \\
x_{3}=\frac{d x_{1}^{2}\left(x_{2} y_{1}+x_{2} y_{2}-y_{1} y_{2}\right)}{1-2 d x_{1} x_{2} y_{2}-} ; \\
d x_{1}^{2}\left(x_{2}+y_{2}+(t-2) x_{2} y_{2}\right) \\
y_{1}+y_{2}+(t-2) y_{1} y_{2}+ \\
\\
y_{3}=\frac{d y_{1}^{2}\left(y_{2} x_{1}+x_{1}\right)\left(y_{2}-x_{2}\right)+}{1-2 d y_{1} y_{2} x_{2}-} \\
d y_{1}^{2}\left(y_{2}+x_{2}+(t-2) y_{2} x_{2}\right)
\end{gathered}
$$

Exercise: On curve,

if denominators are nonzero.
Exercise: $(x, y)+(0,0)=(x, y)$.
Exercise: $(x, y)+(y, x)=(0,0)$.
Exercise: Compute projectively using $26 \mathbf{M}+8 \mathbf{S}+8 \mathbf{D}$.
... Clearly can be improved; we're not done optimizing yet.

Exercise: Corresponds to addition on Weierstrass curve.

Completeness

$$
\begin{gathered}
x_{1}+x_{2}+(t-2) x_{1} x_{2}+ \\
x_{3}=\frac{\left.d x_{1}-y_{1}\right)\left(x_{2}-y_{2}\right)+}{1-2 d x_{1} x_{2} y_{2}-} \\
d x_{1}^{2}\left(x_{2}+y_{2}+(t-2) x_{2} y_{2}\right) \\
\\
y_{1}+y_{2}+(t-2) y_{1} y_{2}+ \\
\left(y_{1}-x_{1}\right)\left(y_{2}-x_{2}\right)+ \\
y_{3}= \\
\frac{d y_{1}^{2}\left(y_{2} x_{1}+y_{2} x_{2}-x_{1} x_{2}\right)}{1-2 d y_{1} y_{2} x_{2}-} \\
d y_{1}^{2}\left(y_{2}+x_{2}+(t-2) y_{2} x_{2}\right)
\end{gathered}
$$

Can denominators be 0 ?

Only if d is a square!

Theorem: Assume that

k is a field with $2 \neq 0$;
$d, t, x_{1}, y_{1}, x_{2}, y_{2} \in k$;
d is not a square in k;
$27 d \neq(2-t)^{3}$;
$x_{1}^{2}+y_{1}^{2}=x_{1}+y_{1}+t x_{1} y_{1}+d x_{1}^{2} y_{1}^{2}$;
$x_{2}^{2}+y_{2}^{2}=x_{2}+y_{2}+t x_{2} y_{2}+d x_{2}^{2} y_{2}^{2}$.
Then $1-2 d x_{1} x_{2} y_{2}-$
$d x_{1}^{2}\left(x_{2}+y_{2}+(t-2) x_{2} y_{2}\right) \neq 0$.

Only if d is a square!

Theorem: Assume that

k is a field with $2 \neq 0$;
$d, t, x_{1}, y_{1}, x_{2}, y_{2} \in k$;
d is not a square in k;
$27 d \neq(2-t)^{3}$;
$x_{1}^{2}+y_{1}^{2}=x_{1}+y_{1}+t x_{1} y_{1}+d x_{1}^{2} y_{1}^{2}$;
$x_{2}^{2}+y_{2}^{2}=x_{2}+y_{2}+t x_{2} y_{2}+d x_{2}^{2} y_{2}^{2}$.
Then $1-2 d x_{1} x_{2} y_{2}-$
$d x_{1}^{2}\left(x_{2}+y_{2}+(t-2) x_{2} y_{2}\right) \neq 0$.
By $x \leftrightarrow y$ symmetry
also $1-2 d y_{1} y_{2} x_{2}-$
$d y_{1}^{2}\left(y_{2}+x_{2}+(t-2) y_{2} x_{2}\right) \neq 0$.

Proof: Suppose that
$1-2 d x_{1} x_{2} y_{2}-$
$d x_{1}^{2}\left(x_{2}+y_{2}+(t-2) x_{2} y_{2}\right)=0$.

Proof: Suppose that
$1-2 d x_{1} x_{2} y_{2}-$
$d x_{1}^{2}\left(x_{2}+y_{2}+(t-2) x_{2} y_{2}\right)=0$.
Note that $x_{1} \neq 0$.

Proof: Suppose that
$1-2 d x_{1} x_{2} y_{2}-$
$d x_{1}^{2}\left(x_{2}+y_{2}+(t-2) x_{2} y_{2}\right)=0$.
Note that $x_{1} \neq 0$.
Use curve equation 2 to see that $\left(1-d x_{1} x_{2} y_{2}\right)^{2}=d x_{1}^{2}\left(x_{2}-y_{2}\right)^{2}$.

Proof: Suppose that
$1-2 d x_{1} x_{2} y_{2}-$
$d x_{1}^{2}\left(x_{2}+y_{2}+(t-2) x_{2} y_{2}\right)=0$.
Note that $x_{1} \neq 0$.
Use curve equation 2 to see that
$\left(1-d x_{1} x_{2} y_{2}\right)^{2}=d x_{1}^{2}\left(x_{2}-y_{2}\right)^{2}$.
By hypothesis d is non-square so $x_{1}^{2}\left(x_{2}-y_{2}\right)^{2}=0$
and $\left(1-d x_{1} x_{2} y_{2}\right)^{2}=0$.

Proof: Suppose that
$1-2 d x_{1} x_{2} y_{2}-$
$d x_{1}^{2}\left(x_{2}+y_{2}+(t-2) x_{2} y_{2}\right)=0$.
Note that $x_{1} \neq 0$.
Use curve equation 2 to see that
$\left(1-d x_{1} x_{2} y_{2}\right)^{2}=d x_{1}^{2}\left(x_{2}-y_{2}\right)^{2}$.
By hypothesis d is non-square so $x_{1}^{2}\left(x_{2}-y_{2}\right)^{2}=0$
and $\left(1-d x_{1} x_{2} y_{2}\right)^{2}=0$.
Hence $x_{2}=y_{2}$ and $1=d x_{1} x_{2} y_{2}$.

Curve equation ${ }_{1}$ times $1 / x_{1}^{2}$:
$1+y_{1}^{2} / x_{1}^{2}=$
$1 / x_{1}+y_{1}\left(1 / x_{1}^{2}+t / x_{1}\right)+d y_{1}^{2}$.

Curve equation ${ }_{1}$ times $1 / x_{1}^{2}$: $1+y_{1}^{2} / x_{1}^{2}=$ $1 / x_{1}+y_{1}\left(1 / x_{1}^{2}+t / x_{1}\right)+d y_{1}^{2}$.

Substitute $1 / x_{1}=d x_{2}^{2}$:
$1+d^{2} y_{1}^{2} x_{2}^{4}=$
$d x_{2}^{2}+d y_{1}\left(d x_{2}^{4}+x_{2}^{2} t\right)+d y_{1}^{2}$.

Curve equation ${ }_{1}$ times $1 / x_{1}^{2}$: $1+y_{1}^{2} / x_{1}^{2}=$
$1 / x_{1}+y_{1}\left(1 / x_{1}^{2}+t / x_{1}\right)+d y_{1}^{2}$.
Substitute $1 / x_{1}=d x_{2}^{2}$:
$1+d^{2} y_{1}^{2} x_{2}^{4}=$
$d x_{2}^{2}+d y_{1}\left(d x_{2}^{4}+x_{2}^{2} t\right)+d y_{1}^{2}$.
Substitute $2 x_{2}^{2}=2 x_{2}+t x_{2}^{2}+d x_{2}^{4}$:
$\left(1-d y_{1} x_{2}^{2}\right)^{2}=d\left(x_{2}-y_{1}\right)^{2}$.

Curve equation ${ }_{1}$ times $1 / x_{1}^{2}$:
$1+y_{1}^{2} / x_{1}^{2}=$
$1 / x_{1}+y_{1}\left(1 / x_{1}^{2}+t / x_{1}\right)+d y_{1}^{2}$.
Substitute $1 / x_{1}=d x_{2}^{2}$:
$1+d^{2} y_{1}^{2} x_{2}^{4}=$
$d x_{2}^{2}+d y_{1}\left(d x_{2}^{4}+x_{2}^{2} t\right)+d y_{1}^{2}$.
Substitute $2 x_{2}^{2}=2 x_{2}+t x_{2}^{2}+d x_{2}^{4}$:
$\left(1-d y_{1} x_{2}^{2}\right)^{2}=d\left(x_{2}-y_{1}\right)^{2}$.
Thus $x_{2}=y_{1}$ and $1=d y_{1} x_{2}^{2}$. Hence $1=d x_{2}^{3}$.

Curve equation ${ }_{1}$ times $1 / x_{1}^{2}$:
$1+y_{1}^{2} / x_{1}^{2}=$
$1 / x_{1}+y_{1}\left(1 / x_{1}^{2}+t / x_{1}\right)+d y_{1}^{2}$.
Substitute $1 / x_{1}=d x_{2}^{2}$:
$1+d^{2} y_{1}^{2} x_{2}^{4}=$
$d x_{2}^{2}+d y_{1}\left(d x_{2}^{4}+x_{2}^{2} t\right)+d y_{1}^{2}$.
Substitute $2 x_{2}^{2}=2 x_{2}+t x_{2}^{2}+d x_{2}^{4}$:
$\left(1-d y_{1} x_{2}^{2}\right)^{2}=d\left(x_{2}-y_{1}\right)^{2}$.
Thus $x_{2}=y_{1}$ and $1=d y_{1} x_{2}^{2}$. Hence $1=d x_{2}^{3}$.

Now $2 x_{2}^{2}=2 x_{2}+t x_{2}^{2}+x_{2}$ so $3=(2-t) x_{2}$ so $27 d=(2-t)^{3}$. Contradiction.

