Batch binary Edwards

D. J. Bernstein

University of Illinois at Chicago
NSF ITR-0716498

Classic \mathbf{F}_{p}^{*} index calculus needs to check smoothness of many positive integers $<p$.

Smooth integer: integer with no prime divisors $>y$.
Typical: $(\log y)^{2} \in$
$(1 / 2+o(1)) \log p \log \log p$.
Many: typically $y^{2+o(1), ~}$ of which $y^{1+o(1)}$ are smooth.
(Modern index calculus, NFS: smaller integers; smaller y.)

How to check smoothness?

Old answers: Trial division, time $y^{1+o(1)} ;$ rho, time $y^{1 / 2+o(1)}$, assuming standard conjectures.

Better answer: ECM etc.
Time $y^{o(1)}$; specifically
$\exp \sqrt{(2+o(1)) \log y \log \log y}$, assuming standard conjectures.

Much better answer (using RAM): Known batch algorithms test smoothness of many integers simultaneously.
Time per input: $(\log y)^{O(1)}$ $=\exp O(\log \log y)$.

General pattern:

Algorithm designer optimizes algorithm for one input.

But algorithm is then applied to many inputs! Oops.

Often much better speed
from batch algorithms
optimized for many inputs.
e.g. Batch ECDL: $\sqrt{\#}$ speedup. Batch NFS: smaller exponent.
Can find many more examples.

Surprising recent example:
Batching can save time in multiplication!

Largest speedups: $\mathbf{F}_{2}[x]$.
Consequence: New speed record for public-key cryptography. ≈ 30000 scalar mults/second on a 2.4 GHz Core 2 Quad for a secure elliptic curve $/ \mathbf{F}_{2} 251$.

Software release this month.

Surprising recent example:
Batching can save time in multiplication!

Largest speedups: $\mathbf{F}_{2}[x]$.
Consequence: New speed record for public-key cryptography. ≈ 30000 scalar mults/second on a 2.4 GHz Core 2 Quad for a secure elliptic curve $/ \mathbf{F}_{2} 251$.

Software release this month.
Note: No subfields were exploited in the creation of this record.

Batched conditional branches are slow and painful. Solution: complete curve operations.

2008 Bernstein-Lange-Rezaeian Farashahi: for $n \geq 3$, every ordinary elliptic curve over $\mathbf{F}_{2} n$ can be written as a "complete binary Edwards curve."

Extremely fast formulas for complete differential addition. With good curve selection: $5 \mathrm{M}+4 \mathrm{~S}$ per bit.

Note 1: Need complete curve. Need singularities at ∞ blowing up irrationally.

Symmetric, Edwards-like:
$x^{2}\left(y^{2}+y+d\right)$
$+x\left(y^{2}+\cdots\right)+\left(d y^{2}+\cdots\right)$,
with $y^{2}+y+d$ irreducible.
Note 2: Need complete formulas.
Warning: for odd characteristic,
$\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=$
$\left(\frac{x_{1} y_{1}+x_{2} y_{2}}{x_{1} x_{2}+y_{1} y_{2}}, \frac{x_{1} y_{1}-x_{2} y_{2}}{x_{1} y_{2}-x_{2} y_{1}}\right)$
is an incomplete addition law
on a complete Edwards curve!

