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Elliptic curves I
Geometric definition:
An elliptic curve E/K is a smooth, projective curve of genus
1 with a K-rational point.

How to turn this into an equation?
How to use this definition for computations involving elliptic
curves?
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Elliptic curves I
Geometric definition:
An elliptic curve E/K is a smooth, projective curve of genus
1 with a K-rational point.

How to turn this into an equation?
How to use this definition for computations involving elliptic
curves?

Use Riemann-Roch theorem! This implies

ℓ(D) ≥ deg(D)− g + 1,

with equality if deg(D) > 2g − 2
where L(D) = {f ∈ K(C)|div(f) ≥ −D}, ℓ(D) = dim(L(D))
and C/K is a curve of genus g.
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Elliptic curves I
Geometric definition:
An elliptic curve E/K is a smooth, projective curve of genus
1 with a K-rational point.

How to turn this into an equation?
How to use this definition for computations involving elliptic
curves?

Use Riemann-Roch theorem! This implies

ℓ(D) ≥ deg(D)− g + 1,

with equality if deg(D) > 2g − 2= 2 · 1− 2 = 0
where L(D) = {f ∈ K(C)|div(f) ≥ −D}, ℓ(D) = dim(L(D))
and C/K is a curve of genus g.

D. J. Bernstein & T. Lange Models of Elliptic Curves – p. 2



Elliptic curves II
Geometric definition:
An elliptic curve E/K is a smooth, projective curve of genus
1 with a K-rational point.

Call this point P∞.

Riemann-Roch theorem for g = 1 gives equality for
deg(D) > 0, i.e. ℓ(D) = deg(D)− g + 1, and thus

ℓ(P∞) = deg(P∞)− 1 + 1 = 1,
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Elliptic curves II
Geometric definition:
An elliptic curve E/K is a smooth, projective curve of genus
1 with a K-rational point.

Call this point P∞.

Riemann-Roch theorem for g = 1 gives equality for
deg(D) > 0, i.e. ℓ(D) = deg(D)− g + 1, and thus

ℓ(P∞) = deg(P∞)− 1 + 1 = 1,

ℓ(2P∞) = deg(2P∞)− 1 + 1 = 2,⇒ ∃x ∈ L(2P∞)\K,
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Elliptic curves II
Geometric definition:
An elliptic curve E/K is a smooth, projective curve of genus
1 with a K-rational point.

Call this point P∞.

Riemann-Roch theorem for g = 1 gives equality for
deg(D) > 0, i.e. ℓ(D) = deg(D)− g + 1, and thus

ℓ(P∞) = deg(P∞)− 1 + 1 = 1,

ℓ(2P∞) = deg(2P∞)− 1 + 1 = 2,⇒ ∃x ∈ L(2P∞)\K,

ℓ(3P∞) = deg(3P∞)− 1 + 1 = 3,⇒ ∃y ∈ L(3P∞)\L(2P∞),
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Elliptic curves II
Geometric definition:
An elliptic curve E/K is a smooth, projective curve of genus
1 with a K-rational point.

Call this point P∞.

Riemann-Roch theorem for g = 1 gives equality for
deg(D) > 0, i.e. ℓ(D) = deg(D)− g + 1, and thus

ℓ(P∞) = deg(P∞)− 1 + 1 = 1,

ℓ(2P∞) = deg(2P∞)− 1 + 1 = 2,⇒ ∃x ∈ L(2P∞)\K,

ℓ(3P∞) = deg(3P∞)− 1 + 1 = 3,⇒ ∃y ∈ L(3P∞)\L(2P∞),

ℓ(4P∞) = 4, L(4P∞) = 〈1, x, y, x2〉,
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Elliptic curves II
Geometric definition:
An elliptic curve E/K is a smooth, projective curve of genus
1 with a K-rational point.

Call this point P∞.

Riemann-Roch theorem for g = 1 gives equality for
deg(D) > 0, i.e. ℓ(D) = deg(D)− g + 1, and thus

ℓ(P∞) = deg(P∞)− 1 + 1 = 1,

ℓ(2P∞) = deg(2P∞)− 1 + 1 = 2,⇒ ∃x ∈ L(2P∞)\K,

ℓ(3P∞) = deg(3P∞)− 1 + 1 = 3,⇒ ∃y ∈ L(3P∞)\L(2P∞),

ℓ(4P∞) = 4, L(4P∞) = 〈1, x, y, x2〉,
ℓ(5P∞) = 5, L(5P∞) = 〈1, x, y, x2, xy〉,
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Elliptic curves II
Geometric definition:
An elliptic curve E/K is a smooth, projective curve of genus
1 with a K-rational point.

Call this point P∞.

Riemann-Roch theorem for g = 1 gives equality for
deg(D) > 0, i.e. ℓ(D) = deg(D)− g + 1, and thus

ℓ(P∞) = deg(P∞)− 1 + 1 = 1,

ℓ(2P∞) = deg(2P∞)− 1 + 1 = 2,⇒ ∃x ∈ L(2P∞)\K,

ℓ(3P∞) = deg(3P∞)− 1 + 1 = 3,⇒ ∃y ∈ L(3P∞)\L(2P∞),

ℓ(4P∞) = 4, L(4P∞) = 〈1, x, y, x2〉,
ℓ(5P∞) = 5, L(5P∞) = 〈1, x, y, x2, xy〉,
ℓ(6P∞) = 6, {1, x, y, x2, xy, x3, y2} are linearly dependent.
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Weierstrass form

ℓ(6P∞) = 6, {1, x, y, x2, xy, x3, y2} are linearly dependent,

i.e. there exist a1, a2, a3, a4, a6 ∈ K with

E : y2 + (a1x + a3)y = x3 + a2x
2 + a4x + a6

so that the equation is nonsingular. (Can make equation
monic in y2 and x3.)

This form is called Weierstrass form and is the standard
normal form of elliptic curves.

Applications in cryptography, the elliptic curve method of
factorization, elliptic curve primality proving, etc. use that
points on curve form a group.
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Arithmetic on Weierstrass curves

Divisor class group (of degree 0), i.e. divisors of degree
0 modulo principal divisors, is way to define a group
from a given curve.

Divisors are equivalent if they differ by a principal
divisor.

Turn the curve into an abelian group by using
isomorphism between divisor class group and points.

Each divisor class has representative P − P∞ or 0;
assign point D + P∞, i.e. P − P∞ + P∞ = P or
0 + P∞ = P∞.

Divisor class arithmetic translates to well-known
geometric addition formulas.
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Chord-and-tangent method

E : y2 = x3 + a4x + a6, ai ∈ IFq

P

Q

S

Line y = λx + µ has slope

λ = yQ−yP

xQ−xP
.

Equating gives

(λx + µ)2 = x3 + a4x + a6.

This equation has 3 solutions, the x-coordinates of P , Q
and S, thus

(x− xP )(x− xQ)(x− xS) = x3 − λ2x2 + (a4 − 2λµ)x + a6 − µ2

xS = λ2 − xP − xQ
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Chord-and-tangent method

E : y2 = x3 + a4x + a6, ai ∈ IFq

P

Q

S

P ⊕Q
Point P is on line, thus

yP = λxP + µ, i.e.
µ = yP − λxP ,

and
yS = λxS + µ

= λxS + yP − λxP

= λ(xS − xP ) + yP

Point P ⊕Q has the same x-coordinate as S but negative
y-coordinate:

xP⊕Q = λ2 − xP − xQ, yP⊕Q = λ(xP − xP⊕Q)− yP
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Chord-and-tangent method

E : y2 = x3 + a4x + a6, ai ∈ IFq

P

Q

S

P ⊕Q

[2]P

[−2]P
When doubling, use tangent at P .
Compute slope λ via partial
derivatives of curve equation:

λ = 3x2
P +a4

2yP
.

Remaining computation identical to
addition.

x[2]P = λ2 − 2xP , y[2]P = λ(xP − x[2]P )− yP
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Chord-and-tangent method

E : y2 = x3 + a4x + a6, ai ∈ IFq

P

Q

S

P ⊕Q

[2]P

[−2]P

Tangent at Q is vertical x = xQ.
When adding P ⊕Q and S,
connecting line is vertical.

Third point online is P∞,
a point infinitely far up on the
y-axis:

[2]Q = P∞; (P ⊕Q)⊕ S = P∞.

P ⊕ P∞ = P ; P∞ ⊕ P∞ = P∞.

P∞ is neutral element; −(x1, y1) = (x1,−y1).
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Chord-and-tangent method

E : y2 = x3 + a4x + a6, ai ∈ IFq

P

Q

S

P ⊕Q

[2]P

[−2]P

In general, for (xP , yP ) 6= (xQ,−yQ):

(xP , yP )⊕ (xQ, yQ) =

= (xP⊕Q, yP⊕Q) =

= (λ2 − xP − xQ, λ(xP − xP⊕Q)− yP ),

where

λ =

{
(yQ − yP )/(xQ − xP ) if xP 6= xQ,

(3x2
P + a4)/(2yP ) if P = Q

. . . and all the other cases . . .
P + P∞ = P ; P∞ + P = P ; P∞ + P∞ = P∞; P + (−P ) = P∞.
Total of 6 different cases. Not much better in projective
coordinates.
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Other curve shapes
Jacobi quartic

C : Y 2Z2 = X4 + 2aX2Z2 + Z4

sage: x,y,z = PolynomialRing(QQ, 3, names=’x,y,z’).gens( )
sage: C = Curve(yˆ2 * zˆ2-(xˆ4-4 * xˆ2 * zˆ2+zˆ4))
sage: C.geometric_genus()
1

sage: C.arithmetic_genus()
3
Point (0 : 1 : 1) ∈ C(K), so C birationally equivalent to elliptic curve.

Affine part is nonsingular but point at infinity is singular.

With (x, y) also (±x,±y) on curve; nontrivial map.

How to define group law?

What other shapes are there?

D. J. Bernstein & T. Lange Models of Elliptic Curves – p. 7



Newton Polygons, odd characteristic
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Short Weierstrass
y2 = x3 + ax + b
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Montgomery
by2 = x3 + ax2 + x
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Jacobi quartic
y2 = x4 + 2ax2 + 1
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Hessian
x3 + y3 + 1 = 3dxy

·
·
·
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·

·
·
·

·
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·
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·

•

•

•

• Edwards
x2 + y2 = 1 + dx2y2

Number of integer
points inside convex
hull spanned by the
exponents of the
monomials gives the
genus of the curve.

All these curves
generically have
genus 1.
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Edwards curves – because shape does matter
Let k be a field with 2 6= 0. Let d ∈ k with d 6= 0, 1.
Edwards curve:

{(x, y) ∈ k × k|x2 + y2 = 1 + dx2y2}

y

x

OO

//

Generalization covers more curves over k.

Associative operation on most points
(x1, y1) + (x2, y2) = (x3, y3)

defined by Edwards addition law

x3 =
x1y2 + y1x2

1 + dx1x2y1y2
and y3 =

y1y2 − x1x2

1− dx1x2y1y2
.

Neutral element is (0, 1).

−(x1, y1) = (−x1, y1).

(0,−1) has order 2; (1, 0) and (−1, 0) have order 4.
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Relationship to elliptic curves
Every elliptic curve with point of order 4 is birationally
equivalent to an Edwards curve.

Let P4 = (u4, v4) have order 4 and shift u s.t. 2P4 = (0, 0).
Then Weierstrass form:

v2 = u3 + (v2
4/u

2
4 − 2u4)u

2 + u2
4u.

Define d = 1− (4u3
4/v

2
4).

The coordinates x = v4u/(u4v), y = (u− u4)/(u + u4)
satisfy

x2 + y2 = 1 + dx2y2.

Inverse map u = u4(1 + y)/(1− y), v = v4u/(u4x).

Finitely many exceptional points. Exceptional points
have v(u + u4) = 0.

Addition on Edwards and Weierstrass corresponds.
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Nice features of the addition law
Neutral element of addition law is affine point, this
avoids special routines (for (0, 1) one of the inputs or the
result).

Addition law is symmetric in both inputs.

P + Q =

(
x1y2 + y1x2

1 + dx1x2y1y2
,

y1y2 − x1x2

1− dx1x2y1y2

)
.
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Nice features of the addition law
Neutral element of addition law is affine point, this
avoids special routines (for (0, 1) one of the inputs or the
result).

Addition law is symmetric in both inputs.

P + Q =

(
x1y2 + y1x2

1 + dx1x2y1y2
,

y1y2 − x1x2

1− dx1x2y1y2

)
.

[2]P =

(
x1y1 + y1x1

1 + dx1x1y1y1
,

y1y1 − x1x1

1− dx1x1y1y1

)
.
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Nice features of the addition law
Neutral element of addition law is affine point, this
avoids special routines (for (0, 1) one of the inputs or the
result).

Addition law is symmetric in both inputs.

P + Q =

(
x1y2 + y1x2

1 + dx1x2y1y2
,

y1y2 − x1x2

1− dx1x2y1y2

)
.

[2]P =

(
x1y1 + y1x1

1 + dx1x1y1y1
,

y1y1 − x1x1

1− dx1x1y1y1

)
.

No reason that the denominators should be 0.

Addition law produces correct result also for doubling.
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Nice features of the addition law
Neutral element of addition law is affine point, this
avoids special routines (for (0, 1) one of the inputs or the
result).

Addition law is symmetric in both inputs.

P + Q =

(
x1y2 + y1x2

1 + dx1x2y1y2
,

y1y2 − x1x2

1− dx1x2y1y2

)
.

[2]P =

(
x1y1 + y1x1

1 + dx1x1y1y1
,

y1y1 − x1x1

1− dx1x1y1y1

)
.

No reason that the denominators should be 0.

Addition law produces correct result also for doubling.

Unified group operations!
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Nice features of the addition law
Neutral element of addition law is affine point, this
avoids special routines (for (0, 1) one of the inputs or the
result).

Addition law is symmetric in both inputs.

P + Q =

(
x1y2 + y1x2

1 + dx1x2y1y2
,

y1y2 − x1x2

1− dx1x2y1y2

)
.

[2]P =

(
x1y1 + y1x1

1 + dx1x1y1y1
,

y1y1 − x1x1

1− dx1x1y1y1

)
.

No reason that the denominators should be 0.

Addition law produces correct result also for doubling.

Unified group operations!

Having addition law work for doubling removes some
checks from the code.
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Complete addition law

Points at infinity blow up minimally over k(
√

d), so if d is
not a square in k, then there are no points at infinity.

If d is not a square, the only exceptional points of the
birational equivalence are P∞ corresponding to (0, 1)
and (0, 0) corresponding to (0,−1).

If d is not a square the denominators 1 + dx1x2y1y2 and
1− dx1x2y1y2 are never 0; addition law is complete.

Edwards addition law allows omitting all checks
Neutral element is affine point on curve.
Addition works to add P and P .
Addition works to add P and −P .
Addition just works to add P and any Q.

Only complete addition law in the literature.
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Fast addition law
Very fast point addition 10M + 1S + 1D. Even faster with
Extended Edwards coordinates (Hisil et al.).

Dedicated doubling formulas need only 3M + 4S.

Fastest scalar multiplication in the literature.

For comparison: IEEE standard P1363 provides “the
fastest arithmetic on elliptic curves” by using Jacobian
coordinates on Weierstrass curves.

Point addition 12M + 4S.
Doubling formulas need only 4M + 4S.

For more curve shapes, better algorithms (even for
Weierstrass curves) and many more operations (mixed
addition, re-addition, tripling, scaling,. . . ) see

www.hyperelliptic.org/EFD
and the following competition.
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Starring . . .
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Weierstrass curve

y2 = x3 − 0.4x + 0.7
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Weierstrass curve

y2 = x3 − 0.4x + 0.7
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Jacobi quartic

x2 = y4 − 1.9y2 + 1
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Jacobi quartic
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Hessian curve

x3 − y3 + 1 = 0.3xy
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Hessian curve
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Edwards curve

x2 + y2 = 1− 300x2y2
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The race – zoom on
Weierstrass and Edwards
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Weierstrass vs. Edwards I
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Weierstrass vs. Edwards II
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Weierstrass vs. Edwards III
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Weierstrass vs. Edwards IV
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Weierstrass vs. Edwards V
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all competitors . . .
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All competitors I
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All competitors II

D. J. Bernstein & T. Lange Models of Elliptic Curves – p. 31



All competitors III
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All competitors IV
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All competitors V
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Read the full story at:

hyperelliptic.org/EFD
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