
Attacks on DNS

Cryptography in DNS

Secure design and coding for DNS

D. J. Bernstein

University of Illinois at Chicago

http://cr.yp.to

/talks.html#2009.03.02

/talks.html#2009.03.03

/talks.html#2009.03.04

1996: qmail 0.70.

1997: qmail 1.00.

1998: qmail 1.03.

1996: qmail 0.70.

1997: qmail 1.00.

1998: qmail 1.03.

1999: djbdns (dnscache) 0.60.

2000: djbdns (dnscache) 1.00.

2001: djbdns 1.05.

1996: qmail 0.70.

1997: qmail 1.00.

1998: qmail 1.03.

1999: djbdns (dnscache) 0.60.

2000: djbdns (dnscache) 1.00.

2001: djbdns 1.05.

2007: “Some thoughts on security

after ten years of qmail 1.0.”

1996: qmail 0.70.

1997: qmail 1.00.

1998: qmail 1.03.

1999: djbdns (dnscache) 0.60.

2000: djbdns (dnscache) 1.00.

2001: djbdns 1.05.

2007: “Some thoughts on security

after ten years of qmail 1.0.”

> 1000000 of the Internet’s

SMTP servers are running qmail.

> 4000000 of the Internet’s

second-level *.com names

are published by djbdns.

1996: qmail 0.70.

1997: qmail 1.00.

1998: qmail 1.03.

1999: djbdns (dnscache) 0.60.

2000: djbdns (dnscache) 1.00.

2001: djbdns 1.05.

2007: “Some thoughts on security

after ten years of qmail 1.0.”

> 1000000 of the Internet’s

SMTP servers are running qmail.

> 4000000 of the Internet’s

second-level *.com names

are published by djbdns.

No emergency upgrades, ever.

Some DNS buffer overflows

“CVE-2008-2469: Heap-based buffer

overflow in the SPF dns resolv lookup

function in Spf dns resolv.c in libspf2
before 1.2.8 allows remote attackers to

execute arbitrary code via a long DNS

TXT record with a modified length field.”

“CVE-2008-2357: Stack-based buffer

overflow in the split redraw function in

split.c in mtr before 0.73, when invoked

with the -p (aka –split) option, allows
remote attackers to execute arbitrary

code via a crafted DNS PTR record.”

“CVE-2008-0530: Buffer overflow in
Cisco Unified IP Phone 7940, 7940G,

7960, and 7960G running SCCP and SIP

firmware might allow remote attackers to

execute arbitrary code via a crafted DNS
response.”

“CVE-2008-0122: Off-by-one error in the

inet network function in libbind in ISC
BIND 9.4.2 and earlier, as used in libc in

FreeBSD 6.2 through 7.0-PRERELEASE,

allows context-dependent attackers to

cause a denial of service (crash) and
possibly execute arbitrary code via crafted

input that triggers memory corruption.”

“CVE-2007-2434: Buffer overflow in

asnsp.dll in Aventail Connect 4.1.2.13

allows remote attackers to cause a denial

of service (application crash) or execute

arbitrary code via a malformed DNS
query.”

“CVE-2007-2362: Multiple buffer
overflows in MyDNS 1.1.0 allow remote

attackers to (1) cause a denial of service

(daemon crash) and possibly execute

arbitrary code via a certain update, which
triggers a heap-based buffer overflow

in update.c; and (2) cause a denial of

service (daemon crash) via unspecified
vectors that trigger an off-by-one stack-

based buffer overflow in update.c.”

“CVE-2007-2187: Stack-based buffer

overflow in eXtremail 2.1.1 and earlier

allows remote attackers to execute

arbitrary code via a long DNS response.”

“CVE-2007-1866: Stack-based buffer

overflow in the dns decode reverse name

function in dns decode.c in dproxy-nexgen
allows remote attackers to execute

arbitrary code by sending a crafted

packet to port 53/udp.”

“CVE-2007-1748: Stack-based buffer

overflow in the RPC interface in the

Domain Name System (DNS) Server

Service in Microsoft Windows 2000 Server
SP 4, Server 2003 SP 1, and Server 2003

SP 2 allows remote attackers to execute

arbitrary code via a long zone name
containing character constants represented

by escape sequences.”

“CVE-2007-1465: Stack-based buffer

overflow in dproxy.c for dproxy 0.1

through 0.5 allows remote attackers to

execute arbitrary code via a long DNS
query packet to UDP port 53.”

“CVE-2006-5781: Stack-based buffer

overflow in the handshake function in
iodine 0.3.2 allows remote attackers to

execute arbitrary code via a crafted DNS

response.”

“CVE-2006-4251: Buffer overflow in

PowerDNS Recursor 3.1.3 and earlier

might allow remote attackers to execute

arbitrary code via a malformed TCP
DNS query that prevents Recursor from

properly calculating the TCP DNS query

length.”

“CVE-2006-3441: Buffer overflow in the

DNS Client service in Microsoft Windows
2000 SP4, XP SP1 and SP2, and Server

2003 SP1 allows remote attackers to

execute arbitrary code via a crafted

record response. NOTE: while MS06-041
implies that there is a single issue, there

are multiple vectors, and likely multiple

vulnerabilities, related to (1) a heap-

based buffer overflow in a DNS server

response to the client, (2) a DNS server
response with malformed ATMA records,

and (3) a length miscalculation in TXT,

HINFO, X25, and ISDN records.”

“CVE-2005-2315: Buffer overflow in

Domain Name Relay Daemon (DNRD)

before 2.19.1 allows remote attackers to
execute arbitrary code via a large number

of large DNS packets with the Z and QR

flags cleared.”

“CVE-2005-0033 Buffer overflow in the

code for recursion and glue fetching in
BIND 8.4.4 and 8.4.5 allows remote

attackers to cause a denial of service

(crash) via queries that trigger the

overflow in the q usedns array that tracks
nameservers and addresses.”

“CVE-2004-1485: Buffer overflow in the

TFTP client in InetUtils 1.4.2 allows
remote malicious DNS servers to execute

arbitrary code via a large DNS response

that is handled by the gethostbyname

function.”

“CVE-2004-1317: Stack-based buffer

overflow in doexec.c in Netcat for

Windows 1.1, when running with the
-e option, allows remote attackers to

execute arbitrary code via a long DNS

command.”

“CVE-2004-0836: Buffer overflow in the

mysql real connect function in MySQL
4.x before 4.0.21, and 3.x before 3.23.49,

allows remote DNS servers to cause a

denial of service and possibly execute

arbitrary code via a DNS response with a
large address length (h length).”

“CVE-2004-0150: Buffer overflow in the

getaddrinfo function in Python 2.2 before
2.2.2, when IPv6 support is disabled,

allows remote attackers to execute

arbitrary code via an IPv6 address that

is obtained using DNS.”

“CVE-2003-1377: Buffer overflow in

the reverse DNS lookup of Smart IRC

Daemon (SIRCD) 0.4.0 and 0.4.4 allows

remote attackers to execute arbitrary

code via a client with a long hostname.”

“CVE-2002-1219: Buffer overflow in

named in BIND 4 versions 4.9.10 and
earlier, and 8 versions 8.3.3 and earlier,

allows remote attackers to execute

arbitrary code via a certain DNS server

response containing SIG resource records
(RR).”

“CVE-2002-0910: Buffer overflows in

netstd 3.07-17 package allows remote
DNS servers to execute arbitrary code via

a long FQDN reply, as observed in the

utilities (1) linux-ftpd, (2) pcnfsd, (3)

tftp, (4) traceroute, or (5) from/to.”

“CVE-2002-0906: Buffer overflow in

Sendmail before 8.12.5, when configured

to use a custom DNS map to query
TXT records, allows remote attackers

to cause a denial of service and possibly

execute arbitrary code via a malicious
DNS server.”

“CVE-2002-0825: Buffer overflow in
the DNS SRV code for nss ldap before

nss ldap-198 allows remote attackers to

cause a denial of service and possibly

execute arbitrary code.”

“CVE-2002-0698: Buffer overflow in

Internet Mail Connector (IMC) for

Microsoft Exchange Server 5.5 allows
remote attackers to execute arbitrary

code via an EHLO request from a system

with a long name as obtained through a

reverse DNS lookup, which triggers the
overflow in IMC’s hello response.”

“CVE-2002-0684: Buffer overflow in DNS

resolver functions that perform lookup of
network names and addresses, as used

in BIND 4.9.8 and ported to glibc 2.2.5

and earlier, allows remote malicious DNS
servers to execute arbitrary code through

a subroutine used by functions such as

getnetbyname and getnetbyaddr.”

“CVE-2002-0651: Buffer overflow in the

DNS resolver code used in libc, glibc,

and libbind, as derived from ISC BIND,
allows remote malicious DNS servers to

cause a denial of service and possibly

execute arbitrary code via the stub

resolvers.”

“CVE-2002-0423: Buffer overflow in

efingerd 1.5 and earlier, and possibly up

to 1.61, allows remote attackers to cause
a denial of service and possibly execute

arbitrary code via a finger request from

an IP address with a long hostname that

is obtained via a reverse DNS lookup.”

“CVE-2002-0332: Buffer overflows in

xtell (xtelld) 1.91.1 and earlier, and 2.x
before 2.7, allows remote attackers to

execute arbitrary code via (1) a long

DNS hostname that is determined using

reverse DNS lookups, (2) a long AUTH
string, or (3) certain data in the xtell

request.”

“CVE-2002-0180: Buffer overflow in

Webalizer 2.01-06, when configured to

use reverse DNS lookups, allows remote

attackers to execute arbitrary code by

connecting to the monitored web server
from an IP address that resolves to a

long hostname.”

“CVE-2002-0163: Heap-based buffer

overflow in Squid before 2.4 STABLE4,

and Squid 2.5 and 2.6 until March

12, 2002 distributions, allows remote
attackers to cause a denial of service,

and possibly execute arbitrary code, via

compressed DNS responses.”

“CVE-2002-0029: Buffer overflows in

the DNS stub resolver library in ISC
BIND 4.9.2 through 4.9.10, and other

derived libraries such as BSD libc and

GNU glibc, allow remote attackers to

execute arbitrary code via DNS server
responses that trigger the overflow in the

(1) getnetbyname, or (2) getnetbyaddr

functions.”

“CVE-2001-0207: Buffer overflow

in bing allows remote attackers to

execute arbitrary commands via a long

hostname, which is copied to a small
buffer after a reverse DNS lookup using

the gethostbyaddr function.”

“CVE-2001-0050: Buffer overflow in
BitchX IRC client allows remote attackers

to cause a denial of service and possibly

execute arbitrary commands via an IP
address that resolves to a long DNS

hostname or domain name.”

“CVE-2001-0029: Buffer overflow in oops

WWW proxy server 1.4.6 (and possibly

other versions) allows remote attackers

to execute arbitrary commands via a long
host or domain name that is obtained

from a reverse DNS lookup.”

“CVE-2001-0011: Buffer overflow in
nslookupComplain function in BIND

4 allows remote attackers to gain root

privileges.”

“CVE-2001-0010: Buffer overflow in

transaction signature (TSIG) handling

code in BIND 8 allows remote attackers

to gain root privileges.”

“CVE-2000-0405: Buffer overflow in

L0pht AntiSniff allows remote attackers
to execute arbitrary commands via a

malformed DNS response packet.”

“CVE-1999-1321: Buffer overflow in ssh

1.2.26 client with Kerberos V enabled

could allow remote attackers to cause

a denial of service or execute arbitrary
commands via a long DNS hostname that

is not properly handled during TGT ticket

passing.”

“CVE-1999-1060: Buffer overflow in

Tetrix TetriNet daemon 1.13.16 allows

remote attackers to cause a denial of

service and possibly execute arbitrary
commands by connecting to port 31457

from a host with a long DNS hostname.”

“CVE-1999-0833: Buffer overflow in
BIND 8.2 via NXT records.”

“CVE-1999-0299: Buffer overflow

in FreeBSD lpd through long DNS
hostnames.”

“CVE-1999-0101: Buffer overflow in AIX
and Solaris ”gethostbyname” library call

allows root access through corrupt DNS

host names.”

“CVE-1999-0009: Inverse query buffer

overflow in BIND 4.9 and BIND 8

Releases.”

More security problems

What we’ve learned so far:

Attacker easily breaks DNS

through packet forgery,

thanks to bad protocol.

Or through buffer overflows,

thanks to bad software.

But wait, there’s more!

“CVE-2008-5077: OpenSSL 0.9.8i and

earlier does not properly check the return
value from the EVP VerifyFinal function,

which allows remote attackers to bypass

validation of the certificate chain via a

malformed SSL/TLS signature for DSA
and ECDSA keys.”

This bug (announced 2009.01)

allowed trivial forgery of

DNSSEC DSA signatures.

“CVE-2008-5077: OpenSSL 0.9.8i and

earlier does not properly check the return
value from the EVP VerifyFinal function,

which allows remote attackers to bypass

validation of the certificate chain via a

malformed SSL/TLS signature for DSA
and ECDSA keys.”

This bug (announced 2009.01)

allowed trivial forgery of

DNSSEC DSA signatures.

: : : which was a big deal for

the 20 people on Earth who use

DNSSEC DSA signatures.

“CVE-2007-2925: The default access

control lists (ACL) in ISC BIND 9.4.0,
9.4.1, and 9.5.0a1 through 9.5.0a5 do

not set the allow-recursion and allow-

query-cache ACLs, which allows remote

attackers to make recursive queries and
query the cache.”

Documentation said that

cache was (by default)

usable only by local network.

This bug hurt confidentiality:

attackers easily see which

names have been looked up.

Also hurt availability:

e.g., attackers easily use

cache as DDoS amplifier.

“2004 Symantec Enterprise Firewall

DNSD DNS Cache Poisoning
Vulnerability: Dnsd does not ensure that

the data returned from a remote DNS

server contains related information about

the requested records. An attacker could
exploit this vulnerability to deny service

to legitimate users by redirecting traffic

to inappropriate hosts. Man-in-the-middle

attacks, impersonation of sites, and other
attacks may be possible.”

Nobody had told Symantec

about the bailiwick fix.

“CVE-2003-0914: ISC BIND 8.3.x before

8.3.7, and 8.4.x before 8.4.3, allows
remote attackers to poison the cache

via a malicious name server that returns

negative responses with a large TTL

(time-to-live) value.”

Cache wouldn’t allow

microsoft.com servers

to declare an address

for www.google.com,

but would allow

microsoft.com servers

to declare nonexistence

of www.google.com.

“CVE-2001-0497: dnskeygen in BIND

8.2.4 and earlier, and dnssec-keygen
in BIND 9.1.2 and earlier, set insecure

permissions for a HMAC-MD5 shared

secret key file used for DNS Transactional

Signatures (TSIG), which allows attackers
to obtain the keys and perform dynamic

DNS updates.”

“Perform dynamic DNS updates”

= “change all your DNS data.”

Lack of confidentiality of keys

compromises integrity of data.

Exploitable on multiuser

machines, and on machines

where another server has been

taken over by an attacker.

Isn’t this embarrassing?

Public goal of

computer-security research:

Protection of

the average home computer;

critical-infrastructure computers;

and everything in between.

Isn’t this embarrassing?

Public goal of

computer-security research:

Protection of

the average home computer;

critical-infrastructure computers;

and everything in between.

Secret goal of

computer-security research:

Lifetime employment

for computer-security researchers.

ECRYPT is a consortium of

European crypto researchers.

eSTREAM is the “ECRYPT

Stream Cipher Project.”

2004.11: eSTREAM calls for

submissions of stream ciphers.

Receives 34 submissions from 97

cryptographers around the world.

2008.04: After two hundred

papers and several conferences,

eSTREAM selects portfolio of

4 SW ciphers and 4 HW ciphers.

2008.09: 4 SW, 3 HW.

eSTREAM says: The HW ciphers

are aimed at “deployment on

passive RFID tags or low-cost

devices such as might be used

in sensor networks. Such devices

are exceptionally constrained

in computing potential : : :
[Keys are] 80 bits which we

believe to be adequate for the

lower-security applications where

such devices might be used.”

Obviously these ciphers

will be built into many chips

over the next 5 or 10 years.

Iain Devlin, Alan Purvis,

“Assessing the security

of key length,” 2007:

Buy FPGAs for $3 million;

break 80-bit keys in 1 year.

Or: $165 million; 1 week.

Cost will continue to drop.

Will come within reach

of more and more attackers.

Same story in public-key crypto.

1024-bit RSA will be broken.

160-bit ECC will be broken.

So users will pay us for

96-bit ciphers and 192-bit ECC.

And then those will be broken.

Continue for decades.

So users will pay us for

96-bit ciphers and 192-bit ECC.

And then those will be broken.

Continue for decades.

Success: Lifetime employment!

This is not a new pattern.

Consider, e.g., 56-bit DES,

or 48-bit Mifare CRYPTO1,

or MD5, or Keeloq.

All breakable by brute force,

and often by faster methods.

Naive conclusion

from all these attacks:

“There is no such thing as

100% secure cryptography!

Crypto breaks are inevitable!”

Naive conclusion

from all these attacks:

“There is no such thing as

100% secure cryptography!

Crypto breaks are inevitable!”

This conclusion is unjustified

and almost certainly wrong.

Nobody has found patterns

in output of 256-bit AES.

Most cryptographers think

that nobody ever will.

“AES software leaks keys

to cache-timing attacks!”

True, but we know how

to eliminate this problem

by (for example) bitslicing.

“AES software leaks keys

to cache-timing attacks!”

True, but we know how

to eliminate this problem

by (for example) bitslicing.

“Maybe secret-key crypto is okay,

but large quantum computers will

kill public-key cryptography!”

If large quantum computers are

built, they’ll break RSA and ECC,

but we have replacements.

See PQCrypto workshops.

Enough crypto for this talk.

How about all the rest

of computer security?

Flood of successful attacks,

even more than in crypto.

Conventional wisdom:

We’ll never stop the flood.

Viega and McGraw: “Because

there is no such thing as 100%

security, attacks will happen.”

Schneier: “Software bugs

(and therefore security flaws)

are inevitable.”

Analogy:

“We’ll never build a tunnel

from England to France.”

Why not? “It’s impossible.”

Or: “Maybe it’s possible,

but it’s much too expensive.”

Engineer’s reaction:

How expensive is it?

How big a tunnel can we build?

How can we reduce the costs?

Eventually a tunnel was built

from England to France.

Here’s what I think:

Invulnerable software systems

can and will be built,

and will become standard.

Most “security” research today

doesn’t aim for invulnerability,

doesn’t contribute to it,

and will be discarded once

we have invulnerable software.

Eliminating bugs

Bug: Software feature

that violates the user’s

requirements.

Security hole: Software feature

that violates the user’s

security requirements.

Eliminating bugs

Bug: Software feature

that violates the user’s

requirements.

Security hole: Software feature

that violates the user’s

security requirements.

Every security hole is a bug.

Is every bug a security hole?

No. Many user requirements

are not security requirements.

Everyone agrees that

we can eliminate all bugs

(and therefore eliminate

all security holes)

in extremely small programs.

What about larger programs?

Space-shuttle software:

“The last three versions of the

program—each 420000 lines

long—had just one error each.

The last 11 versions of this

software had a total of 17 errors.”

Estimate bug rate of

software-engineering processes

by carefully reviewing code.

(Estimate is reliable enough;

“all bugs are shallow.”)

Meta-engineer processes

that have lower bug rates.

Note: progress is quantified.

Well-known example:

Drastically reduce bug rate

of typical engineering process

by adding coverage tests.

Example where djbdns did well:

“Don’t parse.”

Typical user interfaces

copy “normal” inputs and

quote “abnormal” inputs.

Inherently bug-prone:

simpler copying is wrong

but passes “normal” tests.

Example (1996 Bernstein):

format-string danger in logger.

djbdns’s internal file structures

and program-level interfaces

don’t have exceptional cases.

Simplest code is correct code.

Example where djbdns did badly:

integer arithmetic.

In C et al., a + b usually means

exactly what it says,

but occasionally doesn’t.

To detect these occasions,

need to check for overflows.

Extra work for programmer.

To guarantee sane semantics,

extending integer range and

failing only if out of memory,

need to use large-integer library.

Extra work for programmer.

The closest that qmail

has come to a security hole

(Guninski): potential overflow

of an unchecked counter.

Fortunately, counter growth

was limited by memory

and thus by configuration,

but this was pure luck.

Anti-bug meta-engineering:

Use language where a + b

means exactly what it says.

Security hole in djbdns

(2009.02.25 Dempsky): overflow

of an unchecked counter

copied into compressed packets.

Decompressing those packets

produces incorrect results.

Problem for packets that mix

data from different sources.

Impact: If administrator of

lsec.be copies foo.lsec.be

from an untrusted third party,

the third party can control

cache entries for lsec.be,

not just foo.lsec.be.

“Large-integer libraries are slow!”

That’s a silly objection.

We need invulnerable systems,

and we need them today,

even if they are 10� slower

than our current systems.

Tomorrow we’ll make them faster.

Most CPU time is consumed

by a very small portion

of all the system’s code.

Most large-integer overheads

are removed by smart compilers.

Occasional exceptions can be

handled manually at low cost.

More anti-bug meta-engineering

examples in my qmail paper:

automatic array extensions;

partitioning variables

to make data flow visible;

automatic updates of

“summary” variables;

abstraction for testability.

“Okay, we can achieve

much smaller bug rates.

But in a large system

we’ll still have many bugs,

including many security holes!”

Eliminating code

Measure code rate of

software-engineering processes.

Meta-engineer processes

that spend less code

to get the same job done.

Note: progress is quantified.

This is another classic topic

of software-engineering research.

Combines reasonably well

with reducing bug rate.

Example where qmail did well:

reusing access-control code.

A story from twenty years ago:

My .forward ran a program

creating a new file in /tmp.

Surprise: the program was

sometimes run under another uid!

How Sendmail handles .forward:

Check whether user can read it.

(Prohibit symlinks to secrets!)

Extract delivery instructions.

Keep track (often via queue file)

of instructions and user.

Many disastrous bugs here.

Kernel already tracks users.

Kernel already checks readability.

Why not reuse this code?

How qmail delivers to a user:

Start qmail-local

under the right uid.

When qmail-local reads

the user’s delivery instructions,

the kernel checks readability.

When qmail-local runs a

program, the kernel assigns

the same uid to that program.

No extra code required!

Example where qmail and djbdns

did badly: exception handling.

djbdns has thousands

of conditional branches.

About half are simply

checking for temporary errors.

Same for qmail.

Easy to get wrong: e.g.,

“if ipme init() returned -1,

qmail-remote would continue”

(fixed in qmail 0.92).

Easily fixed by better language.

More small-code meta-engineering

examples in my qmail paper:

identifying common functions;

reusing network tools;

reusing the filesystem.

“Okay, we can

build a system with less code,

and write code with fewer bugs.

But in a large system

we’ll still have bugs,

including security holes!”

Eliminating trusted code

Can architect computer systems

to place most of the code

into untrusted prisons.

Definition of “untrusted”:

no matter what the code does,

no matter how badly it behaves,

no matter how many bugs it has,

it cannot violate the

user’s security requirements.

Measure trusted code volume,

and meta-engineer processes

that reduce this volume.

Note: progress is quantified.

Warning: “Minimizing privilege”

rarely eliminates trusted code.

Every security mechanism,

no matter how pointless,

says it’s “minimizing privilege.”

This is not a useful concept.

qmail and djbdns did very badly

here: almost all code is trusted.

I spent considerable effort

“minimizing privilege”; stupid!

This distracted me from

eliminating trusted code.

What are the user’s

security requirements?

My fundamental requirement:

The system keeps track

of sources of data.

When the system is asked

for data from source X,

it does not allow

data from source Y
to influence the result.

Example: When I view an

account statement from my bank,

I am not seeing data from other

web pages or email messages.

There is no obstacle to

centralization and minimization

of source-tracking code.

Can and should be small enough

to eliminate all bugs.

Classic military TCBs

used very few lines of code

to track (e.g.) Top Secret data.

VAX VMM Security Kernel

had < 50000 lines of code.

Minor programming problem to

support arbitrary source labels

instead of Top Secret etc.

“Doesn’t the UNIX/Linux kernel

already track sources?”

If I log into a system,

the kernel copies my uid

to my login process,

to other processes I start,

to files I create, etc.

But if I transfer data

to another user’s processes—

through the network or a file—

the kernel doesn’t remember

that I’m the source.

Source tracking today

is implemented by programmers

writing web browsers, mail clients,

PHP scripts, etc.

All of this code is trusted.

All other code in these programs

is also trusted, thanks to

nonexistent internal partitioning.

Your laptop has tens of millions

of lines of trusted code written by

thousands of novice programmers.

A screwup anywhere in that code

can violate security requirements.

“Teach every programmer

how to write secure code.”

No, no, no!

If every programmer

is writing trusted code

then the system has

far too much trusted code.

We need new systems

with far less trusted code.

Enforce security in TCB

so that typical programmers

don’t have to worry about it.

Imagine a TCB tracking sources.

Alice’s process reads Bob’s file.

TCB automatically labels

process as /Alice/Bob.

Process creates a file.

TCB automatically labels

file as /Alice/Bob

(and refuses to touch a file

labelled only /Alice).

Joe’s process reads the file

and another file from Charlie.

Process then has two labels:

/Joe/Alice/Bob; /Joe/Charlie.

A web-browsing process

that reads from mbna.com

and from nytimes.com

will have both labels.

TCB won’t allow process

to write under just one label.

Solution 1: Rewrite browser

in the classic UNIX style,

one process for each page.

Solution 2: Track sources

separately for each variable

inside the web-browsing process.

Suppose a DNS cache

receives a packet from

the microsoft.com servers

with www.google.com data.

Packet is a string.

TCB attaches to the string

a microsoft.com source label.

Packet-parsing code

extracts www.google.com

information from the packet.

TCB automatically copies

the microsoft.com source label

to derived variables such as

the string www.google.com.

The cache remembers information

in a big associative array.

Post-packet-parsing code

tries to store www.google.com

in the associative array.

Cache policy: only root, .com,

.google.com, .www.google.com

are allowed to store

www.google.com information.

TCB enforces this policy:

sees microsoft.com label,

refuses www.google.com data.

How much code is required

for a TCB that enforces

source-tracking policy

against all other code?

How many bugs do we expect

in a TCB of this size?

Note: Can afford expensive

techniques to reduce bug rate.

If code volume is small enough,

and bug rate is small enough,

then we will be confident

that sources are tracked.

