

Internet security

D. J. Bernstein

University of Illinois at Chicago

Thanks to:

NSF ITR–0716498

Internet insecurity

D. J. Bernstein

University of Illinois at Chicago

No thanks to:

NSF ITR–0716498

Why doesn’t the Internet

use cryptography?

Why doesn’t the Internet

use cryptography?

“The Internet does

use cryptography! I just made

an SSL connection to my bank.”

Why doesn’t the Internet

use cryptography?

“The Internet does

use cryptography! I just made

an SSL connection to my bank.”

Indeed, many connections

use SSL, Skype, etc.

But most connections don’t.

Why is there so much unprotected

Internet communication?

Why is there so much unprotected

Internet communication?

“Because nobody cares.

Cryptography is pointless.

Attackers are exploiting

buffer overflows; they aren’t

intercepting or forging packets.”

Why is there so much unprotected

Internet communication?

“Because nobody cares.

Cryptography is pointless.

Attackers are exploiting

buffer overflows; they aren’t

intercepting or forging packets.”

In fact, attackers

are forging packets

and exploiting buffer overflows

and doing much more. Users

want all of these problems fixed.

Why are typical Internet packets

unencrypted and unauthenticated?

Why are typical Internet packets

unencrypted and unauthenticated?

“It’s too easy to write Internet

software that exchanges data

without any cryptographic

protection. Most Internet clients

and servers don’t know how to

make cryptographic connections.”

Why are typical Internet packets

unencrypted and unauthenticated?

“It’s too easy to write Internet

software that exchanges data

without any cryptographic

protection. Most Internet clients

and servers don’t know how to

make cryptographic connections.”

True for most protocols.

But let’s focus on HTTP.

Most HTTP servers and browsers

(Apache, Internet Explorer,

Firefox, etc.) support SSL.

Why is SSL used for only a tiny

fraction of all HTTP connections?

Why is SSL used for only a tiny

fraction of all HTTP connections?

“Have you ever tried to set

up SSL? Do you want to go

through all these extra Apache

configuration steps? Do you

want to pay for a certificate?

Do you want to annoy your

web-site visitors with self-signed

certificates?”

Why is SSL used for only a tiny

fraction of all HTTP connections?

“Have you ever tried to set

up SSL? Do you want to go

through all these extra Apache

configuration steps? Do you

want to pay for a certificate?

Do you want to annoy your

web-site visitors with self-signed

certificates?”

Indeed, usability is a major issue.

Only �1% of the Apache servers

on the Internet have SSL enabled.

But let’s focus on Google.

Google has already

paid for a certificate.

Google uses SSL for

https://mail.google.com.

But let’s focus on Google.

Google has already

paid for a certificate.

Google uses SSL for

https://mail.google.com.

If you connect to

https://www.google.com,

Google redirects your browser to

http://www.google.com.

Why does Google actively

turn off cryptographic protection?

Why does Google actively

turn off cryptographic protection?

“Enabling SSL

for more than a small fraction

of Google connections would

overload the Google servers.

Google doesn’t want to pay for

a bunch of extra computers.

Too slow) unusable.”

Why does Google actively

turn off cryptographic protection?

“Enabling SSL

for more than a small fraction

of Google connections would

overload the Google servers.

Google doesn’t want to pay for

a bunch of extra computers.

Too slow) unusable.”

Many companies sell

SSL-acceleration hardware,

but that costs money too.

Why are cryptographic

computations so expensive?

Why are cryptographic

computations so expensive?

Can crypto be faster,

without being easy to break?

Why are cryptographic

computations so expensive?

Can crypto be faster,

without being easy to break?

Can crypto be fast enough

to solidly protect all of

Google’s communications?

Why are cryptographic

computations so expensive?

Can crypto be faster,

without being easy to break?

Can crypto be fast enough

to solidly protect all of

Google’s communications?

Can crypto be fast enough

to protect every Internet packet?

Why are cryptographic

computations so expensive?

Can crypto be faster,

without being easy to break?

Can crypto be fast enough

to solidly protect all of

Google’s communications?

Can crypto be fast enough

to protect every Internet packet?

Can universal crypto be usable?

The Domain Name System

nwo.nl has mail

to deliver to someone@os3.nl.

'& %$! "#Mail client at nwo.nl

'& %$! "#Administrator at os3.nl

“The mail server for

os3.nl

has IP address

145.100.96.119.”

OO

Now nwo.nl

delivers mail to

IP address 145.100.96.119.

Same for web browsing.

nwo.nl wants to see

http://www.os3.nl.

'& %$! "#Browser at nwo.nl

'& %$! "#Administrator at os3.nl

“The web server

www.os3.nl

has IP address

145.100.96.70.”

OO

Now nwo.nl

retrieves web page from

IP address 145.100.96.70.

DNS software security holes:

BIND libresolv buffer overflow,

Microsoft cache promiscuity,

BIND 8 TSIG buffer overflow,

BIND 9 dig promiscuity, etc.

DNS software security holes:

BIND libresolv buffer overflow,

Microsoft cache promiscuity,

BIND 8 TSIG buffer overflow,

BIND 9 dig promiscuity, etc.

Fix: Use better DNS software.

http://cr.yp.to/djbdns.html

carries a $1000 reward for

first verifiable public report

of a software security hole.

DNS software security holes:

BIND libresolv buffer overflow,

Microsoft cache promiscuity,

BIND 8 TSIG buffer overflow,

BIND 9 dig promiscuity, etc.

Fix: Use better DNS software.

http://cr.yp.to/djbdns.html

carries a $1000 reward for

first verifiable public report

of a software security hole.

But what about protocol holes?

Forging DNS packets

nwo.nl has mail

to deliver to someone@os3.nl.

'& %$! "#Mail client at nwo.nl

'& %$! "#Attacker anywhere on network

“The mail server for

os3.nl

has IP address

157.22.245.20.”

OO

Now nwo.nl

delivers mail to

IP address 157.22.245.20,

actually the attacker’s machine.

“Can attackers do that?”

“Can attackers do that?”

— Yes.

“Can attackers do that?”

— Yes.

“Really?”

“Can attackers do that?”

— Yes.

“Really?” — Yes.

“Can attackers do that?”

— Yes.

“Really?” — Yes.

“Don’t the clients check

who’s sending information?”

“Can attackers do that?”

— Yes.

“Really?” — Yes.

“Don’t the clients check

who’s sending information?”

— Yes, but the attacker

forges the sender address;

as easy as forging address

on a physically mailed letter.

“Is the client always

listening for the address of

www.os3.nl?”

“Is the client always

listening for the address of

www.os3.nl?”

— No, but many ways for

attackers to work around this:

1. Attack repeatedly.

2. Poke the client

to trigger a known lookup.

3. Attack caches

a long time in advance.

“Is the client always

listening for the address of

www.os3.nl?”

— No, but many ways for

attackers to work around this:

1. Attack repeatedly.

2. Poke the client

to trigger a known lookup.

3. Attack caches

a long time in advance.

4. Easy, succeeds instantly:

Sniff the network.

“Doesn’t the attacker have to

win a race against the

legitimate DNS packets

from the administrator at

os3.nl?”

“Doesn’t the attacker have to

win a race against the

legitimate DNS packets

from the administrator at

os3.nl?”

— Yes, but many ways for

attackers to win race:

1. Deafen the legitimate server.

2. Mute the legitimate server.

3. Poke-jab-jab-jab-jab-jab.

“Doesn’t the attacker have to

win a race against the

legitimate DNS packets

from the administrator at

os3.nl?”

— Yes, but many ways for

attackers to win race:

1. Deafen the legitimate server.

2. Mute the legitimate server.

3. Poke-jab-jab-jab-jab-jab.

4. Easy, succeeds instantly:

Sniff the network.

What about cookies?

Client’s DNS query packet

contains a 16-bit ID.

RFC 1035 (1987): “This identifier

is copied [to the] reply and can be

used by the requester to match up

replies to outstanding queries.”

Traditional ID sequence:

1, 2, 3, 4, 5, etc.

More recent idea:

“Hey, let’s use random IDs! Then

the attacker won’t be able to

forge a packet with the right ID!”

Many “random” IDs

are actually quite easy to predict.

Client asks for information

from attacker’s servers;

attacker inspects IDs,

predicts subsequent IDs.

See, e.g., emergency BIND 9

upgrade (2007.07.24) responding

to an attack by Amit Klein.

But modern cryptographic

random-number generators

are extremely difficult to predict.

Client can randomize

16-bit ID and

16-bit UDP source port.

Implemented and advertised

in djbdns since 1999,

and in PowerDNS since 2006.

Same feature added 2008.07

in emergency upgrade to BIND,

Microsoft DNS, Nominum CNS,

most Cisco products, etc.

New York Times headline:

“WITH SECURITY AT RISK,

A PUSH TO PATCH THE WEB”

Many ways for attackers

to beat this randomization,

even if it’s cryptographic:

1. Attack repeatedly.

“An attacker who makes a few

billion random guesses is likely

to succeed at least once; tens of

millions of guesses are adequate

with a colliding attack;” etc.

2. Allocate most UDP ports

to other tasks, non-reusably.

Many ways for attackers

to beat this randomization,

even if it’s cryptographic:

1. Attack repeatedly.

“An attacker who makes a few

billion random guesses is likely

to succeed at least once; tens of

millions of guesses are adequate

with a colliding attack;” etc.

2. Allocate most UDP ports

to other tasks, non-reusably.

3. Easy, succeeds instantly:

Sniff the network.

What about serious crypto?

Cryptography can

stop sniffing attackers

by scrambling legitimate packets.

Cryptography is often described

as protecting confidentiality:

attackers can’t understand

the scrambled packets.

Can also protect integrity:

attackers can’t figure out

a properly scrambled forgery.

Traditional cryptography requires

each legitimate client-server pair

to share a secret key.

Public-key cryptography

has much lower requirements.

(1976 Diffie–Hellman;

many subsequent refinements)

Each party has one public key.

Two parties can communicate

securely if each party knows

the other party’s public key.

1993: IETF begins “DNSSEC”

project to add public-key

signatures to DNS.

Paul Vixie, June 1995:
This sounds simple but it has
deep reaching consequences
in both the protocol and the
implementation—which is why it’s
taken more than a year to choose
a security model and design a
solution. We expect it to be
another year before DNSSEC is
in wide use on the leading edge,
and at least a year after that
before its use is commonplace on
the Internet.

BIND 8.2 blurb, March 1999:
[Top feature:] Preliminary
DNSSEC.

BIND 9 blurb, September 2000:

[Top feature:] DNSSEC.

Paul Vixie, November 2002:
We are still doing basic research
on what kind of data model will
work for DNS security. After
three or four times of saying
“NOW we’ve got it, THIS
TIME for sure” there’s finally
some humility in the picture
: : : “Wonder if THIS’ll work?”
: : :
It’s impossible to know how many
more flag days we’ll have before
it’s safe to burn ROMs : : : It
sure isn’t plain old SIG+KEY,
and it sure isn’t DS as currently
specified. When will it be? We
don’t know. : : :
2535 is already dead and buried.
There is no installed base. We’re
starting from scratch.

Paul Vixie, 20 April 2004,

announcing BIND 9.3 beta:

BIND 9.3 will ship with DNSSEC

Paul Vixie, 20 April 2004,

announcing BIND 9.3 beta:

BIND 9.3 will ship with DNSSEC
support turned off by default in
the configuration file.

Paul Vixie, 20 April 2004,

announcing BIND 9.3 beta:

BIND 9.3 will ship with DNSSEC
support turned off by default in
the configuration file.
: : :
ISC will also begin offering
direct support to users of BIND
through the sale of annual support
contracts.

Paul Vixie, 1 November 2005:
Had we done a requirements doc
ten years ago : : : they might
not have noticed that it would
intersect their national privacy
laws or business requirements,
we might still have run into the
NSEC3 juggernaut and be just
as far off the rails now as we
actually are now.

After fifteen years and millions of

dollars of U.S. government grants

(e.g., DISA to BIND company;

NSF to UCLA; DHS to Secure64

Software Corporation),

how successful is DNSSEC?

The Internet has about

70000000 *.com names.

After fifteen years and millions of

dollars of U.S. government grants

(e.g., DISA to BIND company;

NSF to UCLA; DHS to Secure64

Software Corporation),

how successful is DNSSEC?

The Internet has about

70000000 *.com names.

Surveys by DNSSEC developers,

last updated 2008.10.09,

have found 133 *.com

names with DNSSEC signatures.

116 on 2008.08.20; 133 > 116.

Why is nobody using DNSSEC?

Some of the Internet’s DNS

servers are extremely busy: e.g.,

the root servers, the .com servers,

the google.com servers.

DNSSEC tries to minimize

server-side costs by precomputing

signatures of DNS records.

Signature is computed once;

saved; sent to many clients.

Hopefully the server can afford

to sign each DNS record once.

Clients don’t share the work

of verifying a signature.

DNSSEC tries to reduce

client-side costs through

choice of crypto primitive.

DNSSEC RFCs

say DSA is “10 to 40 times as

slow for verification” as RSA;

recommend RSA “as the

preferred algorithm” for DNSSEC;

suggest RSA key size

of only 1024 bits

for “leaf nodes in the DNS.”

I say:

1024-bit RSA is irresponsible.

2003: Shamir–Tromer et al.

concluded that 1024-bit RSA

was already breakable by

large companies and botnets.

2003: RSA Laboratories

recommended a transition to

2048-bit keys “over the remainder

of this decade.” 2007: NIST

made the same recommendation.

I say:

1024-bit RSA is irresponsible.

2003: Shamir–Tromer et al.

concluded that 1024-bit RSA

was already breakable by

large companies and botnets.

2003: RSA Laboratories

recommended a transition to

2048-bit keys “over the remainder

of this decade.” 2007: NIST

made the same recommendation.

But most users don’t know this.

Why aren’t they using DNSSEC?

Effects of precomputation:

1. Pain for implementors.

Hundreds of DNS tools

need to be modified to

precompute and store signatures.

2. Pain for administrators,

far beyond a simple upgrade.

3. Reduced privacy. DNSSEC

publishes all “secured” DNS

records. (NSEC3: almost all.)

4. Reduced reliability, “DNSSEC

suicide,” reduced denial-of-service

protection, etc.

Rethinking signatures

What we’ve learned:

DNSSEC precomputes

public-key signatures for speed,

creating severe usability problems

while sacrificing security.

Can we achieve adequate speed

without precomputation?

Let’s change the design.

Rethinking signatures

What we’ve learned:

DNSSEC precomputes

public-key signatures for speed,

creating severe usability problems

while sacrificing security.

Can we achieve adequate speed

without precomputation?

Let’s change the design.

1. Add encryption.

Want to protect against sabotage

and against espionage.

So use public-key signatures

and public-key encryption.

2. Merge signing with

encryption.

“Public-key signcryption” protects

against forgery and eavesdropping

in one step.

“Public-key authenticated

encryption” is even faster.

No need to

partition the algorithms into

an encryption component and

an authentication component.

Combined algorithms are faster.

3. Merge public-key operations

across multiple messages.

It’s silly for a sender

to authcrypt two messages

to the same recipient.

“Hybrid cryptography”

is much faster.

Example: Sender

generates a random AES key,

authcrypts the AES key,

uses the AES key to encrypt and

authenticate both messages.

4. Choose sensible primitives.

256-bit elliptic-curve cryptography

using public-domain software:

489069 Core 2 cycles to handle a

new communication partner.

5355 cycles to encrypt and

authenticate a 510-byte message.

6786 cycles to verify and decrypt

a legitimate 510-byte message.

3465 cycles to reject a forged

510-byte message.

VeriSign is spending

>$100000000 to upgrade the

Internet’s .com DNS servers.

In a typical day, these servers

together handle 35 billion queries

from 5 million clients.

VeriSign is spending

>$100000000 to upgrade the

Internet’s .com DNS servers.

In a typical day, these servers

together handle 35 billion queries

from 5 million clients.

Total cryptographic cost:

about half a day on a single

Core 2 Quad costing under $200.

VeriSign is spending

>$100000000 to upgrade the

Internet’s .com DNS servers.

In a typical day, these servers

together handle 35 billion queries

from 5 million clients.

Total cryptographic cost:

about half a day on a single

Core 2 Quad costing under $200.

Handling 4 trillion partners/day:

under $1000000.

Administration, implementation:

Much simpler than DNSSEC.

See http://dnscurve.org.

Packets are encrypted

just before transmission,

decrypted upon receipt.

Minimal impact on software.

Administration, implementation:

Much simpler than DNSSEC.

See http://dnscurve.org.

Packets are encrypted

just before transmission,

decrypted upon receipt.

Minimal impact on software.

Final question for today:

Can this protection

be pushed beyond DNS

to protect every Internet packet?

