
Predicting NFS time

D. J. Bernstein

University of Illinois at Chicago

Thanks to:

NSF DMS–9600083

NSF DMS–9970409

NSF DMS–0140542

Alfred P. Sloan Foundation

NSF ITR–0716498



Define T as the time

used by NFS to factor n.

T depends on n.

T also depends on

parameters chosen by NFS user:

a polynomial f ,

an initial smoothness bound y1,

etc.

T also depends on

choices of NFS subroutines,

choice of NFS hardware, etc.

NFS isn’t just one algorithm.



Topic of this talk: computing T .

Application #1:

NFS parameter selection.

Given n, have many choices

for parameter vector (f; y1; : : :).
Which choice minimizes T?

Answer: evaluate T and check.

Can similarly select subroutines.

Application #2:

Anti-NFS parameter selection.

Which key sizes are safe for

RSA, pairing-based crypto, etc.?



NFS computes exactly T .

But NFS is very slow.

Want much faster algorithms

to handle many T evaluations.

We don’t need exactly T .

Can select parameters using

good approximations to T .

How quickly can we compute

something in [0:5T; 2T ]?

How quickly can we compute

something in [0:9T; 1:1T ]?

How quickly can we compute

something in [0:99T; 1:01T ]?



Easy-to-compute approximation:

T � exp
3

r
64

9
(logn)(log logn)2.

This T estimate is conjectured

to be in [T 1��; T 1+�] for

theoretician’s NFS parameters,

but it’s unacceptably inaccurate.

Obviously useless for NFS

parameter selection.

Often used for anti-NFS

parameter selection, following

(e.g.) 1996 Leyland–Lenstra–

Dodson–Muffett–Wagstaff, but

newer papers warn against this.



Expect a speed/accuracy tradeoff:

[T; T ]: NFS, very slow.

[0:99T; 1:01T ]: Much faster.

[0:9T; 1:1T ]: Faster than that.

[T 1��; T 1+�]: Very fast.

For parameter selection need

reasonable accuracy, high speed.

Can combine T approximations.

e.g. Feed 250 parameter choices

to [0:5T; 2T ] approximation.

Feed best 230 parameter choices

to [0:99T; 1:01T ] approximation

that is (e.g.) 220 times slower.



1. Sizes

Sample NFS goal: Find�
(x; y) 2 Z2 : xy = 611

	
.

The Q sieve forms a square

as product of 
(
+ 611d)
for several pairs (
; d):
14(625) � 64(675) � 75(686)

= 44100002.

gcdf611; 14 � 64 � 75� 4410000g
= 47.

47 and 611=47 = 13 are prime,

so fxg = f�1;�13;�47;�611g.



The Q(
p

14) sieve forms a square

as product of (
+ 25d)(
+
p

14d)
for several pairs (
; d):
(�11 + 3 � 25)(�11 + 3

p
14)

� (3 + 25)(3 +
p

14)

= (112� 16
p

14)2.

Compute

u = (�11 + 3 � 25) � (3 + 25),

v = 112� 16 � 25,

gcdf611; u� vg = 13.



How to find these squares?

Traditional approach:

Choose H, R with 26�14�R3 = H.

Look at all pairs (
; d)
in [�R;R]� [0; R]

with (
+ 25d)(
2 � 14d2) 6= 0

and gcdf
; dg = 1.

(
+ 25d)(
2 � 14d2) is small:

between �H and H.

Conjecturally,

good chance of being smooth.

Many smooths ) square.



Find more pairs (
; d)
with

��(
+ 25d)(
2 � 14d2)
�� � H

in a less balanced rectangle.

(1999 Murphy)

Can do better: set of (
; d)
with

��(
+ 25d)(
2 � 14d2)
�� � H

extends far beyond any inscribed

rectangle. Find f
g for each d.
(Silverman, Contini, Lenstra)

First tool in predicting NFS time

(2004 Bernstein): Can compute,

very quickly and accurately,

the number of pairs (
; d).



Take any nonconstant f 2 Z[x],

all real roots order < (deg f)=2:

e.g., f = (x+ 25)(x2 � 14).

Area of f(
; d) 2 R� R : d > 0;
jddeg ff(
=d)j � Hg

is (1=2)H2=deg fQ(f) where

Q(f) =
R1
�1 dx=(f(x)2)1=deg f .

Will explain fast Q(f) bounds.

Extremely accurate estimate:

#f(
; d) 2 Z� Z : gcdf
; dg = 1;
d > 0; jddeg ff(
=d)j � Hg

� (3=�2)H2=deg fQ(f).



Can verify accuracy of estimate

by finding all integer pairs (
; d),
i.e., by solving equations

ddeg ff(
=d) = �1,

ddeg ff(
=d) = �2, : : :
ddeg ff(
=d) = �H.

Slow but convincing.

Another accurate estimate,

easier to verify:

#f(
; d) 2 Z� Z : gcdf
; dg = 1;
d > 0; jddeg ff(
=d)j � H;
d not very largeg

� (3=�2)H2=deg fQ(f).



To compute

good approximation to Q(f),

and hence good approximation to

distribution of ddeg ff(
=d):
R s
�s dx=(f(x)2)1=deg f is within
����
��2=deg f

n+ 1

�����
2s1�2e=deg f

3(1� 2e=deg f)4n

of
X

i2f0;2;4;:::g
2qi

si+1�2e=deg f
i+ 1� 2e=deg f

if f(x) = xe(1 + � � �) in R[[x]],

j� � �j � 1=4 for x 2 [�s; s],P
0�j�n

��2=deg f
j

�
(� � �)j =

P qixi.



Handle constant factors in f .

Handle intervals [v � s; v + s].
Partition (�1;1):

one interval around each

real root of f ; one interval

around 1, reversing f ;

more intervals with e = 0.

Be careful with roundoff error.

This is not the end of the story:

can handle some f ’s more quickly

by arithmetic-geometric mean.



2. Smoothness

Consider a uniform random

integer in [1; 2400].

What is the chance that the

integer is 1000000-smooth, i.e.,

factors into primes � 1000000?

“Objection: The integers in NFS

are not uniform random integers!”

True; will generalize later.



Traditional answer:

Dickman’s � function is fast.

A uniform random integer in

[1; yu] has chance � �(u)

of being y-smooth.

If u is small then chance/�(u) is

1 +O(log log y= log y) for y !1.

Flaw #1 in traditional answer:

Not a very good approximation.

Flaw #2 in traditional answer:

Not easy to generalize.



Another traditional answer,

trivial to generalize:

Check smoothness of many

independent uniform random

integers.

Can accurately estimate

smoothness probability p
after inspecting 10000=p integers;

typical error � 1%.

But this answer is very slow.



Here’s a better answer.

(starting point: 1998 Bernstein)

Define S as the set of

1000000-smooth integers n � 1.

The Dirichlet series for S
is
P

[n 2 S]xlgn =

(1 + xlg 2 + x2 lg 2 + x3 lg 2 + � � �)
(1 + xlg 3 + x2 lg 3 + x3 lg 3 + � � �)
(1 + xlg 5 + x2 lg 5 + x3 lg 5 + � � �)
� � �
(1 + xlg 999983 + x2 lg 999983 + � � �).



Replace primes

2; 3; 5; 7; : : : ; 999983

with slightly larger real numbers

2 = 1:18, 3 = 1:112, 5 = 1:117,

: : : , 999983 = 1:1145.

Replace each 2a3b � � � in S with

2
a
3
b � � �, obtaining multiset S.

The Dirichlet series for S
is
P

[n 2 S]xlgn =

(1 + xlg 2 + x2 lg 2 + x3 lg 2 + � � �)
(1 + xlg 3 + x2 lg 3 + x3 lg 3 + � � �)
(1 + xlg 5 + x2 lg 5 + x3 lg 5 + � � �)
� � �
(1 + xlg 999983 + x2 lg 999983 + � � �).



This is simply a power series

s0z0 + s1z1 + � � � =
(1 + z8 + z2�8 + z3�8 + � � �)
(1 + z12 + z2�12 + z3�12 + � � �)
(1 + z17 + z2�17 + z3�17 + � � �)
� � � (1 + z145 + z2�145 + � � �)
in the variable z = xlg 1:1.
Compute series mod (e.g.) z2910;

i.e., compute s0; s1; : : : ; s2909.

S has s0 + � � �+ s2909 elements

� 1:12909 < 2400, so S has

at least s0 + � � �+ s2909

elements < 2400.



So have guaranteed lower bound

on number of 1000000-smooth

integers in [1; 2400].

Can compute an upper bound to

check looseness of lower bound.

If looser than desired,

move 1:1 closer to 1.

Achieve any desired accuracy.

2007 Parsell–Sorenson: Replace

big primes with RH bounds,

faster to compute.



NFS smoothness is much more

complicated than smoothness of

uniform random integers.

Most obvious issue: NFS doesn’t

use all integers in [�H;H];

it uses only values f(
; d)
of a specified polynomial f .

Traditional reaction

(1979 Schroeppel, et al.):

replace H by “typical” f value,

heuristically adjusted for

roots of f mod small primes.



Can compute smoothness chance

much more accurately.

No need for “typical” values.

We’ve already computed series

s0z0 + s1z1 + � � �+ s2909z2909

such that there are

� s0 smooth�1:10,

� s0+s1 smooth�1:11,

� s0+s1+s2 smooth�1:12,
...,

�s0+ � � �+s2909 smooth�1:12909.

Approximations are very close.



Number of f(
; d) values in

[�H;H] is � (3=�2)H2=deg fQ(f).

We’ve already computed Q(f).

For each i � 2909,

number of smooth jf(
; d)j values

in [1:1i�1; 1:1i] is approximately

3Q(f)si
�2

1:12i=deg f � 1:12(i�1)=deg f
1:1i � 1:1i�1

.

Add to see total number of

smooth f(
; d) values.



Approximation so far

has ignored roots of f .

Fix: Smoothness chance in Q(�)

for 
� �d is, conjecturally, very

close to smoothness chance for

ideals of the same size as 
� �d.
Dirichlet series for smooth ideals:

simply replace

1 + xlg p + x2 lg p + � � � with

1 + xlg P + x2 lgP + � � �
where P is norm of prime ideal.

Same computations as before.

Should also be easy to adapt

Parsell–Sorenson to ideals.



Typically f(
; d) is product

(
�md) � norm of (
� �d).
Smoothness chance in Q�Q(�)

for (
�md; 
� �d) is,

conjecturally, close to smoothness

chance for ideals of the same size.

Can account in various ways for

correlations and anti-correlations

between 
�md and 
� �d,
but these effects seem small.



More subtle issue:

Oversimplified NFS efficiently

finds prime divisors by sieving.

A value f(
; d) is factored

if and only if it is smooth.

State-of-the-art NFS limits sieving

(to reduce communication costs

and to reduce lattice overhead)

and uses early-abort ECM

to find larger prime divisors.

A value f(
; d) is factored

under complicated conditions.



Dirichlet-series computations

easily handle early aborts

and other complications

in the notion of smoothness.

Example: Which integers are

1000000-smooth integers < 2400

times one prime in [106; 109]?

Multiply s0z0 + � � �+ s2909z2909

by xlg 1000003 + � � �+ xlg 999999937.



3. Linear algebra

Traditional bound:

Once NFS has more factored

values f(
; d) than primes,

it finds a nontrivial square.

(Note: Primes include sieving

primes and larger primes.)

Common observation: NFS

usually finds a nontrivial square

from far fewer factored values.

By removing singletons and

counting cycles easily see that

there are enough values.



How to predict chance

that k factored values

produce a nontrivial square?

Some generic suggestions

(e.g., 1998 Bernstein):

Pr[v1; v2; : : : ; vk suffice]

�Pj�1

�kj
�pj where

pj = Pr[v1 � � � vj is a square],

assuming i.i.d. v1; v2; : : :.
Roughly pj � Ψ(Hj=2)=Ψ(Hj).
Optionally use inclusion-exclusion.



2008 Ekkelkamp:

Can very accurately simulate

distribution of factored values

using a generic prime model

and a short sieving test.

Simulating a factored value

is much faster than

finding a factored value.

Still need singleton removal etc.,

but overall much faster than NFS.

Smoothness computations should

be able to replace the sieving test.


