Predicting NFS time

D. J. Bernstein

University of Illinois at Chicago
Thanks to:
NSF DMS-9600083
NSF DMS-9970409
NSF DMS-0140542
Alfred P. Sloan Foundation NSF ITR-0716498

Define T as the time used by NFS to factor n.
T depends on n.
T also depends on parameters chosen by NFS user: a polynomial f,
an initial smoothness bound y_{1}, etc.
T also depends on
choices of NFS subroutines, choice of NFS hardware, etc. NFS isn't just one algorithm.

Topic of this talk: computing T.

Application $\# 1$:
NFS parameter selection.
Given n, have many choices
for parameter vector $\left(f, y_{1}, \ldots\right)$.
Which choice minimizes T ?
Answer: evaluate T and check.
Can similarly select subroutines.
Application \#2:
Anti-NFS parameter selection.
Which key sizes are safe for
RSA, pairing-based crypto, etc.?

NFS computes exactly T. But NFS is very slow.
Want much faster algorithms to handle many T evaluations.

We don't need exactly T.
Can select parameters using good approximations to T.

How quickly can we compute something in $[0.5 T, 2 T]$?

How quickly can we compute something in $[0.9 T, 1.1 T]$?

How quickly can we compute something in $[0.99 T, 1.01 T]$?

Easy-to-compute approximation:
$T \approx \exp \sqrt[3]{\frac{64}{9}(\log n)(\log \log n)^{2}}$.
This T estimate is conjectured to be in $\left[T^{1-\epsilon}, T^{1+\epsilon}\right]$ for theoretician's NFS parameters, but it's unacceptably inaccurate.

Obviously useless for NFS parameter selection.

Often used for anti-NFS parameter selection, following (e.g.) 1996 Leyland-Lenstra-Dodson-Muffett-Wagstaff, but newer papers warn against this.

Expect a speed/accuracy tradeoff:
[$T, T]$: NFS, very slow.
[0.99T, 1.01T]: Much faster.
$[0.9 T, 1.1 T]:$ Faster than that.
$\left[T^{1-\epsilon}, T^{1+\epsilon}\right]$: Very fast.
For parameter selection need reasonable accuracy, high speed.

Can combine T approximations. e.g. Feed 2^{50} parameter choices to $[0.5 T, 2 T]$ approximation. Feed best 2^{30} parameter choices to $[0.99 T, 1.01 T]$ approximation that is (e.g.) 2^{20} times slower.

1. Sizes

Sample NFS goal: Find
$\left\{(x, y) \in \mathbf{Z}^{2}: x y=611\right\}$.
The \mathbf{Q} sieve forms a square as product of $c(c+611 d)$
for several pairs (c, d) :
14(625) $\cdot 64(675) \cdot 75(686)$
$=4410000^{2}$.
$\operatorname{gcd}\{611,14 \cdot 64 \cdot 75-4410000\}$ $=47$.

47 and $611 / 47=13$ are prime, so $\{x\}=\{ \pm 1, \pm 13, \pm 47, \pm 611\}$.

The $\mathbf{Q}(\sqrt{14})$ sieve forms a square as product of $(c+25 d)(c+\sqrt{14} d)$ for several pairs (c, d) :
$(-11+3 \cdot 25)(-11+3 \sqrt{14})$
$\cdot(3+25)(3+\sqrt{14})$
$=(112-16 \sqrt{14})^{2}$.
Compute
$u=(-11+3 \cdot 25) \cdot(3+25)$,
$v=112-16 \cdot 25$,
$\operatorname{gcd}\{611, u-v\}=13$.

How to find these squares?

Traditional approach:
Choose H, R with $26 \cdot 14 \cdot R^{3}=H$.
Look at all pairs (c, d)
in $[-R, R] \times[0, R]$
with $(c+25 d)\left(c^{2}-14 d^{2}\right) \neq 0$ and $\operatorname{gcd}\{c, d\}=1$.
$(c+25 d)\left(c^{2}-14 d^{2}\right)$ is small:
between $-H$ and H.
Conjecturally,
good chance of being smooth.
Many smooths \Rightarrow square.

Find more pairs (c, d)
with $\left|(c+25 d)\left(c^{2}-14 d^{2}\right)\right| \leq H$ in a less balanced rectangle. (1999 Murphy)

Can do better: set of (c, d) with $\left|(c+25 d)\left(c^{2}-14 d^{2}\right)\right| \leq H$ extends far beyond any inscribed rectangle. Find $\{c\}$ for each d. (Silverman, Contini, Lenstra)

First tool in predicting NFS time (2004 Bernstein): Can compute, very quickly and accurately, the number of pairs (c, d).

Take any nonconstant $f \in \mathbf{Z}[x]$, all real roots order $<(\operatorname{deg} f) / 2$: e.g., $f=(x+25)\left(x^{2}-14\right)$.

Area of $\{(c, d) \in \mathbf{R} \times \mathbf{R}: d>0$, $\left.\left|d^{\operatorname{deg} f} f(c / d)\right| \leq H\right\}$ is $(1 / 2) H^{2 / \operatorname{deg} f} Q(f)$ where $Q(f)=\int_{-\infty}^{\infty} d x /\left(f(x)^{2}\right)^{1 / \operatorname{deg} f}$. Will explain fast $Q(f)$ bounds.

Extremely accurate estimate:
$\#\{(c, d) \in \mathbf{Z} \times \mathbf{Z}: \operatorname{gcd}\{c, d\}=1$,

$$
\left.d>0,\left|d^{\operatorname{deg} f} f(c / d)\right| \leq H\right\}
$$

$\approx\left(3 / \pi^{2}\right) H^{2 / \operatorname{deg} f} Q(f)$.

Can verify accuracy of estimate by finding all integer pairs (c, d), i.e., by solving equations $d^{\operatorname{deg} f} f(c / d)= \pm 1$,
$d^{\operatorname{deg} f} f(c / d)= \pm 2, \ldots$
$d^{\operatorname{deg} f} f(c / d)= \pm H$.
Slow but convincing.
Another accurate estimate, easier to verify:
$\#\{(c, d) \in \mathbf{Z} \times \mathbf{Z}: \operatorname{gcd}\{c, d\}=1$,
$d>0,\left|d^{\operatorname{deg} f} f(c / d)\right| \leq H$, d not very large\}
$\approx\left(3 / \pi^{2}\right) H^{2 / \operatorname{deg} f} Q(f)$.

To compute

good approximation to $Q(f)$, and hence good approximation to distribution of $d^{\operatorname{deg} f} f(c / d)$:
$\int_{-s}^{s} d x /\left(f(x)^{2}\right)^{1 / \operatorname{deg} f}$ is within $\left|\binom{-2 / \operatorname{deg} f}{n+1}\right| \frac{2 s^{1-2 e / \operatorname{deg} f}}{3(1-2 e / \operatorname{deg} f) 4^{n}}$
of $\quad \sum \quad 2 q_{i} \frac{s^{i+1-2 e / \operatorname{deg} f}}{i+1-2 e / \operatorname{deg} f}$ $i \in\{0,2,4, \ldots\}$
if $f(x)=x^{e}(1+\cdots)$ in $\mathbf{R}[[x]]$,
$|\cdots| \leq 1 / 4$ for $x \in[-s, s]$,
$\sum_{0 \leq j \leq n}\binom{-2 / \operatorname{deg} f}{j}(\cdots)^{j}=\sum q_{i} x^{i}$.

Handle constant factors in f. Handle intervals $[v-s, v+s$].

Partition $(-\infty, \infty)$:
one interval around each real root of f; one interval around ∞, reversing f; more intervals with $e=0$. Be careful with roundoff error. This is not the end of the story: can handle some f 's more quickly by arithmetic-geometric mean.

2. Smoothness

Consider a uniform random integer in $\left[1,2^{400}\right]$.

What is the chance that the integer is 1000000 -smooth, i.e., factors into primes ≤ 1000000 ?
"Objection: The integers in NFS are not uniform random integers!" True; will generalize later.

Traditional answer:

Dickman's ρ function is fast.
A uniform random integer in
[$1, y^{u}$] has chance $\approx \rho(u)$ of being y-smooth.
If u is small then chance $/ \rho(u)$ is
$1+O(\log \log y / \log y)$ for $y \rightarrow \infty$.
Flaw \#1 in traditional answer:
Not a very good approximation.
Flaw \#2 in traditional answer:
Not easy to generalize.

Another traditional answer, trivial to generalize:

Check smoothness of many independent uniform random integers.

Can accurately estimate smoothness probability p after inspecting 10000/p integers; typical error $\approx 1 \%$.

But this answer is very slow.

Here's a better answer.
(starting point: 1998 Bernstein)
Define S as the set of 1000000 -smooth integers $n \geq 1$.

The Dirichlet series for S
is $\sum[n \in S] x^{\lg n}=$
$\left(1+x^{\lg 2}+x^{2 \lg 2}+x^{3 \lg 2}+\cdots\right)$
$\left(1+x^{\lg 3}+x^{2 \lg 3}+x^{3 \lg 3}+\cdots\right)$
$\left(1+x^{\lg 5}+x^{2 \lg 5}+x^{3 \lg 5}+\cdots\right)$
$\left(1+x^{\lg 999983}+x^{2 \lg 999983}+\cdots\right)$.

Replace primes
2, 3, 5, 7, . . , 999983
with slightly larger real numbers
$\overline{2}=1.1^{8}, \overline{3}=1.1^{12}, \overline{5}=1.1^{17}$,
$\ldots, \overline{999983}=1.1^{145}$.
Replace each $2^{a} 3^{b} \ldots$ in S with $\overline{2}^{a} \overline{3}^{b} \cdots$, obtaining multiset \bar{S}.

The Dirichlet series for \bar{S}
is $\sum[n \in \bar{S}] x^{\lg n}=$
$\left(1+x^{\lg \overline{2}}+x^{2 \lg \overline{2}}+x^{3 \lg \overline{2}}+\cdots\right)$
$\left(1+x^{\lg \overline{3}}+x^{2 \lg \overline{3}}+x^{3 \lg \overline{3}}+\cdots\right)$
$\left(1+x^{\lg \overline{5}}+x^{2 \lg \overline{5}}+x^{3 \lg \overline{5}}+\cdots\right)$
$\left(1+x^{\lg \overline{999983}}+x^{2 \lg \overline{999983}}+\cdots\right)$.

This is simply a power series $s_{0} z^{0}+s_{1} z^{1}+\cdots=$
$\left(1+z^{8}+z^{2 \cdot 8}+z^{3 \cdot 8}+\cdots\right)$
$\left(1+z^{12}+z^{2 \cdot 12}+z^{3 \cdot 12}+\cdots\right)$
$\left(1+z^{17}+z^{2 \cdot 17}+z^{3 \cdot 17}+\cdots\right)$
$\cdots\left(1+z^{145}+z^{2 \cdot 145}+\cdots\right)$
in the variable $z=x^{\lg 1.1}$.
Compute series mod (egg.) $z^{2910 ; ~}$ ie., compute $s_{0}, s_{1}, \ldots, s_{2909}$.
\bar{S} has $s_{0}+\cdots+s_{2909}$ elements $\leq 1.1^{2909}<2^{400}$, so S has at least $s_{0}+\cdots+s_{2909}$ elements $<2^{400}$.

So have guaranteed lower bound on number of 1000000 -smooth integers in $\left[1,2^{400}\right]$.

Can compute an upper bound to check looseness of lower bound.

If looser than desired, move 1.1 closer to 1 .
Achieve any desired accuracy.
2007 Parsell-Sorenson: Replace big primes with RH bounds, faster to compute.

NFS smoothness is much more complicated than smoothness of uniform random integers.

Most obvious issue: NFS doesn't use all integers in $[-H, H]$; it uses only values $f(c, d)$ of a specified polynomial f.

Traditional reaction
(1979 Schroeppel, et al.): replace H by "typical" f value, heuristically adjusted for roots of f mod small primes.

Can compute smoothness chance much more accurately.
No need for "typical" values.
We've already computed series $s_{0} z^{0}+s_{1} z^{1}+\cdots+s_{2909} z^{2909}$ such that there are $\geq s_{0}$ smooth $\leq 1.1^{0}$, $\geq s_{0}+s_{1}$ smooth $\leq 1.1^{1}$, $\geq s_{0}+s_{1}+s_{2}$ smooth $\leq 1.1^{2}$,

\cdot
 - -7

$\geq s_{0}+\cdots+s_{2909}$ smooth $\leq 1.1^{2909}$.
Approximations are very close.

Number of $f(c, d)$ values in $[-H, H]$ is $\approx\left(3 / \pi^{2}\right) H^{2 / \operatorname{deg} f} Q(f)$. We've already computed $Q(f)$.

For each $i \leq 2909$, number of smooth $|f(c, d)|$ values in $\left[1.1^{i-1}, 1.1^{i}\right]$ is approximately $\frac{3 Q(f) s_{i}}{\pi^{2}} \frac{1.1^{2 i / \operatorname{deg} f}-1.1^{2(i-1) / \operatorname{deg} f}}{1.1^{i}-1.1^{i-1}}$

Add to see total number of smooth $f(c, d)$ values.

Approximation so far has ignored roots of f.

Fix: Smoothness chance in $\mathbf{Q}(\alpha)$ for $c-\alpha d$ is, conjecturally, very close to smoothness chance for ideals of the same size as $c-\alpha d$.

Dirichlet series for smooth ideals: simply replace
$1+x^{\lg p}+x^{2 \lg p}+\cdots$ with $1+x^{\lg P}+x^{2 \lg P}+\cdots$ where P is norm of prime ideal.

Same computations as before.
Should also be easy to adapt Parsell-Sorenson to ideals.

Typically $f(c, d)$ is product
$(c-m d) \cdot$ norm of $(c-\alpha d)$.
Smoothness chance in $\mathbf{Q} \times \mathbf{Q}(\alpha)$ for $(c-m d, c-\alpha d)$ is, conjecturally, close to smoothness chance for ideals of the same size.

Can account in various ways for correlations and anti-correlations between $c-m d$ and $c-\alpha d$, but these effects seem small.

More subtle issue:
Oversimplified NFS efficiently
finds prime divisors by sieving.
A value $f(c, d)$ is factored if and only if it is smooth.

State-of-the-art NFS limits sieving (to reduce communication costs and to reduce lattice overhead) and uses early-abort ECM to find larger prime divisors.
A value $f(c, d)$ is factored under complicated conditions.

Dirichlet-series computations easily handle early aborts and other complications in the notion of smoothness.

Example: Which integers are 1000000-smooth integers $<2^{400}$ times one prime in $\left[10^{6}, 10^{9}\right]$? Multiply $s_{0} z^{0}+\cdots+s_{2909} z^{2909}$ by $x^{\lg \overline{1000003}}+\cdots+x^{\lg \overline{999999937}}$.

3. Linear algebra

Traditional bound:

Once NFS has more factored values $f(c, d)$ than primes, it finds a nontrivial square.
(Note: Primes include sieving primes and larger primes.)

Common observation: NFS usually finds a nontrivial square from far fewer factored values.

By removing singletons and counting cycles easily see that there are enough values.

How to predict chance that k factored values produce a nontrivial square?

Some generic suggestions (e.g., 1998 Bernstein):
$\operatorname{Pr}\left[v_{1}, v_{2}, \ldots, v_{k}\right.$ suffice $]$
$\leq \sum_{j \geq 1}\binom{k}{j} p_{j}$ where
$p_{j}=\operatorname{Pr}\left[v_{1} \cdots v_{j}\right.$ is a square $]$, assuming i.i.d. v_{1}, v_{2}, \ldots
Roughly $p_{j} \approx \Psi\left(H^{j / 2}\right) / \Psi\left(H^{j}\right)$.
Optionally use inclusion-exclusion.

2008 Ekkelkamp:
Can very accurately simulate distribution of factored values using a generic prime model and a short sieving test.

Simulating a factored value is much faster than
finding a factored value.
Still need singleton removal etc., but overall much faster than NFS.

Smoothness computations should be able to replace the sieving test.

