Predicting NFS time

D. J. Bernstein
University of lllinois at Chicago

Thanks to:

NSF DMS-9600083

NSF DMS-9970409

NSF DMS-0140542

Alfred P. Sloan Foundation
NSF ITR-0716498

Define 7 as the time
used by NFS to factor n.

I depends on n.

I also depends on

parameters chosen by NFS user:
a polynomial f,

an initial smoothness bound vy,
etc.

I also depends on
choices of NFS subroutines,
choice of NFS hardware, etc.

NFS isn't just one algorithm.

Topic of this talk: computing 7.

Application #1:

NFS parameter selection.

Given n, have many choices

for parameter vector (f,y1,...).
Which choice minimizes 77
Answer: evaluate 7 and check.
Can similarly select subroutines.

Application #2:

Anti-NFS parameter selection.
Which key sizes are safe for
RSA, pairing-based crypto, etc.?

NFS computes exactly T.
But NFS is very slow.

Want much faster algorithms
to handle many T evaluations.

We don't need exactly T.
Can select parameters using
good approximations to T .

How quickly can we compute
something in [0.57,2T]?

How quickly can we compute
something in [0.97,1.1T]7

How quickly can we compute
something in [0.997,1.017]7

Easy-to-compute approximation:

64
T =~ exp f/g(log n)(loglog n)?.

This T estimate Is conjectured
to be in [T1€, T11€] for
theoretician’s NFS parameters,
but It's unacceptably inaccurate.

Obviously useless for NFS
parameter selection.

Often used for anti-NFS
parameter selection, following
(e.g.) 1996 Leyland—Lenstra—
Dodson—Muffett—Wagstaff, but

newer papers warn against this.

Expect a speed/accuracy tradeoff:
T,T]: NFS, very slow.
0.997,1.017]: Much faster.
0.97,1.1T]: Faster than that.
T1-€ T1T€]: Very fast.

For parameter selection need
reasonable accuracy, high speed.

Can combine T approximations.
250

e.g. Feec parameter choices
to [0.5T, 27| approximation.

Feed best 230 parameter choices
to [0.997,1.017| approximation

that is (e.g.) 229 times slower.

1. Sizes

Sample NFS goal: Find
{(z,y) € Z° : zy = 611},

The Q sieve forms a square
as product of ¢(c + 611d)
for several pairs (c, d):
14(625) - 64(675) - 75(686)
— 44100007,

gcd{611,14 - 64 - 75 — 4410000}
= 47.

47 and 611/47 = 13 are prime,
so {x} = {+1,£13, 47, +611}.

The Q(+/14) sieve forms a square
as product of (¢ + 25d)(c + v/14d)
for several pairs (c, d):

(—11 +3-25)(—11 + 31/14)

(3 4+ 25)(3 + 1/14)
= (112 — 164/14).
Compute

w=(—11+3-25)- (3 +25),
v=112 - 16 - 25,
gcd{611,u — v} = 13.

How to find these squares?
Traditional approach:
Choose H, R with 26-14-R3 = H.

Look at all pairs (c, d)

in [-R, R] x [0, R]

with (¢ + 25d)(c? — 14d°) # 0
and gcd{c,d} = 1.

(c + 25d)(c? — 14d?) is small:
between —H and H.
Conjecturally,

good chance of being smooth.

Many smooths = square.

Find more pairs (c, d)

with |(c + 25d)(c? — 14d?)| < H
in a less balanced rectangle.
(1999 Murphy)

Can do better: set of (c, d)
with |(c + 25d)(c* — 14d°)| < H
extends far beyond any inscribed

rectangle. Find {c} for each d.
(Silverman, Contini, Lenstra)

First tool in predicting NFS time
(2004 Bernstein): Can compute,
very quickly and accurately,

the number of pairs (c, d).

Take any nonconstant f € Z|z],
all real roots order < (deg f)/2:

e.g., f = (z +25)(z? — 14).

Area of {(c,d) e Rx R :d >0,
a8 f(c/d)| < H}
is (1/2)H2/9e8 fQ(f) where

Qf) = [Z50 da/(f(z)?)H/ 8.
Will explain fast Q(f) bounds.

Extremely accurate estimate:
#{(c,d) € Z x Z : gcd{c,d} =1,

d> 0,[d%Ef f(c/d)| < H}
~ (3/m°)H/ 981 Q(f).

Can verify accuracy of estimate
by finding all integer pairs (c, d),
i.e., by solving equations

ddegff(c‘/d) = +1,
ddegff(C/d) =12, ...
ddegff(C/d) = +H.

Slow but convincing.

Another accurate estimate,

easier to verify:

#{(c,d) € Z x Z : gcd{c,d} =1,
d >0, |d%87 f(c/d)| < H,
d not very large}

~ (3/m2)H/8 T Q(f).

To compute
good approximation to Q(f),

and hence good approximation to
distribution of d9¢87 f(c/d):

[°.dz/(f z)2)1/deg f is within

(—Z/deg f> Dgl—2e/deg f
n+1 3(1 — 2e/deg f)4™

sit1—2e/deg f

Of Z 2q7; :
ic{024,. 3 +1—2e/deg f

¢ f(CE) _ CEe(l 4.) T R[[CC]],
| < 1/4 for x € [—s, 5],

ZOSjgn (_2/;!eg f)(. .)J' _ Z ChCEi

Handle constant factors in f.

Handle intervals [v — s, v + s].

Partition (—o00, 00):

one interval around each

real root of f; one interval
around ©o, reversing f;

more intervals with e = 0.

Be careful with roundoff error.

This is not the end of the story:
can handle some f's more quickly
by arithmetic-geometric mean.

2. Smoothness

Consider a uniform random

integer in [1, 2400].

What is the chance that the
integer 1s 1000000-smooth, i.e.,
factors into primes < 10000007

“Objection: The integers in NFS
are not uniform random integers!”

True; will generalize later.

Traditional answer:

Dickman’s p function is fast.

A uniform random integer in

[1, y*] has chance ~ p(u)

of being y-smooth.

If u is small then chance/p(u) is
1 4+ O(loglogy/logy) for y — oo.

Flaw #1 in traditional answer:
Not a very good approximation.

Flaw #2 in traditional answer:
Not easy to generalize.

Another traditional answer,

trivial to generalize:

Check smoothness of many
independent uniform random
Integers.

Can accurately estimate
smoothness probability »

after inspecting 10000/p integers;
typical error =~ 1%.

But this answer is very slow.

Here's a better answer.
(starting point: 1998 Bernstein)

Define S as the set of
1000000-smooth integers n > 1.

The Dirichlet series for S
is > [n € S|z'e™ =

(1 n $|g2 n $2|g2 n $3|g2 0)
(1 n xlg3 e $2|g3 n x3|g3 L)
(1 n xlg5 n $2Ig5 n $3|g5 L)

(1 4+ 718999983 + 7218999983 4.)

Replace primes

2,3,5,7,..., 999983

with slightly larger real numbers
2=11%3=11% 5=1.1'
..., 999983 = 1.11%,

Replace each 2%3°. .. in S with
23° . ., obtaining multiset S.

The Dirichlet series for S
is) [n € Slz'8™ =

(1 N $|g2 N $2 Ig§ i $3Ig§ 0)

n Igg__ 2Ig§__ 3Ig§_____
(1+ °+z78° 47782)
(1__$Ig5__$2lg5__x3|g5_____)

(1 4+ xlg 999933 4+ 72 lg 9999383 4.)

This I1s simply a power series
soz0+31z1+---:

(1428 + 228 4238 4 ..)

(14212 4 2212 4 2312)

(14 217 4 2217 _2317 +o)
(14 2145 4 22145)

in the variable z = z'81.1.

Compute series mod (e.g.) 22710,

l.e., compute sq, S1, ..., $2909.
S has sg + - - - + So909 elements
< 1.12909 2400 55 S has

at least sg + - - - 4+ S2909

elements < 2400

So have guaranteed lower bound

on number of 1000000-smooth

integers in [1, 2499].

Can compute an upper bound to
check looseness of lower bound.

If looser than desired,
move 1.1 closer to 1.
Achieve any desired accuracy.

2007 Parsell-Sorenson: Replace
oig primes with RH bounds,

faster to compute.

NFS smoothness is much more

complicated than smoothness of
uniform random integers.

Most obvious issue: NFS doesn't
use all integers in [—H, H];

it uses only values f(c, d)

of a specified polynomial f.

Traditional reaction

(1979 Schroeppel, et al.):
replace H by “typical” f value,
heuristically adjusted for

roots of f mod small primes.

Can compute smoothness chance

much more accurately.
No need for “typical” values.

We've already computed series
5020 + s121 + - - -+ 5900022909
such that there are

> 59 smooth<1.1Y,

> s9+s1 smooth<1.11,

> So+S1+82 smooth<1.1¢,

>80+ - - +52009 smooth§1.12909.
Approximations are very close.

Number of f(c, d) values in
—H, H] is ~ (3/m?)H?/de& 1 Q(£).
We've already computed Q(f).

For each 7 < 2909,

number of smooth |f(c, d)| values

in [1.1*71,1.1*] is approximately

3Q(f)87; 1 12¢/deg f _ 1 12(3—1)/deg f
L& 1.1 — 1,101

Add to see total number of
smooth f(c, d) values.

Approximation so far
has ignored roots of f.

Fix: Smoothness chance in Q(a)
for c — ad is, conjecturally, very
close to smoothness chance for

ideals of the same size as ¢ — ad.

Dirichlet series for smooth ideals:
simply replace

1+ 2'8P 4 z2'8P ... with

| L gleP 4 p2lgP .

where P is norm of prime ideal.

Same computations as before.
Should also be easy to adapt
Parsell-Sorenson to ideals.

Typically f(c, d) is product
(¢ — md) - norm of (¢ — ad).

Smoothness chance in Q X Q(«)
for (c — md, c — ad) is,
conjecturally, close to smoothness
chance for ideals of the same size.

Can account in various ways for
correlations and anti-correlations
petween ¢ — md and ¢ — ad,

but these effects seem small.

More subtle issue:

Oversimplified NFS efficiently
finds prime divisors by sieving.
A value f(c, d) is factored
if and only if it is smooth.

State-of-the-art NFS limits sieving
(to reduce communication costs
and to reduce lattice overhead)

and uses early-abort ECM
to find larger prime divisors.

A value f(c, d) is factored
under complicated conditions.

Dirichlet-series computations
easily handle early aborts
and other complications

in the notion of smoothness.

Example: Which integers are
1000000-smooth integers < 2400
times one prime in [10°, 107]7

Multiply s9z% + - - - 4+ 8290922999
g 1000003 ... 4 18999999937

by T

3. Linear algebra

Traditional bound:

Once NFS has more factored
values f(c, d) than primes,
it finds a nontrivial square.

(Note: Primes include sieving

primes and larger primes.)

Common observation: NFS
usually finds a nontrivial square
from far fewer factored values.

By removing singletons and
counting cycles easily see that

there are enough values.

How to predict chance
that k£ factored values
produce a nontrivial square?

Some generic suggestions
(e.g., 1998 Bernstein):

Prlvi, vo, ..., v suffice]

<D 1 ()pj where
Py = Pr[’U1 - Vj 1S 3 square],

assuming I1.1.d. v1, v,
Roughly p; = W(HI/2) /W(H7).

Optionally use inclusion-exclusion.

2008 Ekkelkamp:

Can very accurately simulate
distribution of factored values
using a generic prime model
and a short sieving test.

Simulating a factored value
is much faster than
finding a factored value.

Still need singleton removal etc.,
but overall much faster than NFS.

Smoothness computations should
be able to replace the sieving test.

