Fast arithmetic on elliptic curves

D. J. Bernstein

University of Illinois at Chicago

EC point counting

1983 (published 1985) Schoof: Algorithm to count points on elliptic curves over finite fields.

Input: prime power q; $a, b \in \mathbf{F}_q$ such that $6(4a^3 + 27b^2) \neq 0$.

Output: $\#\{(x, y) \in \mathbf{F}_q \times \mathbf{F}_q : y^2 = x^3 + ax + b\} + 1;$ i.e., $\#E(\mathbf{F}_q)$ where E is the elliptic curve $y^2 = x^3 + ax + b.$ Time: $(\log q)^{O(1)}$.

How? See this afternoon's talk.

Elliptic curves everywhere

1984 (published 1987) Lenstra: ECM, the elliptic-curve method of factoring integers.

1984 (published 1985) Miller, and independently 1984 (published 1987) Koblitz: ECC, elliptic-curve cryptography.

Bosma, Goldwasser–Kilian, Chudnovsky–Chudnovsky, Atkin: elliptic-curve primality proving.

These applications are different but share many optimizations.

Representing curve points

Crypto 1985, Miller, "Use of elliptic curves in cryptography":

Given $n \in \mathbf{Z}$, $P \in E(\mathbf{F}_q)$,

division-polynomial recurrence computes $nP \in E(\mathbf{F}_q)$ "in 26 log₂ n multiplications"; but can do better!

"It appears to be best to represent the points on the curve in the following form: Each point is represented by the triple (x, y, z) which corresponds to the point $(x/z^2, y/z^3)$." Note that each point has many representations in this traditional form: e.g., (7/2, 5/3) can be represented as (7/2 : 5/3 : 1)or (126 : 360 : 6) or ...

Can use this flexibility to avoid, or delay, divisions. Most ECC software does this.

Good idea if I/M is big, where **M** is cost of multiplying in F_q , **I** is cost of inverting in F_q . Typical software: I/M > 10. 1986 Chudnovsky–Chudnovsky, "Sequences of numbers generated by addition in formal groups and new primality and factorization tests":

"The crucial problem becomes the choice of the model of an algebraic group variety, where computations mod *p* are the least time consuming."

Most important computations: ADD is $P, Q \mapsto P + Q$. DBL is $P \mapsto 2P$. "It is preferable to use models of elliptic curves lying in low-dimensional spaces, for otherwise the number of coordinates and operations is increasing. This limits us ... to 4 basic models of elliptic curves."

Short Weierstrass: $y^2 = x^3 + ax + b$.

Jacobi intersection: $s^2 + c^2 = 1$, $as^2 + d^2 = 1$. Jacobi quartic: $y^2 = x^4 + 2ax^2 + 1$. Hessian: $x^3 + y^3 + 1 = 3dxy$.

Some Newton polygons

Optimizing Jacobian coordinates

For "traditional" $(X/Z^2, Y/Z^3)$ on $y^2 = x^3 + ax + b$: 1986 Chudnovsky–Chudnovsky state explicit formulas using 10**M** for DBL; 16**M** for ADD.

Consequence: $\approx \left(10 \lg n + 16 \frac{\lg n}{\lg \lg n}\right) \mathbf{M}$ to compute $n, P \mapsto nP$ using sliding-windows method of scalar multiplication.

Notation: $\lg = \log_2$.

Squaring is faster than **M**.

Here are the DBL formulas:

$$S = 4X_1 \cdot Y_1^2;$$

$$M = 3X_1^2 + aZ_1^4;$$

$$T = M^2 - 2S;$$

$$X_3 = T;$$

$$Y_3 = M \cdot (S - T) - 8Y_1^4;$$

$$Z_3 = 2Y_1 \cdot Z_1.$$

Total cost $3\mathbf{M} + 6\mathbf{S} + 1\mathbf{D}$ where **S** is the cost of squaring in \mathbf{F}_q , **D** is the cost of multiplying by a.

The squarings produce $X_1^2, Y_1^2, Y_1^4, Z_1^2, Z_1^4, M^2$.

Most ECC standards choose curves that make formulas faster. Curve-choice advice from 1986 Chudnovsky–Chudnovsky: Can eliminate the 1D by choosing curve with a = 1. But "it is even smarter" to choose curve with a = -3. If a = -3 then $M = 3(X_1^2 - Z_1^4)$ $= 3(X_1 - Z_1^2) \cdot (X_1 + Z_1^2).$ Replace 2**S** with 1**M**.

Now DBL costs $4\mathbf{M} + 4\mathbf{S}$.

2001 Bernstein: $3\mathbf{M} + 5\mathbf{S}$ for DBL. $11\mathbf{M} + 5\mathbf{S}$ for ADD. How? Easy $\mathbf{S} - \mathbf{M}$ tradeoff: instead of computing $2Y_1 \cdot Z_1$, compute $(Y_1 + Z_1)^2 - Y_1^2 - Z_1^2$. DBL formulas were already computing Y_1^2 and Z_1^2 .

Same idea for the ADD formulas, but have to scale *X*, *Y*, *Z* to eliminate divisions by 2. ADD for $y^2 = x^3 + ax + b$: $U_1 = X_1 Z_2^2$, $U_2 = X_2 Z_1^2$, $S_1 = Y_1 Z_2^3$, $S_2 = Y_2 Z_1^3$,

many more computations.

1986 Chudnovsky–Chudnovsky: "We suggest to write addition formulas involving (*X*, *Y*, *Z*, *Z*², *Z*³)."

Disadvantages: Allocate space for Z^2 , Z^3 . Pay 1**S**+1**M** in ADD and in DBL.

Advantages: Save 2**S** + 2**M** at start of ADD. Save 1**S** at start of DBL.

1998 Cohen–Miyaji–Ono: Store point as (X : Y : Z). If point is input to ADD, also cache Z^2 and Z^3 . No cost, aside from space. If point is input to another ADD, reuse Z^2 , Z^3 . Save 1S + 1M!Best Jacobian speeds today, including $\mathbf{S} - \mathbf{M}$ tradeoffs: $3\mathbf{M} + 5\mathbf{S}$ for DBL if a = -3. $11\mathbf{M} + 5\mathbf{S}$ for ADD. $10\mathbf{M} + 4\mathbf{S}$ for reADD. 7M + 4S for mADD (i.e. $Z_2 = 1$).

Compare to speeds for Edwards curves $x^{2} + y^{2} = 1 + dx^{2}y^{2}$ in projective coordinates (2007 Bernstein–Lange): $3\mathbf{M} + 4\mathbf{S}$ for DBL. 10M + 1S + 1D for ADD. $9\mathbf{M} + 1\mathbf{S} + 1\mathbf{D}$ for mADD. Inverted Edwards coordinates (2007 Bernstein–Lange): $3\mathbf{M} + 4\mathbf{S} + 1\mathbf{D}$ for DBL. $9\mathbf{M} + 1\mathbf{S} + 1\mathbf{D}$ for ADD. $8\mathbf{M} + 1\mathbf{S} + 1\mathbf{D}$ for mADD.

Latest Edwards speed news: 2008.12 Hisil–Wong–Carter–Dawson.

$y^2 = x^3 - 0.4x + 0.7$

(Thanks to Tanja Lange for the pictures.)

$x^2 + y^2 = 1 - 300x^2y^2$

The Edwards starfish: new, fast and complete!

Start!

1985 Weierstrass sets off, Edwards

Veierstrass sets ott; Edwar left behind sleeping

Weierstrass has made some progress _ finally Edwards wakes up.

1

Exciting progress: Edwards about to overtake!!

And the winner is: Edwards!

Speed-oriented Jacobian standards

2000 IEEE "Std 1363" uses Weierstrass curves in Jacobian coordinates to "provide the fastest arithmetic on elliptic curves." Also specifies a method of choosing curves $y^2 = x^3 - 3x + b$.

2000 NIST "FIPS 186–2" standardizes five such curves.

2005 NSA "Suite B" recommends two of the NIST curves as the only public-key cryptosystems for U.S. government use.

Projective for Weierstrass

1986 Chudnovsky–Chudnovsky: Speed up ADD by switching from $(X/Z^2, Y/Z^3)$ to (X/Z, Y/Z). 7**M** + 3**S** for DBL if a = -3. 12**M** + 2**S** for ADD. 12**M** + 2**S** for reADD.

Option has been mostly ignored: DBL dominates in ECDH etc. But ADD dominates in some applications: e.g., batch signature verification.

Montgomery curves

1987 Montgomery:

Use $by^2 = x^3 + ax^2 + x$. Choose small (a + 2)/4.

$$egin{aligned} &2(x_2,y_2)=(x_4,y_4)\ &\Rightarrow x_4=rac{(x_2^2-1)^2}{4x_2(x_2^2+ax_2+1)}. \end{aligned}$$

$$egin{aligned} &(x_3,y_3)-(x_2,y_2)=(x_1,y_1),\ &(x_3,y_3)+(x_2,y_2)=(x_5,y_5)\ &\Rightarrow x_5=rac{(x_2x_3-1)^2}{x_1(x_2-x_3)^2}. \end{aligned}$$

Represent (x, y)as (X:Z) satisfying x = X/Z. $B = (X_2 + Z_2)^2$, $C = (X_2 - Z_2)^2$, $D = B - C, X_4 = B \cdot C,$ $Z_4 = D \cdot (C + D(a+2)/4) \Rightarrow$ $2(X_2:Z_2) = (X_4:Z_4).$ $(X_3:Z_3) - (X_2:Z_2) = (X_1:Z_1),$ $E = (X_3 - Z_3) \cdot (X_2 + Z_2),$ $F = (X_3 + Z_3) \cdot (X_2 - Z_2),$ $X_5 = Z_1 \cdot (E + F)^2,$ $Z_5 = X_1 \cdot (E - F)^2 \Rightarrow$ $(X_3:Z_3) + (X_2:Z_2) = (X_5:Z_5).$ This representation does not allow ADD but it allows DADD, "differential addition": $Q, R, Q - R \mapsto Q + R$.

- e.g. $2P, P, P \mapsto 3P$.
- e.g. $3P, 2P, P \mapsto 5P$.
- e.g. 6*P*, 5*P*, $P \mapsto 11P$.
- $2\mathbf{M} + 2\mathbf{S} + 1\mathbf{D}$ for DBL.
- $4\mathbf{M} + 2\mathbf{S}$ for DADD.
- Save 1**M** if $Z_1 = 1$.

Easily compute $n(X_1 : Z_1)$ using $\approx \lg n$ DBL, $\approx \lg n$ DADD. Almost as fast as Edwards nP. Relatively slow for mP + nQ etc.

Doubling-oriented curves

2006 Doche–Icart–Kohel:

Use $y^2 = x^3 + ax^2 + 16ax$. Choose small *a*.

Use $(X : Y : Z : Z^2)$ to represent $(X/Z, Y/Z^2)$.

 $3\mathbf{M} + 4\mathbf{S} + 2\mathbf{D}$ for DBL. How? Factor DBL as $\hat{\varphi}(\varphi)$ where φ is a 2-isogeny.

2007 Bernstein–Lange: 2**M** + 5**S** + 2**D** for DBL on the same curves. 12M + 5S + 1D for ADD.
Slower ADD than other systems,
typically outweighing benefit
of the very fast DBL.

But isogenies are useful. Example, 2005 Gaudry: fast DBL+DADD on Jacobians of genus-2 hyperelliptic curves, using similar factorization.

Tricky but potentially helpful: tripling-oriented curves (see 2006 Doche–Icart–Kohel), double-base chains, ...

Hessian curves

Credited to Sylvester by 1986 Chudnovsky–Chudnovsky:

(X : Y : Z) represent (X/Z, Y/Z)on $x^3 + y^3 + 1 = 3dxy$.

 $6\mathbf{M} + 3\mathbf{S}$ for DBL.

2001 Joye–Quisquater: $2(X_1 : Y_1 : Z_1) =$ $(Z_1 : X_1 : Y_1) + (Y_1 : Z_1 : X_1)$ so can use ADD to double.

"Unified addition formulas," helpful against side channels. But not strongly unified: need to permute inputs.

2008.02 Hisil–Wong–Carter–Dawson: $(X : Y : Z : X^2 : Y^2 : Z^2)$

: 2XY : 2XZ : 2YZ).

 $6\mathbf{M} + 6\mathbf{S}$ for ADD. $3\mathbf{M} + 6\mathbf{S}$ for DBL.

$x^3 - y^3 + 1 = 0.3xy$

Jacobi intersections

1986 Chudnovsky–Chudnovsky:

(S : C : D : Z) represent (S/Z, C/Z, D/Z) on $s^{2} + c^{2} = 1$, $as^{2} + d^{2} = 1$.

14M + 2S + 1D for ADD.
"Tremendous advantage"
of being strongly unified.

$5\mathbf{M} + 3\mathbf{S}$ for DBL.

"Perhaps (?) ... the most efficient duplication formulas which do not depend on the coefficients of an elliptic curve."

2001 Liardet–Smart: 13**M** + 2**S** + 1**D** for ADD. 4**M** + 3**S** for DBL.

2007 Bernstein–Lange: 3**M** + 4**S** for DBL.

2008.02 Hisil–Wong–Carter–Dawson: $13\mathbf{M} + 1\mathbf{S} + 2\mathbf{D}$ for ADD. $2\mathbf{M} + 5\mathbf{S} + 1\mathbf{D}$ for DBL. Also (S : C : D : Z : SC : DZ): $11\mathbf{M} + 1\mathbf{S} + 2\mathbf{D}$ for ADD. $2\mathbf{M} + 5\mathbf{S} + 1\mathbf{D}$ for DBL.

Jacobi quartics

(X:Y:Z) represent $(X/Z, Y/Z^2)$ on $y^2 = x^4 + 2ax^2 + 1$.

1986 Chudnovsky–Chudnovsky: 3**M** + 6**S** + 2**D** for DBL. Slow ADD.

2002 Billet–Joye: New choice of neutral element. 10**M** + 3**S** + 1**D** for ADD, strongly unified.

2007 Bernstein–Lange: $1\mathbf{M} + 9\mathbf{S} + 1\mathbf{D}$ for DBL. 2007 Hisil–Carter–Dawson: $2\mathbf{M} + 6\mathbf{S} + 2\mathbf{D}$ for DBL.

2007 Feng–Wu: 2M + 6S + 1D for DBL. $1\mathbf{M} + 7\mathbf{S} + 3\mathbf{D}$ for DBL on curves chosen with $a^2 + c^2 = 1$. More speedups: 2007 Duquesne, 2007 Hisil–Carter–Dawson. 2008.02 Hisil–Wong–Carter–Dawson: use $(X : Y : Z : X^2 : Z^2)$ or $(X : Y : Z : X^2 : Z^2 : 2XZ)$. Can combine with Feng–Wu. Competitive with Edwards!

 $x^2 = y^4 - 1.9y^2 + 1$

For more information

Explicit-Formulas Database, joint work with Tanja Lange: hyperelliptic.org/EFD

EFD has 316 computer-verified formulas and operation counts for ADD, DBL, etc.

- in 22 representations
- on 8 shapes of elliptic curves.

Not yet handled by computer: generality of curve shapes (e.g., Hessian order $\in 3\mathbf{Z}$); complete addition algorithms (e.g., checking for ∞). Can do similar survey for elliptic curves over fields of characteristic 2.

Latest EFD updates now include characteristic-2 formulas!

Currently 102 computer-verified formulas and operation counts for ADD, DBL, etc.

in 16 representations

on 2 shapes (binary Edwards and short Weierstrass) of ordinary binary elliptic curves.