
Fast arithmetic on elliptic curves

D. J. Bernstein

University of Illinois at Chicago



EC point counting

1983 (published 1985) Schoof:

Algorithm to count points on

elliptic curves over finite fields.

Input: prime power q; a; b 2 Fq
such that 6(4a3 + 27b2) 6= 0.

Output: #f(x; y) 2 Fq � Fq :

y2 = x3 + ax+ bg+ 1;

i.e., #E(Fq) where E is the

elliptic curve y2 = x3 + ax+ b.
Time: (log q)O(1).

How? See this afternoon’s talk.



Elliptic curves everywhere

1984 (published 1987) Lenstra:

ECM, the elliptic-curve method

of factoring integers.

1984 (published 1985) Miller,

and independently

1984 (published 1987) Koblitz:

ECC, elliptic-curve cryptography.

Bosma, Goldwasser–Kilian,

Chudnovsky–Chudnovsky, Atkin:

elliptic-curve primality proving.

These applications are different

but share many optimizations.



Representing curve points

Crypto 1985, Miller, “Use of

elliptic curves in cryptography”:

Given n 2 Z, P 2 E(Fq),
division-polynomial recurrence

computes nP 2 E(Fq)
“in 26 log2 n multiplications”;

but can do better!

“It appears to be best to

represent the points on the curve

in the following form:

Each point is represented by the

triple (x; y; z) which corresponds

to the point (x=z2; y=z3).”



Note that each point

has many representations

in this traditional form:

e.g., (7=2; 5=3) can be

represented as (7=2 : 5=3 : 1)

or (126 : 360 : 6) or : : :
Can use this flexibility

to avoid, or delay, divisions.

Most ECC software does this.

Good idea if I=M is big, where

M is cost of multiplying in Fq,
I is cost of inverting in Fq.
Typical software: I=M > 10.



1986 Chudnovsky–Chudnovsky,

“Sequences of numbers

generated by addition

in formal groups

and new primality

and factorization tests”:

“The crucial problem becomes

the choice of the model

of an algebraic group variety,

where computations mod p
are the least time consuming.”

Most important computations:

ADD is P;Q 7! P +Q.

DBL is P 7! 2P .



“It is preferable to use

models of elliptic curves

lying in low-dimensional spaces,

for otherwise the number of

coordinates and operations is

increasing. This limits us : : : to

4 basic models of elliptic curves.”

Short Weierstrass:

y2 = x3 + ax+ b.
Jacobi intersection:

s2 + 2 = 1, as2 + d2 = 1.

Jacobi quartic: y2 = x4+2ax2+1.

Hessian: x3 + y3 + 1 = 3dxy.



Some Newton polygons

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�

�� J

J

J

J

J

J

J

Short Weierstrass

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�

��
/

/

/

/

J

J

J

J

J

J

J

Montgomery

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�

�� O

O

O

O

O

O

O

O

Jacobi quartic

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�

�

�
�

?

?

?

?

?

?

?

?

Hessian

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�

�
Edwards

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�

�
�
�
��?

?

?

Binary Edwards



Optimizing Jacobian coordinates

For “traditional” (X=Z2; Y=Z3)

on y2 = x3 + ax+ b:
1986 Chudnovsky–Chudnovsky

state explicit formulas using

10M for DBL; 16M for ADD.

Consequence:

�
�

10 lgn+ 16
lgn

lg lgn

�
M

to compute n; P 7! nP
using sliding-windows method

of scalar multiplication.

Notation: lg = log2.



Squaring is faster than M.

Here are the DBL formulas:

S = 4X1 � Y 2
1 ;

M = 3X2
1 + aZ4

1 ;

T = M2 � 2S;

X3 = T ;

Y3 = M � (S � T )� 8Y 4
1 ;

Z3 = 2Y1 � Z1.

Total cost 3M + 6S + 1D where

S is the cost of squaring in Fq,
D is the cost of multiplying by a.
The squarings produce

X2
1 ; Y 2

1 ; Y 4
1 ; Z2

1 ; Z4
1 ;M2.



Most ECC standards choose

curves that make formulas faster.

Curve-choice advice from

1986 Chudnovsky–Chudnovsky:

Can eliminate the 1D

by choosing curve with a = 1.

But “it is even smarter”

to choose curve with a = �3.

If a = �3 then M = 3(X2
1 � Z4

1 )

= 3(X1 � Z2
1 ) � (X1 + Z2

1 ).

Replace 2S with 1M.

Now DBL costs 4M + 4S.



2001 Bernstein:

3M + 5S for DBL.

11M + 5S for ADD.

How? Easy S�M tradeoff:

instead of computing 2Y1 � Z1,

compute (Y1 + Z1)
2 � Y 2

1 � Z2
1 .

DBL formulas were already

computing Y 2
1 and Z2

1 .

Same idea for the ADD formulas,

but have to scale X; Y; Z
to eliminate divisions by 2.



ADD for y2 = x3 + ax+ b:
U1 = X1Z2

2 , U2 = X2Z2
1 ,

S1 = Y1Z3
2 , S2 = Y2Z3

1 ,

many more computations.

1986 Chudnovsky–Chudnovsky:

“We suggest to write

addition formulas involving

(X; Y; Z; Z2; Z3).”

Disadvantages:

Allocate space for Z2; Z3.

Pay 1S+1M in ADD and in DBL.

Advantages:

Save 2S + 2M at start of ADD.

Save 1S at start of DBL.



1998 Cohen–Miyaji–Ono:

Store point as (X : Y : Z).

If point is input to ADD,

also cache Z2 and Z3.

No cost, aside from space.

If point is input to another ADD,

reuse Z2; Z3. Save 1S + 1M!

Best Jacobian speeds today,

including S�M tradeoffs:

3M + 5S for DBL if a = �3.

11M + 5S for ADD.

10M + 4S for reADD.

7M + 4S for mADD (i.e. Z2 = 1).



Compare to speeds for Edwards

curves x2 + y2 = 1 + dx2y2

in projective coordinates

(2007 Bernstein–Lange):

3M + 4S for DBL.

10M + 1S + 1D for ADD.

9M + 1S + 1D for mADD.

Inverted Edwards coordinates

(2007 Bernstein–Lange):

3M + 4S + 1D for DBL.

9M + 1S + 1D for ADD.

8M + 1S + 1D for mADD.

Latest Edwards speed news:

2008.12 Hisil–Wong–Carter–Dawson.



y2 = x3 � 0:4x+ 0:7



(Thanks to Tanja Lange

for the pictures.)



x2 + y2 = 1� 300x2y2















Speed-oriented Jacobian standards

2000 IEEE “Std 1363”

uses Weierstrass curves

in Jacobian coordinates

to “provide the fastest

arithmetic on elliptic curves.”

Also specifies a method of

choosing curves y2 = x3 � 3x+ b.
2000 NIST “FIPS 186–2”

standardizes five such curves.

2005 NSA “Suite B” recommends

two of the NIST curves as

the only public-key cryptosystems

for U.S. government use.



Projective for Weierstrass

1986 Chudnovsky–Chudnovsky:

Speed up ADD by switching from

(X=Z2; Y=Z3) to (X=Z; Y=Z).

7M + 3S for DBL if a = �3.

12M + 2S for ADD.

12M + 2S for reADD.

Option has been mostly ignored:

DBL dominates in ECDH etc.

But ADD dominates in

some applications: e.g.,

batch signature verification.



Montgomery curves

1987 Montgomery:

Use by2 = x3 + ax2 + x.

Choose small (a+ 2)=4.

2(x2; y2) = (x4; y4)

) x4 =
(x2

2 � 1)2

4x2(x2
2 + ax2 + 1)

.

(x3; y3)� (x2; y2) = (x1; y1),

(x3; y3) + (x2; y2) = (x5; y5)

) x5 =
(x2x3 � 1)2

x1(x2 � x3)2
.



Represent (x; y)
as (X:Z) satisfying x = X=Z.

B = (X2 + Z2)
2,

C = (X2 � Z2)
2,

D = B � C, X4 = B � C,

Z4 = D � (C +D(a+ 2)=4) )
2(X2:Z2) = (X4:Z4).

(X3:Z3)� (X2:Z2) = (X1:Z1),

E = (X3 � Z3) � (X2 + Z2),

F = (X3 + Z3) � (X2 � Z2),

X5 = Z1 � (E + F )2,

Z5 = X1 � (E � F )2 )
(X3:Z3) + (X2:Z2) = (X5:Z5).



This representation

does not allow ADD but it allows

DADD, “differential addition”:

Q;R;Q� R 7! Q+ R.

e.g. 2P; P; P 7! 3P .

e.g. 3P; 2P; P 7! 5P .

e.g. 6P; 5P; P 7! 11P .

2M + 2S + 1D for DBL.

4M + 2S for DADD.

Save 1M if Z1 = 1.

Easily compute n(X1 : Z1) using

� lgn DBL, � lgn DADD.

Almost as fast as Edwards nP .

Relatively slow for mP + nQ etc.



Doubling-oriented curves

2006 Doche–Icart–Kohel:

Use y2 = x3 + ax2 + 16ax.

Choose small a.
Use (X : Y : Z : Z2)

to represent (X=Z; Y=Z2).

3M + 4S + 2D for DBL.

How? Factor DBL as '̂(')

where ' is a 2-isogeny.

2007 Bernstein–Lange:

2M + 5S + 2D for DBL

on the same curves.



12M + 5S + 1D for ADD.

Slower ADD than other systems,

typically outweighing benefit

of the very fast DBL.

But isogenies are useful.

Example, 2005 Gaudry:

fast DBL+DADD on Jacobians of

genus-2 hyperelliptic curves,

using similar factorization.

Tricky but potentially helpful:

tripling-oriented curves

(see 2006 Doche–Icart–Kohel),

double-base chains, : : :



Hessian curves

Credited to Sylvester

by 1986 Chudnovsky–Chudnovsky:

(X : Y : Z) represent (X=Z; Y=Z)

on x3 + y3 + 1 = 3dxy.
12M for ADD:

X3 = Y1X2 � Y1Z2 � Z1Y2 �X1Y2,

Y3 = X1Z2 �X1Y2 � Y1X2 � Z1X2,

Z3 = Z1Y2 � Z1X2 �X1Z2 � Y1Z2.

6M + 3S for DBL.



2001 Joye–Quisquater:

2(X1 : Y1 : Z1) =

(Z1 : X1 : Y1) + (Y1 : Z1 : X1)

so can use ADD to double.

“Unified addition formulas,”

helpful against side channels.

But not strongly unified:

need to permute inputs.

2008.02 Hisil–Wong–Carter–Dawson:

(X : Y : Z : X2 : Y 2 : Z2

: 2XY : 2XZ : 2Y Z).

6M + 6S for ADD.

3M + 6S for DBL.



x3 � y3 + 1 = 0:3xy





Jacobi intersections

1986 Chudnovsky–Chudnovsky:

(S : C : D : Z) represent

(S=Z; C=Z;D=Z) on

s2 + 2 = 1, as2 + d2 = 1.

14M + 2S + 1D for ADD.

“Tremendous advantage”

of being strongly unified.

5M + 3S for DBL.

“Perhaps (?) : : : the most

efficient duplication formulas

which do not depend on the

coefficients of an elliptic curve.”



2001 Liardet–Smart:

13M + 2S + 1D for ADD.

4M + 3S for DBL.

2007 Bernstein–Lange:

3M + 4S for DBL.

2008.02 Hisil–Wong–Carter–Dawson:

13M + 1S + 2D for ADD.

2M + 5S + 1D for DBL.

Also (S : C : D : Z : SC : DZ):

11M + 1S + 2D for ADD.

2M + 5S + 1D for DBL.



Jacobi quartics

(X:Y :Z) represent (X=Z; Y=Z2)

on y2 = x4 + 2ax2 + 1.

1986 Chudnovsky–Chudnovsky:

3M + 6S + 2D for DBL.

Slow ADD.

2002 Billet–Joye:

New choice of neutral element.

10M + 3S + 1D for ADD,

strongly unified.

2007 Bernstein–Lange:

1M + 9S + 1D for DBL.



2007 Hisil–Carter–Dawson:

2M + 6S + 2D for DBL.

2007 Feng–Wu:

2M + 6S + 1D for DBL.

1M + 7S + 3D for DBL

on curves chosen with a2+2 = 1.

More speedups: 2007 Duquesne,

2007 Hisil–Carter–Dawson,

2008.02 Hisil–Wong–Carter–Dawson:

use (X : Y : Z : X2 : Z2)

or (X : Y : Z : X2 : Z2 : 2XZ).

Can combine with Feng–Wu.

Competitive with Edwards!



x2 = y4 � 1:9y2 + 1















For more information

Explicit-Formulas Database,

joint work with Tanja Lange:

hyperelliptic.org/EFD

EFD has 316 computer-verified

formulas and operation counts

for ADD, DBL, etc.

in 22 representations

on 8 shapes of elliptic curves.

Not yet handled by computer:

generality of curve shapes

(e.g., Hessian order 2 3Z);

complete addition algorithms

(e.g., checking for 1).



Can do similar survey

for elliptic curves over

fields of characteristic 2.

Latest EFD updates now include

characteristic-2 formulas!

Currently 102 computer-verified

formulas and operation counts

for ADD, DBL, etc.

in 16 representations

on 2 shapes (binary Edwards

and short Weierstrass) of

ordinary binary elliptic curves.


