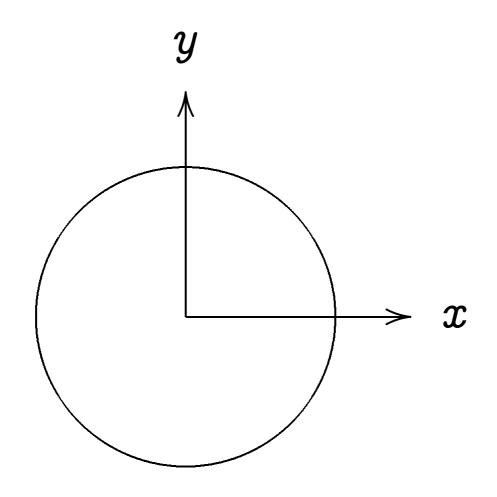
Introduction to elliptic curves

D. J. Bernstein

University of Illinois at Chicago

<u>The clock</u>



This is the curve $x^2 + y^2 = 1$.

Warning: This is *not* an elliptic curve. "Elliptic curve" \neq "ellipse."

Examples of points on this curve: (0, 1) = "12:00".

Examples of points on this curve: (0, 1) = "12:00". (0, -1) = Examples of points on this curve: (0, 1) = "12:00". (0, -1) = "6:00".

```
Examples of points on this curve:

(0, 1) = "12:00".

(0, -1) = "6:00".

(1, 0) =

(-1, 0) =
```

```
Examples of points on this curve:

(0, 1) = "12:00".

(0, -1) = "6:00".

(1, 0) = "3:00".

(-1, 0) = "9:00".
```

Examples of points on this curve: (0,1) = ``12:00''. (0, -1) = 6000(1,0) = "3:00". (-1, 0) = "9:00". $(\sqrt{3/4}, 1/2) =$

```
Examples of points on this curve:

(0, 1) = "12:00".

(0, -1) = "6:00".

(1, 0) = "3:00".

(-1, 0) = "9:00".

(\sqrt{3/4}, 1/2) = "2:00".
```

Examples of points on this curve: (0, 1) = "12:00". (0, -1) = 6000(1,0) = "3:00". (-1, 0) = "9:00". $(\sqrt{3}/4, 1/2) =$ "2:00". $(1/2, -\sqrt{3/4}) =$ $(-1/2, -\sqrt{3/4}) =$

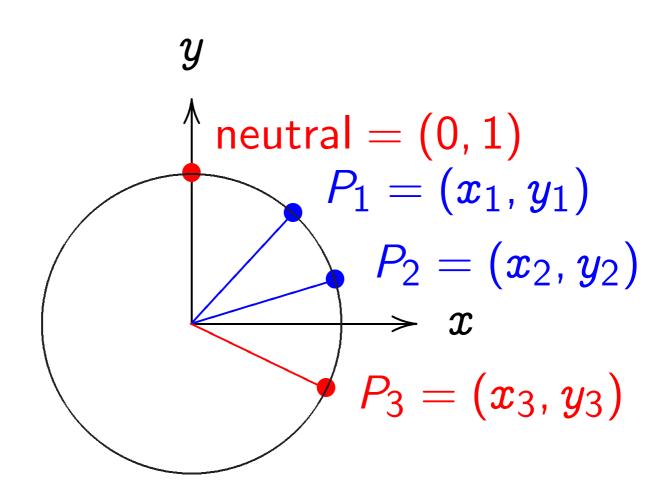
Examples of points on this curve: (0, 1) = "12:00". (0, -1) = 6000(1,0) = "3:00". (-1, 0) = "9:00". $(\sqrt{3}/4, 1/2) =$ "2:00". $(1/2, -\sqrt{3/4}) =$ "5:00". $(-1/2, -\sqrt{3/4}) =$ "7:00".

Examples of points on this curve: (0, 1) = "12:00". (0, -1) = 6000(1,0) = "3:00". (-1, 0) = "9:00". $(\sqrt{3}/4, 1/2) =$ "2:00". $(1/2, -\sqrt{3/4}) =$ "5:00". $(-1/2, -\sqrt{3/4}) =$ "7:00". $(\sqrt{1/2}, \sqrt{1/2}) =$ "1:30".

Examples of points on this curve: (0, 1) = "12:00". (0, -1) = 6000(1,0) = "3:00". (-1, 0) = "9:00". $(\sqrt{3}/4, 1/2) =$ "2:00". $(1/2, -\sqrt{3/4}) =$ "5:00". $(-1/2, -\sqrt{3/4}) =$ "7:00". $(\sqrt{1/2}, \sqrt{1/2}) =$ "1:30". (3/5, 4/5). (-3/5, 4/5).

Examples of points on this curve: (0, 1) = "12:00". (0, -1) = ``6:00''. (1,0) = "3:00". (-1,0) = "9:00". $(\sqrt{3}/4, 1/2) =$ "2:00". $(1/2, -\sqrt{3/4}) =$ "5:00". $(-1/2, -\sqrt{3/4}) =$ "7:00". $(\sqrt{1/2}, \sqrt{1/2}) =$ "1:30". (3/5, 4/5). (-3/5, 4/5). (3/5, -4/5). (-3/5, -4/5). (4/5, 3/5). (-4/5, 3/5). (4/5, -3/5). (-4/5, -3/5). Many more.

<u>Clock addition</u>

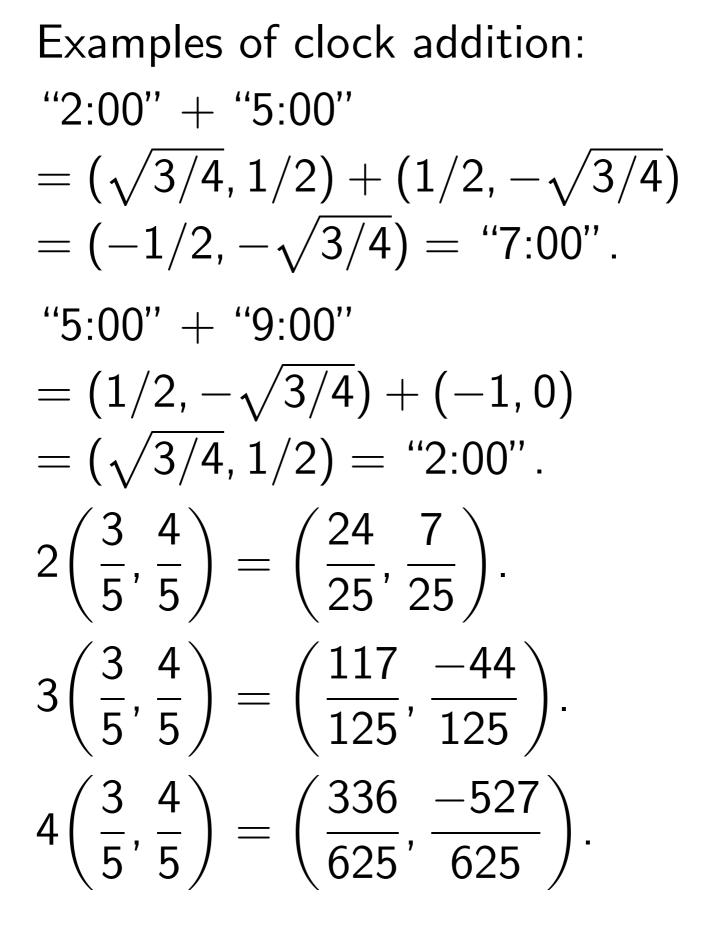


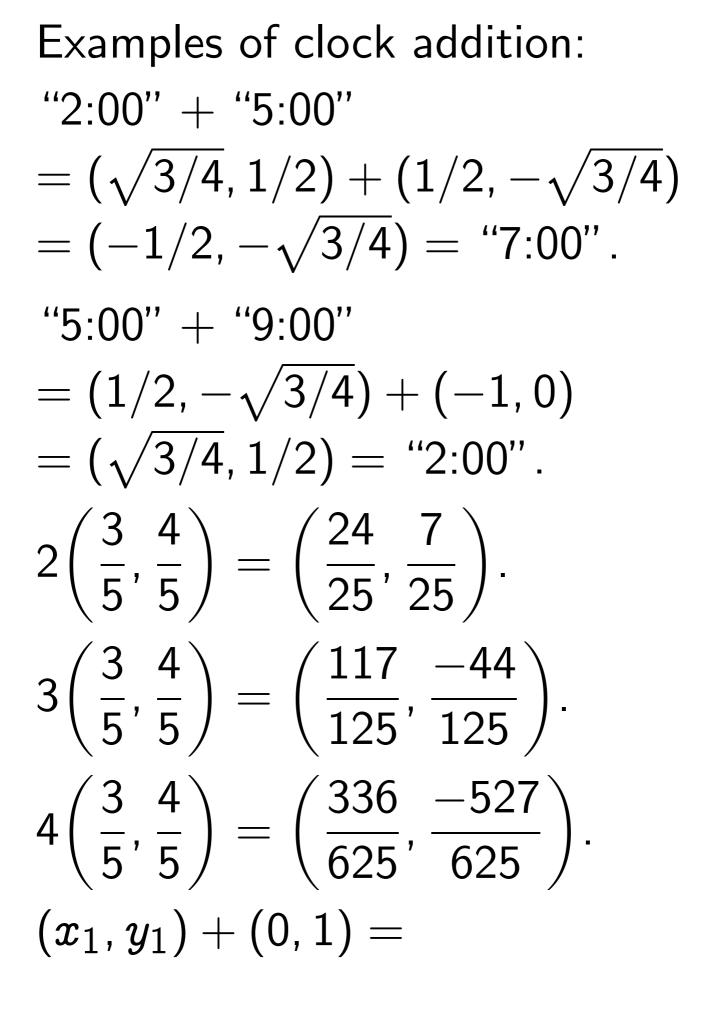
Standard addition formula for the clock $x^2 + y^2 = 1$: sum of (x_1, y_1) and (x_2, y_2) is $(x_1y_2 + y_1x_2, y_1y_2 - x_1x_2)$. Examples of clock addition: "2:00" + "5:00" = $(\sqrt{3/4}, 1/2) + (1/2, -\sqrt{3/4})$ Examples of clock addition: "2:00" + "5:00" = $(\sqrt{3/4}, 1/2) + (1/2, -\sqrt{3/4})$ = $(-1/2, -\sqrt{3/4})$ Examples of clock addition: "2:00" + "5:00" = $(\sqrt{3/4}, 1/2) + (1/2, -\sqrt{3/4})$ = $(-1/2, -\sqrt{3/4}) =$ "7:00". Examples of clock addition: "2:00" + "5:00" = $(\sqrt{3/4}, 1/2) + (1/2, -\sqrt{3/4})$ = $(-1/2, -\sqrt{3/4}) =$ "7:00". "5:00" + "9:00" = $(1/2, -\sqrt{3/4}) + (-1, 0)$ Examples of clock addition: "2:00" + "5:00" = $(\sqrt{3/4}, 1/2) + (1/2, -\sqrt{3/4})$ = $(-1/2, -\sqrt{3/4}) =$ "7:00". "5:00" + "9:00" = $(1/2, -\sqrt{3/4}) + (-1, 0)$ = $(\sqrt{3/4}, 1/2) =$ "2:00".

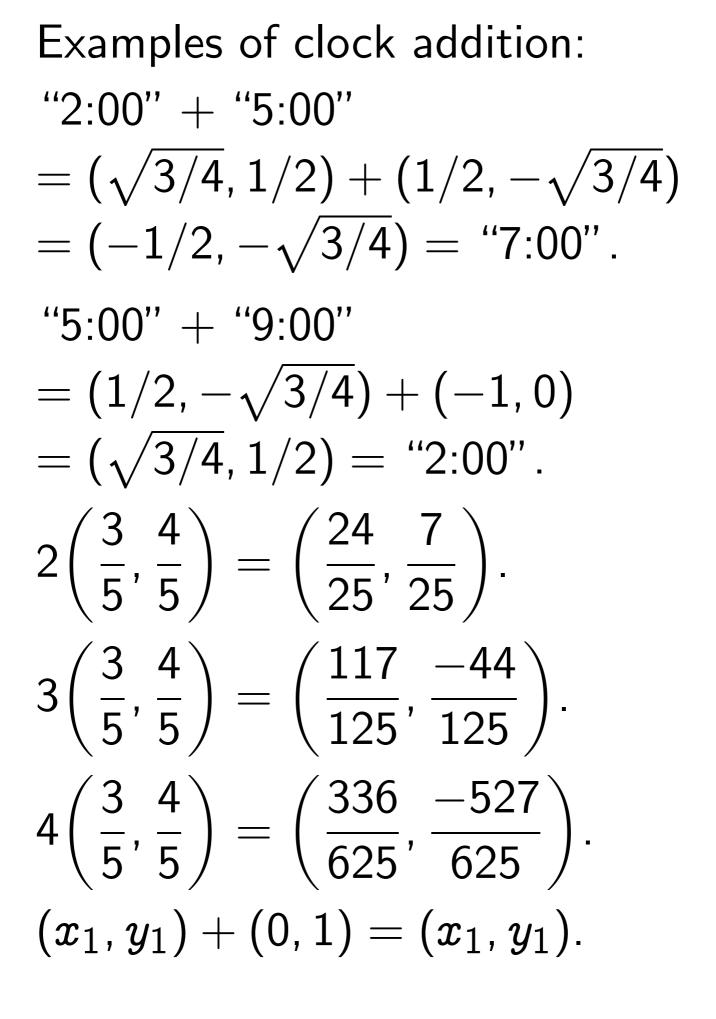
Examples of clock addition: "2:00" + "5:00" $=(\sqrt{3/4}, 1/2) + (1/2, -\sqrt{3/4})$ $=(-1/2,-\sqrt{3/4})=$ "7:00". "5:00" + "9:00" $=(1/2,-\sqrt{3/4})+(-1,0)$ $=(\sqrt{3/4}, 1/2) = 200$ $2\left(\frac{3}{5},\frac{4}{5}\right) =$

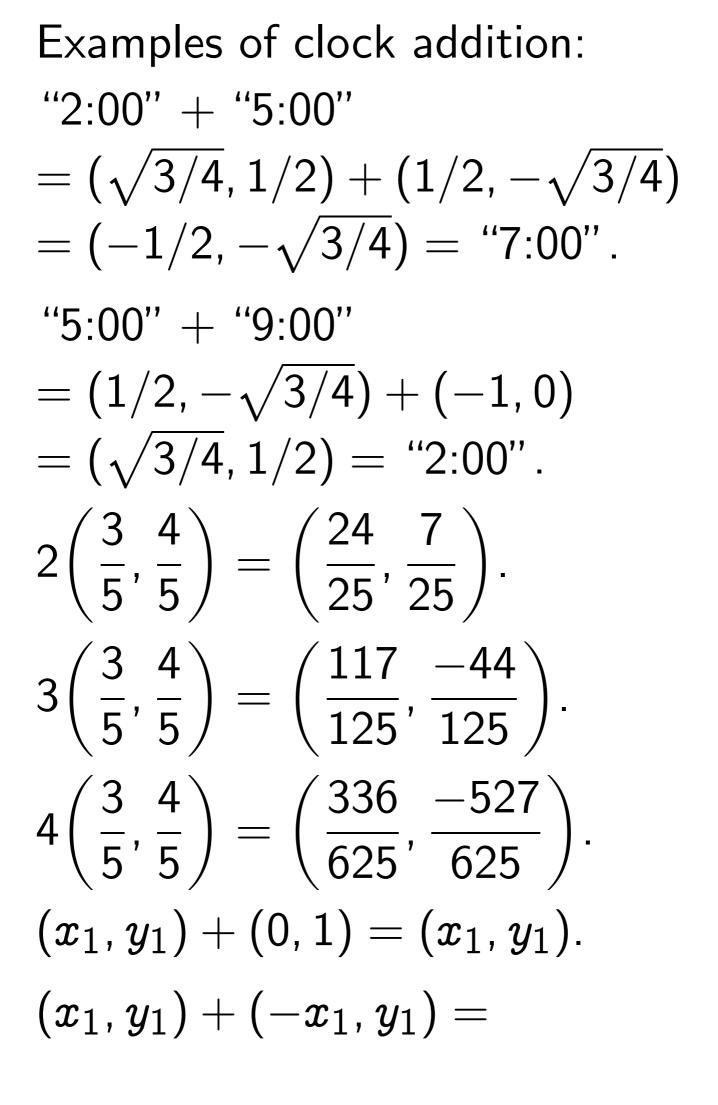
Examples of clock addition: "2:00" + "5:00" $=(\sqrt{3/4}, 1/2) + (1/2, -\sqrt{3/4})$ $=(-1/2,-\sqrt{3/4})=$ "7:00". "5:00" + "9:00" $=(1/2,-\sqrt{3/4})+(-1,0)$ $=(\sqrt{3/4}, 1/2) = 200$ $2\left(\frac{3}{5},\frac{4}{5}\right) = \left(\frac{24}{25},\frac{7}{25}\right).$

Examples of clock addition: "2:00" + "5:00" $=(\sqrt{3/4}, 1/2) + (1/2, -\sqrt{3/4})$ $=(-1/2,-\sqrt{3/4})=$ "7:00". "5:00" + "9:00" $=(1/2,-\sqrt{3/4})+(-1,0)$ $=(\sqrt{3/4}, 1/2) = 200$ $2\left(\frac{3}{5},\frac{4}{5}\right) = \left(\frac{24}{25},\frac{7}{25}\right).$ $3\left(\frac{3}{5},\frac{4}{5}\right) = \left(\frac{117}{125},\frac{-44}{125}\right).$









Examples of clock addition: "(2:00" + "5:00") $=(\sqrt{3/4}, 1/2) + (1/2, -\sqrt{3/4})$ $=(-1/2,-\sqrt{3/4})=$ "7:00". "5:00" + "9:00" $=(1/2,-\sqrt{3/4})+(-1,0)$ $=(\sqrt{3/4}, 1/2) = 200$ $2\left(\frac{3}{5},\frac{4}{5}\right) = \left(\frac{24}{25},\frac{7}{25}\right).$ $3\left(\frac{3}{5},\frac{4}{5}\right) = \left(\frac{117}{125},\frac{-44}{125}\right).$ $4\left(\frac{3}{5},\frac{4}{5}\right) = \left(\frac{336}{625},\frac{-527}{625}\right).$ $(x_1, y_1) + (0, 1) = (x_1, y_1).$ $(x_1, y_1) + (-x_1, y_1) = (0, 1).$

Define $\mathsf{Clock}(\mathbf{R})$ as $\{(x, y) \in \mathbf{R} imes \mathbf{R} : x^2 + y^2 = 1\}.$ As usual $\mathbf{R} = \{\mathsf{real numbers}\}.$

Exercise:

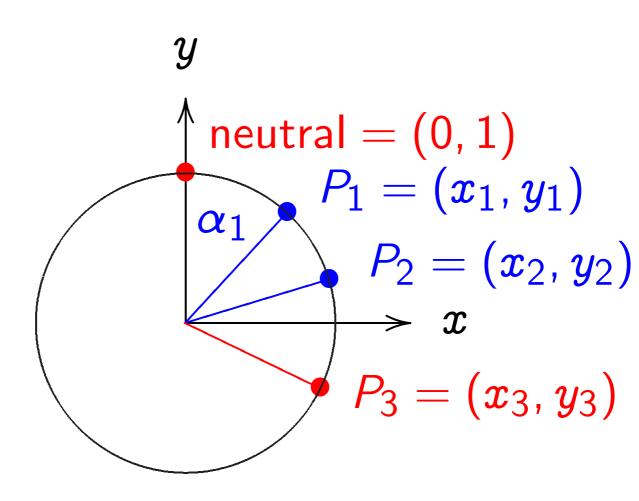
Prove that Clock(**R**)

is a commutative group under clock addition.

In other words:

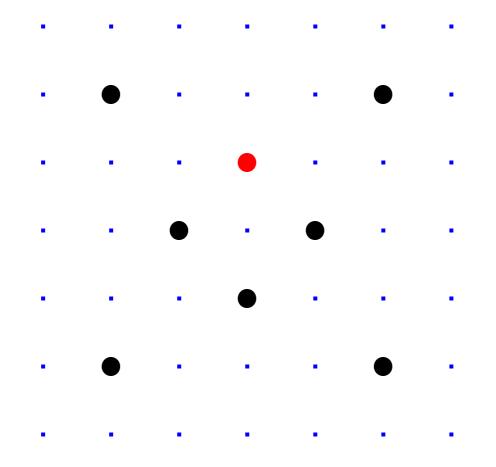
clock sum is in Clock(R); clock addition is commutative; clock addition is associative; there is a neutral element; each element has a negative.

How to remember addition law:



 $x^2 + y^2 = 1$, parametrized by $x = \sin \alpha$, $y = \cos \alpha$. Recall $(\sin(\alpha_1 + \alpha_2), \cos(\alpha_1 + \alpha_2)) =$ $(\sin \alpha_1 \cos \alpha_2 + \cos \alpha_1 \sin \alpha_2,$ $\cos \alpha_1 \cos \alpha_2 - \sin \alpha_1 \sin \alpha_2).$

Clocks over finite fields



Clock(\mathbf{F}_7) = { $(x, y) \in \mathbf{F}_7 \times \mathbf{F}_7 : x^2 + y^2 = 1$ }. Here $\mathbf{F}_7 = \{0, 1, 2, 3, 4, 5, 6\}$ = {0, 1, 2, 3, -3, -2, -1} with +, -, × modulo 7. ${
m Clock}({f F}_7)$ is a group under the same addition law used for ${
m Clock}({f R})$: $(x_1,y_1)+(x_2,y_2)=$ $(x_1y_2+y_1x_2,y_1y_2-x_1x_2).$

Similarly construct a finite group $Clock(\mathbf{F}_q)$ for each prime power q.

 $Clock(\mathbf{F}_q)$ has $\approx q$ elements. "Index-calculus" attacks find discrete logs in $Clock(\mathbf{F}_q)$ in time $exp(O((\log q)^{1/3}(\log \log q)^{2/3})).$ Can use $Clock(\mathbf{F}_q)$ for crypto.

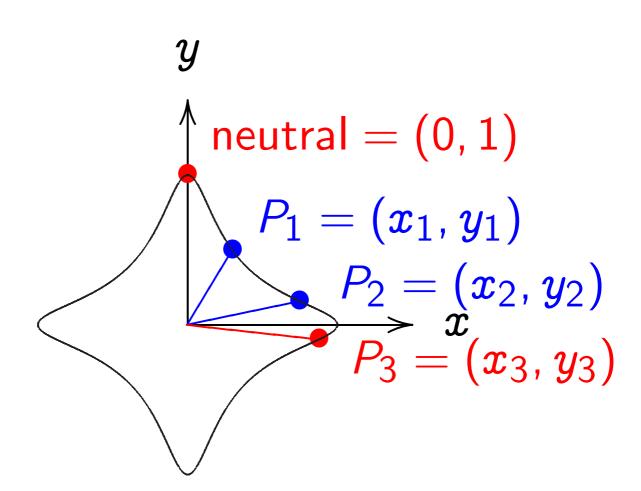
But need hard discrete logs, so need very slow index calculus, so need very large *q*.

This makes arithmetic slow.

Alternative (1985 Miller, independently 1987 Koblitz): Switch from \mathbf{F}_q^* , $\operatorname{Clock}(\mathbf{F}_q)$, etc. to an "elliptic curve."

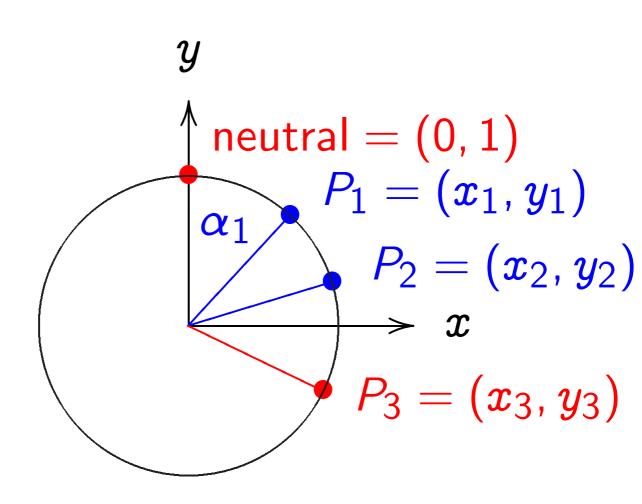
As far as we can tell, index calculus doesn't work against most elliptic curves, so can use much smaller *q*.

Addition on an Edwards curve



 $x^2 + y^2 = 1 - 30x^2y^2.$ Sum of (x_1, y_1) and (x_2, y_2) is $((x_1y_2+y_1x_2)/(1-30x_1x_2y_1y_2),$ $(y_1y_2-x_1x_2)/(1+30x_1x_2y_1y_2)).$

The clock again, for comparison:



 $x^2 + y^2 = 1.$ Sum of (x_1, y_1) and (x_2, y_2) is $(x_1y_2 + y_1x_2,$ $y_1y_2 - x_1x_2).$ "Hey, there were divisions in the Edwards addition law! What if the denominators are 0?"

Answer: They aren't!

If $x^2 + y^2 = 1 - 30x^2y^2$ then $30x^2y^2 < 1$ so $\sqrt{30} |xy| < 1$. "Hey, there were divisions in the Edwards addition law! What if the denominators are 0?"

Answer: They aren't!

If $x^2 + y^2 = 1 - 30x^2y^2$ then $30x^2y^2 < 1$ so $\sqrt{30} |xy| < 1$.

If $x_1^2 + y_1^2 = 1 - 30x_1^2y_1^2$ and $x_2^2 + y_2^2 = 1 - 30x_2^2y_2^2$ then $\sqrt{30} |x_1y_1| < 1$ and $\sqrt{30} |x_2y_2| < 1$ "Hey, there were divisions in the Edwards addition law! What if the denominators are 0?"

Answer: They aren't!

If $x^2 + y^2 = 1 - 30x^2y^2$ then $30x^2y^2 < 1$ so $\sqrt{30} |xy| < 1$.

If $x_1^2 + y_1^2 = 1 - 30x_1^2y_1^2$ and $x_2^2 + y_2^2 = 1 - 30x_2^2y_2^2$ then $\sqrt{30} |x_1y_1| < 1$ and $\sqrt{30} |x_2y_2| < 1$ so $30 |x_1y_1x_2y_2| < 1$ "Hey, there were divisions in the Edwards addition law! What if the denominators are 0?"

Answer: They aren't!

If $x^2 + y^2 = 1 - 30x^2y^2$ then $30x^2y^2 < 1$ so $\sqrt{30} |xy| < 1$.

If $x_1^2 + y_1^2 = 1 - 30x_1^2y_1^2$ and $x_2^2 + y_2^2 = 1 - 30x_2^2y_2^2$ then $\sqrt{30} |x_1y_1| < 1$ and $\sqrt{30} |x_2y_2| < 1$ so $30 |x_1y_1x_2y_2| < 1$ so $1 \pm 30x_1x_2y_1y_2 > 0$. The Edwards addition law $(x_1, y_1) + (x_2, y_2) =$ $((x_1y_2+y_1x_2)/(1-30x_1x_2y_1y_2),$ $(y_1y_2-x_1x_2)/(1+30x_1x_2y_1y_2))$ is a group law for the curve $x^2 + y^2 = 1 - 30x^2y^2.$

Some calculation required: addition result is on curve; addition law is associative.

Other parts of proof are easy: addition law is commutative; (0, 1) is neutral element; $(x_1, y_1) + (-x_1, y_1) = (0, 1).$

More Edwards curves

Fix an odd prime power q. Fix a non-square $d \in \mathbf{F}_q$.

$$egin{aligned} \{(x,y)\in \mathsf{F}_q imes \mathsf{F}_q:\ x^2+y^2&=1+dx^2y^2\} \end{aligned}$$

is a commutative group with $(x_1, y_1) + (x_2, y_2) = (x_3, y_3)$ defined by Edwards addition law:

1

$$x_3 = rac{x_1y_2 + y_1x_2}{1 + dx_1x_2y_1y_2}$$

$$y_3=rac{y_1y_2-x_1x_2}{1-dx_1x_2y_1y_2}$$

Denominators are never 0. But need different proof; " $x^2 + y^2 > 0$ " doesn't work. Denominators are never 0. But need different proof; " $x^2 + y^2 > 0$ " doesn't work. If $x_1^2 + y_1^2 = 1 + dx_1^2y_1^2$ and $x_2^2 + y_2^2 = 1 + dx_2^2y_2^2$ and $dx_1x_2y_1y_2 = \pm 1$ Denominators are never 0. But need different proof; " $x^2 + y^2 > 0$ " doesn't work. If $x_1^2 + y_1^2 = 1 + dx_1^2y_1^2$ and $x_2^2 + y_2^2 = 1 + dx_2^2y_2^2$ and $dx_1x_2y_1y_2 = \pm 1$ then $dx_1^2y_1^2(x_2 + y_2)^2$ $= dx_1^2y_1^2(x_2^2 + y_2^2 + 2x_2y_2)$

Denominators are never 0. But need different proof; " $x^2 + y^2 > 0$ " doesn't work. If $x_1^2 + y_1^2 = 1 + dx_1^2y_1^2$ and $x_2^2 + y_2^2 = 1 + dx_2^2 y_2^2$ and $dx_1x_2y_1y_2 = \pm 1$ then $dx_1^2y_1^2(x_2+y_2)^2$ $= dx_1^2y_1^2(x_2^2 + y_2^2 + 2x_2y_2)$ $= dx_1^2y_1^2(dx_2^2y_2^2 + 1 + 2x_2y_2)$

Denominators are never 0. But need different proof; " $x^2 + y^2 > 0$ " doesn't work. If $x_1^2 + y_1^2 = 1 + dx_1^2y_1^2$ and $x_2^2 + y_2^2 = 1 + dx_2^2y_2^2$ and $dx_1x_2y_1y_2 = \pm 1$ then $dx_1^2y_1^2(x_2+y_2)^2$ $= dx_1^2y_1^2(x_2^2 + y_2^2 + 2x_2y_2)$ $= dx_1^2y_1^2(dx_2^2y_2^2 + 1 + 2x_2y_2)$ $= d^2x_1^2y_1^2x_2^2y_2^2 + dx_1^2y_1^2 + 2dx_1^2y_1^2x_2y_2$

Denominators are never 0. But need different proof; " $x^2 + y^2 > 0$ " doesn't work. If $x_1^2 + y_1^2 = 1 + dx_1^2y_1^2$ and $x_2^2 + y_2^2 = 1 + dx_2^2y_2^2$ and $dx_1x_2y_1y_2 = \pm 1$ then $dx_1^2y_1^2(x_2+y_2)^2$ $= dx_1^2y_1^2(x_2^2 + y_2^2 + 2x_2y_2)$ $= dx_1^2y_1^2(dx_2^2y_2^2 + 1 + 2x_2y_2)$ $=d^{2}x_{1}^{2}y_{1}^{2}x_{2}^{2}y_{2}^{2}+dx_{1}^{2}y_{1}^{2}+2dx_{1}^{2}y_{1}^{2}x_{2}y_{2}^{2}$ $= 1 + dx_1^2 y_1^2 \pm 2x_1 y_1$

Denominators are never 0. But need different proof; " $x^2 + y^2 > 0$ " doesn't work. If $x_1^2 + y_1^2 = 1 + dx_1^2y_1^2$ and $x_2^2 + y_2^2 = 1 + dx_2^2y_2^2$ and $dx_1x_2y_1y_2 = \pm 1$ then $dx_1^2y_1^2(x_2+y_2)^2$ $= dx_1^2y_1^2(x_2^2 + y_2^2 + 2x_2y_2)$ $= dx_1^2y_1^2(dx_2^2y_2^2 + 1 + 2x_2y_2)$ $=d^{2}x_{1}^{2}y_{1}^{2}x_{2}^{2}y_{2}^{2}+dx_{1}^{2}y_{1}^{2}+2dx_{1}^{2}y_{1}^{2}x_{2}y_{2}^{2}$ $x = 1 + dx_1^2 y_1^2 \pm 2x_1 y_1$ $=x_{1}^{2}+y_{1}^{2}\pm 2x_{1}y_{1}$

Denominators are never 0. But need different proof; " $x^2 + y^2 > 0$ " doesn't work. If $x_1^2 + y_1^2 = 1 + dx_1^2y_1^2$ and $x_2^2 + y_2^2 = 1 + dx_2^2y_2^2$ and $dx_1x_2y_1y_2 = \pm 1$ then $dx_1^2y_1^2(x_2+y_2)^2$ $= dx_1^2y_1^2(x_2^2 + y_2^2 + 2x_2y_2)$ $= dx_1^2y_1^2(dx_2^2y_2^2 + 1 + 2x_2y_2)$ $=d^{2}x_{1}^{2}y_{1}^{2}x_{2}^{2}y_{2}^{2}+dx_{1}^{2}y_{1}^{2}+2dx_{1}^{2}y_{1}^{2}x_{2}y_{2}^{2}$ $x = 1 + dx_1^2 y_1^2 \pm 2x_1 y_1$ $=x_1^2+y_1^2\pm 2x_1y_1$ $=(x_1 \pm y_1)^2$.

Case 1:
$$x_2 + y_2
eq 0$$
. Then $d = \left(\frac{x_1 \pm y_1}{x_1 y_1 (x_2 + y_2)}
ight)^2$,

contradiction.

Case 1:
$$x_2+y_2
eq 0$$
. Then $d=\left(rac{x_1\pm y_1}{x_1y_1(x_2+y_2)}
ight)^2$,

contradiction.

Case 2: $x_2 - y_2 \neq 0$. Then $d = \left(\frac{x_1 \mp y_1}{x_1 y_1 (x_2 - y_2)} \right)^2$, contradiction.

Case 1:
$$x_2+y_2
eq 0$$
. Then $d=\left(rac{x_1\pm y_1}{x_1y_1(x_2+y_2)}
ight)^2$,

contradiction.

Case 2: $x_2 - y_2
eq 0$. Then $d = \left(\frac{x_1 \mp y_1}{x_1 y_1 (x_2 - y_2)} \right)^2$,

contradiction.

Case 3: $x_2 + y_2 = x_2 - y_2 = 0$. Then $x_2 = 0$ and $y_2 = 0$, contradiction. This is an elliptic curve (technically, "mod blowups").

Can use this group in crypto.

... if it's a "strong" curve.
Need to compute group order.
If no large prime factor in order,
must switch to another *d*;
this very often happens.

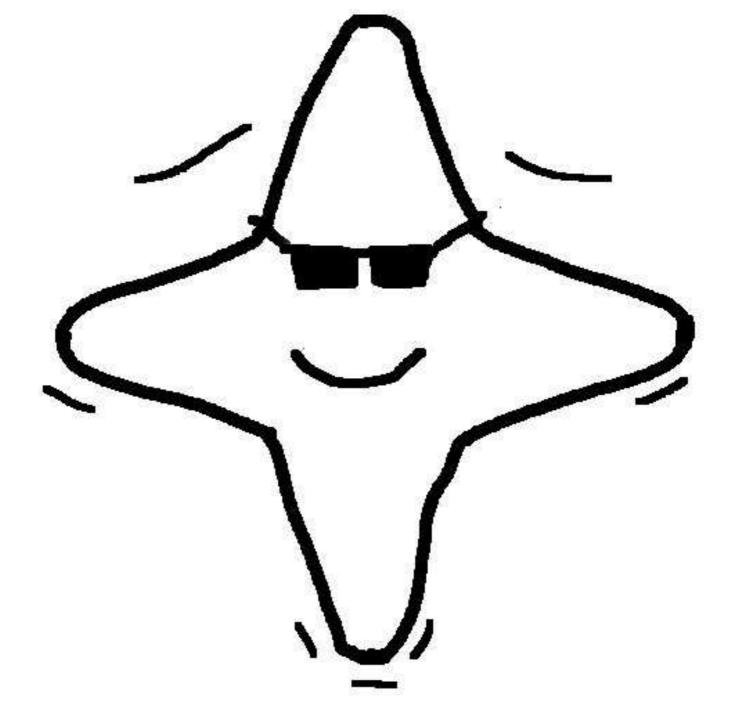
Also check "twist security," "embedding degree," et al.

Safe example, "Curve25519": $q = 2^{255} - 19$; d = 1 - 1/121666. Historical notes:

1761 Euler, 1866 Gauss introduced an addition law for $x^2 + y^2 = 1 - x^2 y^2$, the "lemniscatic elliptic curve."

2007 Edwards generalized to many curves $x^2 + y^2 = 1 + c^4 x^2 y^2$. Theorem: have now obtained all elliptic curves over $\overline{\mathbf{Q}}$.

2007 Bernstein-Lange: Edwards addition law is complete for $x^2 + y^2 = 1 + dx^2y^2$ if $d \neq \Box$; and gives new ECC speed records!



(picture courtesy Tanja Lange)