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This is the curve x2 + y2 = 1.

Warning:

This is not an elliptic curve.

“Elliptic curve” 6= “ellipse.”
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(3=5; 4=5). (�3=5; 4=5).

(3=5;�4=5). (�3=5;�4=5).

(4=5; 3=5). (�4=5; 3=5).
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Many more.
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neutral = (0; 1)� P1 = (x1; y1)��������
P2 = (x2; y2)�iiiiiii

P3 = (x3; y3)�PPPPPPP

Standard addition formula

for the clock x2 + y2 = 1:

sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2; y1y2 � x1x2).
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Define Clock(R) as�
(x; y) 2 R� R : x2 + y2 = 1

	
.

As usual R = freal numbersg.
Exercise:

Prove that Clock(R)

is a commutative group

under clock addition.

In other words:

clock sum is in Clock(R);

clock addition is commutative;

clock addition is associative;

there is a neutral element;

each element has a negative.



How to remember addition law:

y
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neutral = (0; 1)� P1 = (x1; y1)��������
�1 P2 = (x2; y2)�iiiiiii

P3 = (x3; y3)�PPPPPPP

x2 + y2 = 1, parametrized by

x = sin�, y = cos�. Recall

(sin(�1 + �2); cos(�1 + �2)) =

(sin�1 cos�2 + cos�1 sin�2;
cos�1 cos�2 � sin�1 sin�2).



Clocks over finite fields
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Clock(F7) =�
(x; y) 2 F7 � F7 : x2 + y2 = 1

	
.

Here F7 = f0; 1; 2; 3; 4; 5; 6g
= f0; 1; 2; 3;�3;�2;�1g
with +;�;� modulo 7.



Clock(F7) is a group

under the same addition law

used for Clock(R):

(x1; y1) + (x2; y2) =

(x1y2 + y1x2; y1y2 � x1x2).

Similarly construct a

finite group Clock(Fq)
for each prime power q.
Clock(Fq) has � q elements.

“Index-calculus” attacks find

discrete logs in Clock(Fq) in time

exp(O((log q)1=3(log log q)2=3)).



Can use Clock(Fq) for crypto.

But need hard discrete logs,

so need very slow index calculus,

so need very large q.
This makes arithmetic slow.

Alternative (1985 Miller,

independently 1987 Koblitz):

Switch from F�q , Clock(Fq), etc.

to an “elliptic curve.”

As far as we can tell,

index calculus doesn’t work

against most elliptic curves,

so can use much smaller q.



Addition on an Edwards curve
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neutral = (0; 1)�
P1 = (x1; y1)��

�
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P2 = (x2; y2)�fffff

P3 = (x3; y3)
�[[[[[[

x2 + y2 = 1� 30x2y2.

Sum of (x1; y1) and (x2; y2) is

((x1y2+y1x2)=(1�30x1x2y1y2),

(y1y2�x1x2)=(1+30x1x2y1y2)).



The clock again, for comparison:
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P3 = (x3; y3)�PPPPPPP

x2 + y2 = 1.

Sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2,

y1y2 � x1x2).
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in the Edwards addition law!

What if the denominators are 0?”

Answer: They aren’t!

If x2 + y2 = 1� 30x2y2

then 30x2y2 < 1

so
p
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“Hey, there were divisions

in the Edwards addition law!

What if the denominators are 0?”

Answer: They aren’t!

If x2 + y2 = 1� 30x2y2

then 30x2y2 < 1

so
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1
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p
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The Edwards addition law

(x1; y1) + (x2; y2) =

((x1y2+y1x2)=(1�30x1x2y1y2),

(y1y2�x1x2)=(1+30x1x2y1y2))

is a group law for the curve

x2 + y2 = 1� 30x2y2.

Some calculation required:

addition result is on curve;

addition law is associative.

Other parts of proof are easy:

addition law is commutative;

(0; 1) is neutral element;

(x1; y1) + (�x1; y1) = (0; 1).



More Edwards curves

Fix an odd prime power q.
Fix a non-square d 2 Fq.
f(x; y) 2 Fq � Fq :

x2 + y2 = 1 + dx2y2g
is a commutative group with

(x1; y1) + (x2; y2) = (x3; y3)

defined by Edwards addition law:

x3 =
x1y2 + y1x2

1 + dx1x2y1y2
,

y3 =
y1y2 � x1x2

1� dx1x2y1y2
.
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“x2 + y2 > 0” doesn’t work.



Denominators are never 0.

But need different proof;

“x2 + y2 > 0” doesn’t work.

If x2
1 + y2

1 = 1 + dx2
1y2

1

and x2
2 + y2

2 = 1 + dx2
2y2

2

and dx1x2y1y2 = �1



Denominators are never 0.

But need different proof;

“x2 + y2 > 0” doesn’t work.

If x2
1 + y2

1 = 1 + dx2
1y2

1

and x2
2 + y2

2 = 1 + dx2
2y2

2

and dx1x2y1y2 = �1

then dx2
1y2

1(x2 + y2)
2

= dx2
1y2

1(x2
2 + y2

2 + 2x2y2)



Denominators are never 0.

But need different proof;

“x2 + y2 > 0” doesn’t work.

If x2
1 + y2

1 = 1 + dx2
1y2

1

and x2
2 + y2

2 = 1 + dx2
2y2

2

and dx1x2y1y2 = �1

then dx2
1y2

1(x2 + y2)
2

= dx2
1y2

1(x2
2 + y2

2 + 2x2y2)

= dx2
1y2

1(dx2
2y2

2 + 1 + 2x2y2)



Denominators are never 0.

But need different proof;

“x2 + y2 > 0” doesn’t work.

If x2
1 + y2

1 = 1 + dx2
1y2

1

and x2
2 + y2

2 = 1 + dx2
2y2

2

and dx1x2y1y2 = �1

then dx2
1y2

1(x2 + y2)
2

= dx2
1y2

1(x2
2 + y2

2 + 2x2y2)

= dx2
1y2

1(dx2
2y2

2 + 1 + 2x2y2)

= d2x2
1y2

1x2
2y2

2+dx2
1y2

1+2dx2
1y2

1x2y2



Denominators are never 0.

But need different proof;

“x2 + y2 > 0” doesn’t work.

If x2
1 + y2

1 = 1 + dx2
1y2

1

and x2
2 + y2

2 = 1 + dx2
2y2

2

and dx1x2y1y2 = �1

then dx2
1y2

1(x2 + y2)
2

= dx2
1y2

1(x2
2 + y2

2 + 2x2y2)

= dx2
1y2

1(dx2
2y2

2 + 1 + 2x2y2)

= d2x2
1y2

1x2
2y2

2+dx2
1y2

1+2dx2
1y2

1x2y2

= 1 + dx2
1y2

1 � 2x1y1



Denominators are never 0.

But need different proof;

“x2 + y2 > 0” doesn’t work.

If x2
1 + y2

1 = 1 + dx2
1y2

1

and x2
2 + y2

2 = 1 + dx2
2y2

2

and dx1x2y1y2 = �1

then dx2
1y2

1(x2 + y2)
2

= dx2
1y2

1(x2
2 + y2

2 + 2x2y2)

= dx2
1y2

1(dx2
2y2

2 + 1 + 2x2y2)

= d2x2
1y2

1x2
2y2

2+dx2
1y2

1+2dx2
1y2

1x2y2

= 1 + dx2
1y2

1 � 2x1y1

= x2
1 + y2

1 � 2x1y1



Denominators are never 0.

But need different proof;

“x2 + y2 > 0” doesn’t work.

If x2
1 + y2

1 = 1 + dx2
1y2

1

and x2
2 + y2

2 = 1 + dx2
2y2

2

and dx1x2y1y2 = �1

then dx2
1y2

1(x2 + y2)
2

= dx2
1y2

1(x2
2 + y2

2 + 2x2y2)

= dx2
1y2

1(dx2
2y2

2 + 1 + 2x2y2)

= d2x2
1y2

1x2
2y2

2+dx2
1y2

1+2dx2
1y2

1x2y2

= 1 + dx2
1y2

1 � 2x1y1

= x2
1 + y2

1 � 2x1y1

= (x1 � y1)
2.
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Case 1: x2 + y2 6= 0. Then

d =

� x1 � y1

x1y1(x2 + y2)

�2

,

contradiction.

Case 2: x2 � y2 6= 0. Then

d =

� x1 � y1

x1y1(x2 � y2)

�2

,

contradiction.

Case 3: x2 + y2 = x2 � y2 = 0.

Then x2 = 0 and y2 = 0,

contradiction.



This is an elliptic curve

(technically, “mod blowups”).

Can use this group in crypto.

: : : if it’s a “strong” curve.

Need to compute group order.

If no large prime factor in order,

must switch to another d;
this very often happens.

Also check “twist security,”

“embedding degree,” et al.

Safe example, “Curve25519”:

q = 2255 � 19; d = 1� 1=121666.



Historical notes:

1761 Euler, 1866 Gauss

introduced an addition law

for x2 + y2 = 1� x2y2,

the “lemniscatic elliptic curve.”

2007 Edwards generalized to

many curves x2+y2 = 1+4x2y2.

Theorem: have now obtained

all elliptic curves over Q.

2007 Bernstein–Lange:

Edwards addition law is complete

for x2 + y2 = 1 + dx2y2 if d 6= �;

and gives new ECC speed records!



(picture courtesy Tanja Lange)


