Introduction to elliptic curves
D. J. Bernstein

University of Illinois at Chicago

The clock

y

This is the curve $x^{2}+y^{2}=1$.
Warning:
This is not an elliptic curve.
"Elliptic curve" $=$ "ellipse."

Examples of points on this curve:

$(0,1)=" 12: 00$ ".

Examples of points on this curve:

$(0,1)=" 12: 00$ ".
$(0,-1)=$

Examples of points on this curve:

$$
\begin{aligned}
& (0,1)=" 12: 00 " \\
& (0,-1)=" 6: 00 "
\end{aligned}
$$

Examples of points on this curve:
$(0,1)=" 12: 00$ ".
$(0,-1)=" 6: 00 "$.
$(1,0)=$
$(-1,0)=$

Examples of points on this curve:
$(0,1)=" 12: 00$ ".
$(0,-1)=" 6: 00 "$.
$(1,0)=" 3: 00 "$.
$(-1,0)=" 9: 00 "$.

Examples of points on this curve:
$(0,1)=" 12: 00$ ".
$(0,-1)=" 6: 00 "$.
$(1,0)=" 3: 00$ ".
$(-1,0)=" 9: 00 "$.
$(\sqrt{3 / 4}, 1 / 2)=$

Examples of points on this curve:
$(0,1)=" 12: 00$ ".
$(0,-1)=" 6: 00 "$.
$(1,0)=" 3: 00 "$.
$(-1,0)=" 9: 00 "$.
$(\sqrt{3 / 4}, 1 / 2)=" 2: 00 "$.

Examples of points on this curve:
$(0,1)=" 12: 00$ ".
$(0,-1)=" 6: 00 "$.
$(1,0)=" 3: 00$ ".
$(-1,0)=" 9: 00 "$.
$(\sqrt{3 / 4}, 1 / 2)=" 2: 00 "$.
$(1 / 2,-\sqrt{3 / 4})=$
$(-1 / 2,-\sqrt{3 / 4})=$

Examples of points on this curve:
$(0,1)=" 12: 00 "$.
$(0,-1)=" 6: 00 "$.
$(1,0)=" 3: 00 "$.
$(-1,0)=" 9: 00 "$.
$(\sqrt{3 / 4}, 1 / 2)=" 2: 00 "$.
$(1 / 2,-\sqrt{3 / 4})=" 5: 00 "$.
$(-1 / 2,-\sqrt{3 / 4})=" 7: 00 "$.

Examples of points on this curve:
$(0,1)=" 12: 00 "$.
$(0,-1)=" 6: 00 "$.
$(1,0)=" 3: 00 "$.
$(-1,0)=" 9: 00 "$.
$(\sqrt{3 / 4}, 1 / 2)=" 2: 00 "$.
$(1 / 2,-\sqrt{3 / 4})=" 5: 00 "$.
$(-1 / 2,-\sqrt{3 / 4})=" 7: 00 "$.
$(\sqrt{1 / 2}, \sqrt{1 / 2})=" 1: 30 "$.

Examples of points on this curve:
$(0,1)=" 12: 00 "$.
$(0,-1)=" 6: 00 "$.
$(1,0)=" 3: 00 "$.
$(-1,0)=" 9: 00 "$.
$(\sqrt{3 / 4}, 1 / 2)=" 2: 00 "$.
$(1 / 2,-\sqrt{3 / 4})=" 5: 00 "$.
$(-1 / 2,-\sqrt{3 / 4})=" 7: 00 "$.
$(\sqrt{1 / 2}, \sqrt{1 / 2})=" 1: 30 "$.
$(3 / 5,4 / 5)$. $(-3 / 5,4 / 5)$.

Examples of points on this curve:
$(0,1)=" 12: 00$ ".
$(0,-1)=" 6: 00 "$.
$(1,0)=" 3: 00$ ".
$(-1,0)=" 9: 00 "$.
$(\sqrt{3 / 4}, 1 / 2)=" 2: 00 "$.
$(1 / 2,-\sqrt{3 / 4})=" 5: 00 "$.
$(-1 / 2,-\sqrt{3 / 4})=" 7: 00 "$.
$(\sqrt{1 / 2}, \sqrt{1 / 2})=" 1: 30 "$.
$(3 / 5,4 / 5)$. ($-3 / 5,4 / 5$).
$(3 / 5,-4 / 5) .(-3 / 5,-4 / 5)$.
$(4 / 5,3 / 5) .(-4 / 5,3 / 5)$.
$(4 / 5,-3 / 5) .(-4 / 5,-3 / 5)$.
Many more.

Clock addition

y

Standard addition formula for the clock $x^{2}+y^{2}=1$: sum of $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is $\left(x_{1} y_{2}+y_{1} x_{2}, y_{1} y_{2}-x_{1} x_{2}\right)$.

Examples of clock addition:

$$
\begin{aligned}
& \text { "2:00" }+ \text { " } 5: 00 " \\
& =(\sqrt{3 / 4}, 1 / 2)+(1 / 2,-\sqrt{3 / 4})
\end{aligned}
$$

Examples of clock addition:

$$
\begin{aligned}
& " 2: 00 "+" 5: 00 " \\
& =(\sqrt{3 / 4}, 1 / 2)+(1 / 2,-\sqrt{3 / 4}) \\
& =(-1 / 2,-\sqrt{3 / 4})
\end{aligned}
$$

Examples of clock addition:

$$
\begin{aligned}
& " 2: 00 "+" 5: 00 " \\
& =(\sqrt{3 / 4}, 1 / 2)+(1 / 2,-\sqrt{3 / 4}) \\
& =(-1 / 2,-\sqrt{3 / 4})=" 7: 00 " .
\end{aligned}
$$

Examples of clock addition:

$$
\begin{aligned}
& " 2: 00 "+" 5: 00 " \\
& =(\sqrt{3 / 4}, 1 / 2)+(1 / 2,-\sqrt{3 / 4}) \\
& =(-1 / 2,-\sqrt{3 / 4})=" 7: 00 " .
\end{aligned}
$$

"5:00" + "9:00"

$$
=(1 / 2,-\sqrt{3 / 4})+(-1,0)
$$

Examples of clock addition:

 "2:00" + "5:00"$=(\sqrt{3 / 4}, 1 / 2)+(1 / 2,-\sqrt{3 / 4})$
$=(-1 / 2,-\sqrt{3 / 4})=" 7: 00 "$.
" $5: 00$ " + "9:00"
$=(1 / 2,-\sqrt{3 / 4})+(-1,0)$
$=(\sqrt{3 / 4}, 1 / 2)=" 2: 00 "$.

Examples of clock addition:

$$
\begin{aligned}
& " 2: 00 "+" 5: 00 " \\
& =(\sqrt{3 / 4}, 1 / 2)+(1 / 2,-\sqrt{3 / 4}) \\
& =(-1 / 2,-\sqrt{3 / 4})=" 7: 00 " .
\end{aligned}
$$

"5:00" + "9:00"

$$
=(1 / 2,-\sqrt{3 / 4})+(-1,0)
$$

$$
=(\sqrt{3 / 4}, 1 / 2)=" 2: 00 " .
$$

$$
2\left(\frac{3}{5}, \frac{4}{5}\right)=
$$

Examples of clock addition: "2:00" + "5:00"
$=(\sqrt{3 / 4}, 1 / 2)+(1 / 2,-\sqrt{3 / 4})$
$=(-1 / 2,-\sqrt{3 / 4})=" 7: 00 "$.
" $5: 00$ " + "9:00"
$=(1 / 2,-\sqrt{3 / 4})+(-1,0)$
$=(\sqrt{3 / 4}, 1 / 2)=" 2: 00 "$.
$2\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{24}{25}, \frac{7}{25}\right)$.

Examples of clock addition: "2:00" + " $5: 00$ "
$=(\sqrt{3 / 4}, 1 / 2)+(1 / 2,-\sqrt{3 / 4})$
$=(-1 / 2,-\sqrt{3 / 4})=" 7: 00$ "
" $5: 00 "+$ "9:00"
$=(1 / 2,-\sqrt{3 / 4})+(-1,0)$
$=(\sqrt{3 / 4}, 1 / 2)=" 2: 00 "$.
$2\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{24}{25}, \frac{7}{25}\right)$.
$3\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{117}{125}, \frac{-44}{125}\right)$.

Examples of clock addition: "2:00" + "5:00"
$=(\sqrt{3 / 4}, 1 / 2)+(1 / 2,-\sqrt{3 / 4})$
$=(-1 / 2,-\sqrt{3 / 4})=" 7: 00 "$.
" $5: 00 "+$ " $9: 00 "$
$=(1 / 2,-\sqrt{3 / 4})+(-1,0)$
$=(\sqrt{3 / 4}, 1 / 2)=" 2: 00 "$.
$2\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{24}{25}, \frac{7}{25}\right)$.
$3\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{117}{125}, \frac{-44}{125}\right)$.
$4\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{336}{625}, \frac{-527}{625}\right)$.

Examples of clock addition: " $2: 00$ " + " $5: 00$ "
$=(\sqrt{3 / 4}, 1 / 2)+(1 / 2,-\sqrt{3 / 4})$
$=(-1 / 2,-\sqrt{3 / 4})=" 7: 00 "$.
" $5: 00 "+$ "9:00"
$=(1 / 2,-\sqrt{3 / 4})+(-1,0)$
$=(\sqrt{3 / 4}, 1 / 2)=" 2: 00 "$.
$2\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{24}{25}, \frac{7}{25}\right)$.
$3\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{117}{125}, \frac{-44}{125}\right)$.
$4\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{336}{625}, \frac{-527}{625}\right)$.
$\left(x_{1}, y_{1}\right)+(0,1)=$

Examples of clock addition: "2:00" + "5:00"
$=(\sqrt{3 / 4}, 1 / 2)+(1 / 2,-\sqrt{3 / 4})$
$=(-1 / 2,-\sqrt{3 / 4})=" 7: 00 "$.
" $5: 00 "+$ "9:00"
$=(1 / 2,-\sqrt{3 / 4})+(-1,0)$
$=(\sqrt{3 / 4}, 1 / 2)=" 2: 00 "$.
$2\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{24}{25}, \frac{7}{25}\right)$.
$3\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{117}{125}, \frac{-44}{125}\right)$.
$4\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{336}{625}, \frac{-527}{625}\right)$.
$\left(x_{1}, y_{1}\right)+(0,1)=\left(x_{1}, y_{1}\right)$.

Examples of clock addition: "2:00" + "5:00"
$=(\sqrt{3 / 4}, 1 / 2)+(1 / 2,-\sqrt{3 / 4})$
$=(-1 / 2,-\sqrt{3 / 4})=" 7: 00 "$.
" $5: 00 "+$ " $9: 00 "$
$=(1 / 2,-\sqrt{3 / 4})+(-1,0)$
$=(\sqrt{3 / 4}, 1 / 2)=" 2: 00 "$.
$2\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{24}{25}, \frac{7}{25}\right)$.
$3\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{117}{125}, \frac{-44}{125}\right)$.
$4\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{336}{625}, \frac{-527}{625}\right)$.
$\left(x_{1}, y_{1}\right)+(0,1)=\left(x_{1}, y_{1}\right)$.
$\left(x_{1}, y_{1}\right)+\left(-x_{1}, y_{1}\right)=$

Examples of clock addition: "2:00" + "5:00"
$=(\sqrt{3 / 4}, 1 / 2)+(1 / 2,-\sqrt{3 / 4})$
$=(-1 / 2,-\sqrt{3 / 4})=" 7: 00 "$.
" $5: 00 "+$ " $9: 00 "$
$=(1 / 2,-\sqrt{3 / 4})+(-1,0)$
$=(\sqrt{3 / 4}, 1 / 2)=" 2: 00 "$.
$2\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{24}{25}, \frac{7}{25}\right)$.
$3\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{117}{125}, \frac{-44}{125}\right)$.
$4\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{336}{625}, \frac{-527}{625}\right)$.
$\left(x_{1}, y_{1}\right)+(0,1)=\left(x_{1}, y_{1}\right)$.
$\left(x_{1}, y_{1}\right)+\left(-x_{1}, y_{1}\right)=(0,1)$.

Define $\operatorname{Clock}(\mathbf{R})$ as
$\left\{(x, y) \in \mathbf{R} \times \mathbf{R}: x^{2}+y^{2}=1\right\}$.
As usual $\mathbf{R}=\{$ real numbers $\}$.
Exercise:
Prove that $\operatorname{Clock}(\mathbf{R})$
is a commutative group
under clock addition.
In other words:
clock sum is in $\operatorname{Clock}(\mathbf{R})$;
clock addition is commutative;
clock addition is associative;
there is a neutral element; each element has a negative.

How to remember addition law:

y

$x^{2}+y^{2}=1$, parametrized by $x=\sin \alpha, \quad y=\cos \alpha . \quad$ Recall $\left(\sin \left(\alpha_{1}+\alpha_{2}\right), \cos \left(\alpha_{1}+\alpha_{2}\right)\right)=$ $\left(\sin \alpha_{1} \cos \alpha_{2}+\cos \alpha_{1} \sin \alpha_{2}\right.$, $\left.\cos \alpha_{1} \cos \alpha_{2}-\sin \alpha_{1} \sin \alpha_{2}\right)$.

Clocks over finite fields

$\operatorname{Clock}\left(\mathbf{F}_{7}\right)=$
$\left\{(x, y) \in \mathbf{F}_{7} \times \mathbf{F}_{7}: x^{2}+y^{2}=1\right\}$.
Here $\mathbf{F}_{7}=\{0,1,2,3,4,5,6\}$
$=\{0,1,2,3,-3,-2,-1\}$
with,,$+- \times$ modulo 7 .
$\operatorname{Clock}\left(\mathbf{F}_{7}\right)$ is a group
under the same addition law used for $\operatorname{Clock}(\mathbf{R})$:
$\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=$
$\left(x_{1} y_{2}+y_{1} x_{2}, y_{1} y_{2}-x_{1} x_{2}\right)$.
Similarly construct a
finite group $\operatorname{Clock}\left(\mathbf{F}_{q}\right)$
for each prime power q.
Clock $\left(\mathbf{F}_{q}\right)$ has $\approx q$ elements. "Index-calculus" attacks find discrete logs in $\operatorname{Clock}\left(\mathbf{F}_{q}\right)$ in time $\exp \left(O\left((\log q)^{1 / 3}(\log \log q)^{2 / 3}\right)\right)$.

Can use $\operatorname{Clock}\left(\mathbf{F}_{q}\right)$ for crypto.
But need hard discrete logs,
so need very slow index calculus,
so need very large q.
This makes arithmetic slow.
Alternative (1985 Miller, independently 1987 Koblitz):
Switch from $\mathbf{F}_{q}^{*}, \operatorname{Clock}\left(\mathbf{F}_{q}\right)$, etc. to an "elliptic curve."

As far as we can tell, index calculus doesn't work against most elliptic curves, so can use much smaller q.

Addition on an Edwards curve

y

$x^{2}+y^{2}=1-30 x^{2} y^{2}$.
Sum of $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is $\left(\left(x_{1} y_{2}+y_{1} x_{2}\right) /\left(1-30 x_{1} x_{2} y_{1} y_{2}\right)\right.$,
$\left.\left(y_{1} y_{2}-x_{1} x_{2}\right) /\left(1+30 x_{1} x_{2} y_{1} y_{2}\right)\right)$.

The clock again, for comparison:

y

$x^{2}+y^{2}=1$.
Sum of $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is $\left(x_{1} y_{2}+y_{1} x_{2}\right.$,
$\left.y_{1} y_{2}-x_{1} x_{2}\right)$.
"Hey, there were divisions
in the Edwards addition law!
What if the denominators are 0?"
Answer: They aren't!
If $x^{2}+y^{2}=1-30 x^{2} y^{2}$
then $30 x^{2} y^{2}<1$
so $\sqrt{30}|x y|<1$.
"Hey, there were divisions
in the Edwards addition law!
What if the denominators are 0?"
Answer: They aren't!
If $x^{2}+y^{2}=1-30 x^{2} y^{2}$
then $30 x^{2} y^{2}<1$
so $\sqrt{30}|x y|<1$.
If $x_{1}^{2}+y_{1}^{2}=1-30 x_{1}^{2} y_{1}^{2}$
and $x_{2}^{2}+y_{2}^{2}=1-30 x_{2}^{2} y_{2}^{2}$
then $\sqrt{30}\left|x_{1} y_{1}\right|<1$
and $\sqrt{30}\left|x_{2} y_{2}\right|<1$
"Hey, there were divisions
in the Edwards addition law!
What if the denominators are 0?"
Answer: They aren't!
If $x^{2}+y^{2}=1-30 x^{2} y^{2}$
then $30 x^{2} y^{2}<1$
so $\sqrt{30}|x y|<1$.
If $x_{1}^{2}+y_{1}^{2}=1-30 x_{1}^{2} y_{1}^{2}$
and $x_{2}^{2}+y_{2}^{2}=1-30 x_{2}^{2} y_{2}^{2}$
then $\sqrt{30}\left|x_{1} y_{1}\right|<1$ and $\sqrt{30}\left|x_{2} y_{2}\right|<1$ so $30\left|x_{1} y_{1} x_{2} y_{2}\right|<1$
"Hey, there were divisions
in the Edwards addition law!
What if the denominators are 0?"
Answer: They aren't!
If $x^{2}+y^{2}=1-30 x^{2} y^{2}$
then $30 x^{2} y^{2}<1$
so $\sqrt{30}|x y|<1$.
If $x_{1}^{2}+y_{1}^{2}=1-30 x_{1}^{2} y_{1}^{2}$
and $x_{2}^{2}+y_{2}^{2}=1-30 x_{2}^{2} y_{2}^{2}$
then $\sqrt{30}\left|x_{1} y_{1}\right|<1$
and $\sqrt{30}\left|x_{2} y_{2}\right|<1$
so $30\left|x_{1} y_{1} x_{2} y_{2}\right|<1$
so $1 \pm 30 x_{1} x_{2} y_{1} y_{2}>0$.

The Edwards addition law
$\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=$
$\left(\left(x_{1} y_{2}+y_{1} x_{2}\right) /\left(1-30 x_{1} x_{2} y_{1} y_{2}\right)\right.$,
$\left.\left(y_{1} y_{2}-x_{1} x_{2}\right) /\left(1+30 x_{1} x_{2} y_{1} y_{2}\right)\right)$
is a group law for the curve
$x^{2}+y^{2}=1-30 x^{2} y^{2}$.
Some calculation required: addition result is on curve; addition law is associative.

Other parts of proof are easy: addition law is commutative; $(0,1)$ is neutral element; $\left(x_{1}, y_{1}\right)+\left(-x_{1}, y_{1}\right)=(0,1)$.

More Edwards curves

Fix an odd prime power q.
Fix a non-square $d \in \mathbf{F}_{q}$.
$\left\{(x, y) \in \mathbf{F}_{q} \times \mathbf{F}_{q}:\right.$

$$
\left.x^{2}+y^{2}=1+d x^{2} y^{2}\right\}
$$

is a commutative group with $\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{3}, y_{3}\right)$ defined by Edwards addition law:
$x_{3}=\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}}$,
$y_{3}=\frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}$.

Denominators are never 0 .
But need different proof; " $x^{2}+y^{2}>0$ " doesn't work.

Denominators are never 0 . But need different proof; " $x^{2}+y^{2}>0$ " doesn't work.

If $x_{1}^{2}+y_{1}^{2}=1+d x_{1}^{2} y_{1}^{2}$
and $x_{2}^{2}+y_{2}^{2}=1+d x_{2}^{2} y_{2}^{2}$ and $d x_{1} x_{2} y_{1} y_{2}= \pm 1$

Denominators are never 0 .

But need different proof;
" $x^{2}+y^{2}>0$ " doesn't work.
If $x_{1}^{2}+y_{1}^{2}=1+d x_{1}^{2} y_{1}^{2}$
and $x_{2}^{2}+y_{2}^{2}=1+d x_{2}^{2} y_{2}^{2}$
and $d x_{1} x_{2} y_{1} y_{2}= \pm 1$
then $d x_{1}^{2} y_{1}^{2}\left(x_{2}+y_{2}\right)^{2}$
$=d x_{1}^{2} y_{1}^{2}\left(x_{2}^{2}+y_{2}^{2}+2 x_{2} y_{2}\right)$

Denominators are never 0 .

But need different proof;
" $x^{2}+y^{2}>0$ " doesn't work.
If $x_{1}^{2}+y_{1}^{2}=1+d x_{1}^{2} y_{1}^{2}$ and $x_{2}^{2}+y_{2}^{2}=1+d x_{2}^{2} y_{2}^{2}$ and $d x_{1} x_{2} y_{1} y_{2}= \pm 1$ then $d x_{1}^{2} y_{1}^{2}\left(x_{2}+y_{2}\right)^{2}$ $=d x_{1}^{2} y_{1}^{2}\left(x_{2}^{2}+y_{2}^{2}+2 x_{2} y_{2}\right)$
$=d x_{1}^{2} y_{1}^{2}\left(d x_{2}^{2} y_{2}^{2}+1+2 x_{2} y_{2}\right)$

Denominators are never 0 .

But need different proof;
" $x^{2}+y^{2}>0$ " doesn't work.
If $x_{1}^{2}+y_{1}^{2}=1+d x_{1}^{2} y_{1}^{2}$ and $x_{2}^{2}+y_{2}^{2}=1+d x_{2}^{2} y_{2}^{2}$ and $d x_{1} x_{2} y_{1} y_{2}= \pm 1$ then $d x_{1}^{2} y_{1}^{2}\left(x_{2}+y_{2}\right)^{2}$ $=d x_{1}^{2} y_{1}^{2}\left(x_{2}^{2}+y_{2}^{2}+2 x_{2} y_{2}\right)$
$=d x_{1}^{2} y_{1}^{2}\left(d x_{2}^{2} y_{2}^{2}+1+2 x_{2} y_{2}\right)$
$=d^{2} x_{1}^{2} y_{1}^{2} x_{2}^{2} y_{2}^{2}+d x_{1}^{2} y_{1}^{2}+2 d x_{1}^{2} y_{1}^{2} x_{2} y_{2}$

Denominators are never 0 .

But need different proof;
" $x^{2}+y^{2}>0$ " doesn't work.
If $x_{1}^{2}+y_{1}^{2}=1+d x_{1}^{2} y_{1}^{2}$ and $x_{2}^{2}+y_{2}^{2}=1+d x_{2}^{2} y_{2}^{2}$ and $d x_{1} x_{2} y_{1} y_{2}= \pm 1$ then $d x_{1}^{2} y_{1}^{2}\left(x_{2}+y_{2}\right)^{2}$ $=d x_{1}^{2} y_{1}^{2}\left(x_{2}^{2}+y_{2}^{2}+2 x_{2} y_{2}\right)$
$=d x_{1}^{2} y_{1}^{2}\left(d x_{2}^{2} y_{2}^{2}+1+2 x_{2} y_{2}\right)$
$=d^{2} x_{1}^{2} y_{1}^{2} x_{2}^{2} y_{2}^{2}+d x_{1}^{2} y_{1}^{2}+2 d x_{1}^{2} y_{1}^{2} x_{2} y_{2}$
$=1+d x_{1}^{2} y_{1}^{2} \pm 2 x_{1} y_{1}$

Denominators are never 0 .

But need different proof;
" $x^{2}+y^{2}>0$ " doesn't work.
If $x_{1}^{2}+y_{1}^{2}=1+d x_{1}^{2} y_{1}^{2}$ and $x_{2}^{2}+y_{2}^{2}=1+d x_{2}^{2} y_{2}^{2}$ and $d x_{1} x_{2} y_{1} y_{2}= \pm 1$ then $d x_{1}^{2} y_{1}^{2}\left(x_{2}+y_{2}\right)^{2}$ $=d x_{1}^{2} y_{1}^{2}\left(x_{2}^{2}+y_{2}^{2}+2 x_{2} y_{2}\right)$
$=d x_{1}^{2} y_{1}^{2}\left(d x_{2}^{2} y_{2}^{2}+1+2 x_{2} y_{2}\right)$
$=d^{2} x_{1}^{2} y_{1}^{2} x_{2}^{2} y_{2}^{2}+d x_{1}^{2} y_{1}^{2}+2 d x_{1}^{2} y_{1}^{2} x_{2} y_{2}$
$=1+d x_{1}^{2} y_{1}^{2} \pm 2 x_{1} y_{1}$
$=x_{1}^{2}+y_{1}^{2} \pm 2 x_{1} y_{1}$

Denominators are never 0 .

But need different proof;
" $x^{2}+y^{2}>0$ " doesn't work.
If $x_{1}^{2}+y_{1}^{2}=1+d x_{1}^{2} y_{1}^{2}$ and $x_{2}^{2}+y_{2}^{2}=1+d x_{2}^{2} y_{2}^{2}$ and $d x_{1} x_{2} y_{1} y_{2}= \pm 1$ then $d x_{1}^{2} y_{1}^{2}\left(x_{2}+y_{2}\right)^{2}$ $=d x_{1}^{2} y_{1}^{2}\left(x_{2}^{2}+y_{2}^{2}+2 x_{2} y_{2}\right)$
$=d x_{1}^{2} y_{1}^{2}\left(d x_{2}^{2} y_{2}^{2}+1+2 x_{2} y_{2}\right)$
$=d^{2} x_{1}^{2} y_{1}^{2} x_{2}^{2} y_{2}^{2}+d x_{1}^{2} y_{1}^{2}+2 d x_{1}^{2} y_{1}^{2} x_{2} y_{2}$
$=1+d x_{1}^{2} y_{1}^{2} \pm 2 x_{1} y_{1}$
$=x_{1}^{2}+y_{1}^{2} \pm 2 x_{1} y_{1}$
$=\left(x_{1} \pm y_{1}\right)^{2}$.

Case 1: $x_{2}+y_{2} \neq 0$. Then
$d=\left(\frac{x_{1} \pm y_{1}}{x_{1} y_{1}\left(x_{2}+y_{2}\right)}\right)^{2}$,
contradiction.

Case 1: $x_{2}+y_{2} \neq 0$. Then $d=\left(\frac{x_{1} \pm y_{1}}{x_{1} y_{1}\left(x_{2}+y_{2}\right)}\right)^{2}$, contradiction.

Case 2: $x_{2}-y_{2} \neq 0$. Then
$d=\left(\frac{x_{1} \mp y_{1}}{x_{1} y_{1}\left(x_{2}-y_{2}\right)}\right)^{2}$,
contradiction.

Case 1: $x_{2}+y_{2} \neq 0$. Then $d=\left(\frac{x_{1} \pm y_{1}}{x_{1} y_{1}\left(x_{2}+y_{2}\right)}\right)^{2}$, contradiction.

Case 2: $x_{2}-y_{2} \neq 0$. Then
$d=\left(\frac{x_{1} \mp y_{1}}{x_{1} y_{1}\left(x_{2}-y_{2}\right)}\right)^{2}$,
contradiction.
Case 3: $x_{2}+y_{2}=x_{2}-y_{2}=0$.
Then $x_{2}=0$ and $y_{2}=0$,
contradiction.

This is an elliptic curve

 (technically, "mod blowups").Can use this group in crypto.
... if it's a "strong" curve.
Need to compute group order. If no large prime factor in order, must switch to another d; this very often happens.

Also check "twist security," "embedding degree," et al.

Safe example, "Curve25519": $q=2^{255}-19 ; d=1-1 / 121666$.

Historical notes:

1761 Euler, 1866 Gauss
introduced an addition law
for $x^{2}+y^{2}=1-x^{2} y^{2}$, the "lemniscatic elliptic curve."

2007 Edwards generalized to many curves $x^{2}+y^{2}=1+c^{4} x^{2} y^{2}$. Theorem: have now obtained all elliptic curves over $\overline{\mathbf{Q}}$.

2007 Bernstein-Lange:
Edwards addition law is complete for $x^{2}+y^{2}=1+d x^{2} y^{2}$ if $d \neq \square$; and gives new ECC speed records!

(picture courtesy Tanja Lange)

