Binary Edwards Curves

Daniel J. Bernstein Tanja Lange
University of Illinois at Chicago and Technische Universiteit Eindhoven
djb@cr.yp.to tanja@hyperelliptic.org

12.08.2008
joint work with Reza Rezaeian Farashahi, Eindhoven
D. J. Bernstein \& T. Lange \& R. Rezaeian Farashahi cr.yp.to/papers.html\#edwards2

Harold M. Edwards

- Edwards generalized single example $x^{2}+y^{2}=1-x^{2} y^{2}$ by Euler/Gauss to whole class of curves.
- Shows that - after some field extensions - every elliptic curve over field k of odd characteristic is birationally equivalent to a curve of the form $x^{2}+y^{2}=a^{2}\left(1+x^{2} y^{2}\right), a^{5} \neq a$
- Edwards gives addition law for this generalized form, shows
 equivalence with Weierstrass form, proves addition law, gives theta parameterization ... in his paper Bulletin of the AMS, 44, 393-422, 2007

How to add on an Edwards curve

Let k be a field with $2 \neq 0$. Let $d \in k$ with $d \neq 0,1 . \quad y$ Edwards curve:

$$
\left\{(x, y) \in k \times k \mid x^{2}+y^{2}=1+d x^{2} y^{2}\right\}
$$

Generalization covers more curves over k. Associative operation on points $\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{3}, y_{3}\right)$ defined by Edwards addition law

$$
x_{3}=\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}} \text { and } y_{3}=\frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}
$$

- Neutral element is $(0,1)$; this is an affine point.
- $-\left(x_{1}, y_{1}\right)=\left(-x_{1}, y_{1}\right)$.
- $(0,-1)$ has order $2 ;(1,0)$ and $(-1,0)$ have order 4.

Relationship to Weierstrass form

- Every elliptic curve with point of order 4 is birationally equivalent to an Edwards curve.
- Let $P_{4}=\left(u_{4}, v_{4}\right)$ have order 4 and shift u s.t. $2 P_{4}=(0,0)$. Then Weierstrass form:

$$
v^{2}=u^{3}+\left(v_{4}^{2} / u_{4}^{2}-2 u_{4}\right) u^{2}+u_{4}^{2} u .
$$

- Define $d=1$ - $\left(4 u_{4}^{3} / v_{4}^{2}\right)$.
- The coordinates $x=v_{4} u /\left(u_{4} v\right), y=\left(u-u_{4}\right) /\left(u+u_{4}\right)$ satisfy

$$
x^{2}+y^{2}=1+d x^{2} y^{2} .
$$

- Inverse map $u=u_{4}(1+y) /(1-y), v=v_{4} u /\left(u_{4} x\right)$.
- Finitely many exceptional points. Exceptional points have $v\left(u+u_{4}\right)=0$.
- Addition on Edwards and Weierstrass corresponds.

Nice features of the addition law

- Neutral element of addition law is affine point, this avoids special routines (for $(0,1)$ one of the inputs or the result).
- Addition law is symmetric in both inputs.
- $P+Q=\left(\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}}, \frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}\right)$.

Nice features of the addition law

- Neutral element of addition law is affine point, this avoids special routines (for $(0,1)$ one of the inputs or the result).
- Addition law is symmetric in both inputs.
- $P+Q=\left(\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}}, \frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}\right)$.
- $[2] P=\left(\frac{x_{1} y_{1}+y_{1} x_{1}}{1+d x_{1} x_{1} y_{1} y_{1}}, \frac{y_{1} y_{1}-x_{1} x_{1}}{1-d x_{1} x_{1} y_{1} y_{1}}\right)$.

Nice features of the addition law

- Neutral element of addition law is affine point, this avoids special routines (for $(0,1)$ one of the inputs or the result).
- Addition law is symmetric in both inputs.
- $P+Q=\left(\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}}, \frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}\right)$.
- $[2] P=\left(\frac{x_{1} y_{1}+y_{1} x_{1}}{1+d x_{1} x_{1} y_{1} y_{1}}, \frac{y_{1} y_{1}-x_{1} x_{1}}{1-d x_{1} x_{1} y_{1} y_{1}}\right)$.
- No reason that the denominators should be 0 .
- Addition law produces correct result also for doubling.

Nice features of the addition law

- Neutral element of addition law is affine point, this avoids special routines (for $(0,1)$ one of the inputs or the result).
- Addition law is symmetric in both inputs.
- $P+Q=\left(\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}}, \frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}\right)$.
- $[2] P=\left(\frac{x_{1} y_{1}+y_{1} x_{1}}{1+d x_{1} x_{1} y_{1} y_{1}}, \frac{y_{1} y_{1}-x_{1} x_{1}}{1-d x_{1} x_{1} y_{1} y_{1}}\right)$.
- No reason that the denominators should be 0 .
- Addition law produces correct result also for doubling.
- Unified group operations!

Complete addition law

- If d is not a square the denominators $1+d x_{1} x_{2} y_{1} y_{2}$ and $1-d x_{1} x_{2} y_{1} y_{2}$ are never 0 ; addition law is complete.
- Edwards addition law allows omitting all checks
- Neutral element is affine point on curve.
- Addition works to add P and P.
- Addition works to add P and $-P$.
- Addition just works to add P and any Q.
- Only complete addition law in the literature.
- No exceptional points, completely uniform group operations.
- Having addition law work for doubling removes some checks from the code and gives SCA protection (might leak Hamming weight, though).

Fast addition law

- Very fast point addition $10 \mathrm{M}+1 \mathrm{~S}+1 \mathrm{D}$. (Even faster with Inverted Edwards coordinates.)
- Dedicated doubling formulas need only 3M + 4S.
- Fastest scalar multiplication in the literature.
- For comparison: IEEE standard P1363 provides "the fastest arithmetic on elliptic curves" by using Jacobian coordinates on Weierstrass curves.
- Point addition 12M + 4S.
- Doubling formulas need only 4M + 4S.
- For more curve shapes, better algorithms (even for Weierstrass curves) and many more operations (mixed addition, re-addition, tripling, scaling,...) see
www.hyperelliptic.org/EFD
for the Explicit-Formulas Database.

Edwards Curves - a new star(fish) is born

lecture circuit:
Hoboken
Turku
Warsaw
Fort Meade, Maryland
Melbourne
Ottawa (SAC)
Dublin (ECC)
Bordeaux
Bristol
Magdeburg
Seoul
Malaysia (Asiacrypt)
Madras
Bangalore (AAECC)
D. J. Bernstein \& T. Lange \& R. Rezaeian Farashahi cr. yp.t

Washington (CHES)

One year passes ...

Exceptions, $2 \neq 0$...

Fix a field k of characteristic different from 2. Fix $c, d \in k$ such that $c \neq 0$, $d \neq 0$, and $d c^{4} \neq 1$. Consider the Edwards addition law

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \mapsto\left(\frac{x_{1} y_{2}+y_{1} x_{2}}{c\left(1+d x_{1} x_{2} y_{1} y_{2}\right)}, \frac{y_{1} y_{2}-x_{1} x_{2}}{c\left(1-d x_{1} x_{2} y_{1} y_{2}\right)}\right)
$$

$x^{2}+y^{2}=a^{2}\left(1+x^{2} y^{2}\right), a^{5} \neq a$
describes an elliptic curve over field k oodd characteristic.

Theorem 2.1. Let k be a field in which $2 \neq 0$ Let E be an elliptic curve over k such that the group $E(k)$ has an element of order 4 . Then
Even characteristic much more interesting for hardware ...

Exceptions, $2 \neq 0$...

Fix a field k of characteristic different from 2. Fix $c, d \in k$ such that $c \neq 0$, $d \neq 0$, and $d c^{4} \neq 1$. Consider the Edwards addition law

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \mapsto\left(\frac{x_{1} y_{2}+y_{1} x_{2}}{c\left(1+d x_{1} x_{2} y_{1} y_{2}\right)}, \frac{y_{1} y_{2}-x_{1} x_{2}}{c\left(1-d x_{1} x_{2} y_{1} y_{2}\right)}\right)
$$

$x^{2}+y^{2}=a^{2}\left(1+x^{2} y^{2}\right), a^{5} \neq a$
describes an elliptic curve over field k oodd characteristic.

Theorem 2.1. Let k be a field in which $2 \neq 0$ Let E be an elliptic curve over k such that the group $E(k)$ has an element of order 4 . Then

Even characteristic much more interesting for hardware ... and soon also in software, cf. Intel's and Sun's current announcements to include binary instructions.

How to design a worthy binary partner?

Our wish-list (early February 2008) after studying and experimenting with mostly small modifications of odd Edwards:

A binary Edwards curve should

- be elliptic.
- look like an Edwards curve.
- have a complete addition law.
- cover most (all?) ordinary binary elliptic curves.
- have an easy to compute negation.
- have efficient doublings.
- have efficient additions.

How to design a worthy binary partner?

Our wish-list (early February 2008) after studying and experimenting with mostly small modifications of odd Edwards:

A binary Edwards curve should

- be elliptic.
- look like an Edwards curve.
- have a complete addition law.
- cover most (all?) ordinary binary elliptic curves.
- have an easy to compute negation.
- have efficient doublings.
- have efficient additions.
- be found before the CHES deadline, February 29th.

Binary Edwards curves

Let $d_{1} \neq 0$ and $d_{2} \neq d_{1}^{2}+d_{1}$ then

$$
E_{\mathrm{B}, d_{1}, d_{2}}: d_{1}(x+y)+d_{2}\left(x^{2}+y^{2}\right)=x y+x y(x+y)+x^{2} y^{2}
$$

is a binary Edwards curve with parameters d_{1}, d_{2}. Map $(x, y) \mapsto(u, v)$ defined by

$$
\begin{aligned}
& u=d_{1}\left(d_{1}^{2}+d_{1}+d_{2}\right)(x+y) /\left(x y+d_{1}(x+y)\right) \\
& v=d_{1}\left(d_{1}^{2}+d_{1}+d_{2}\right)\left(x /\left(x y+d_{1}(x+y)\right)+d_{1}+1\right)
\end{aligned}
$$

is a birational equivalence from $E_{\mathrm{B}, d_{1}, d_{2}}$ to the elliptic curve

$$
v^{2}+u v=u^{3}+\left(d_{1}^{2}+d_{2}\right) u^{2}+d_{1}^{4}\left(d_{1}^{4}+d_{1}^{2}+d_{2}^{2}\right)
$$

an ordinary elliptic curve in Weierstrass form.

Properties of binary Edwards curves

- $\left(x_{3}, y_{3}\right)=\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)$ with

$$
\begin{aligned}
& x_{3}=\frac{d_{1}\left(x_{1}+x_{2}\right)+d_{2}\left(x_{1}+y_{1}\right)\left(x_{2}+y_{2}\right)+\left(x_{1}+x_{1}^{2}\right)\left(x_{2}\left(y_{1}+y_{2}+1\right)+y_{1} y_{2}\right)}{d_{1}+\left(x_{1}+x_{1}^{2}\right)\left(x_{2}+y_{2}\right)} \\
& y_{3}=\frac{d_{1}\left(y_{1}+y_{2}\right)+d_{2}\left(x_{1}+y_{1}\right)\left(x_{2}+y_{2}\right)+\left(y_{1}+y_{1}^{2}\right)\left(y_{2}\left(x_{1}+x_{2}+1\right)+x_{1} x_{2}\right)}{d_{1}+\left(y_{1}+y_{1}^{2}\right)\left(x_{2}+y_{2}\right)}
\end{aligned}
$$

if denominators are nonzero.

- Neutral element is $(0,0)$; again, this is an affine point.
- $(1,1)$ has order 2.
- $-(x, y)=(y, x)$.
- $\left(x_{1}, y_{1}\right)+(1,1)=\left(x_{1}+1, y_{1}+1\right)$.

Edwards curves over finite fields $\mathbb{F}_{2^{n}}$

- Trace is map $\operatorname{Tr}: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2} ; \alpha \mapsto \sum_{i=0}^{n-1} \alpha^{2^{i}}$.
- For any points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ the denominators $d_{1}+\left(x_{1}+x_{1}^{2}\right)\left(x_{2}+y_{2}\right)$ and $d_{1}+\left(y_{1}+y_{1}^{2}\right)\left(x_{2}+y_{2}\right)$ are nonzero if $\operatorname{Tr}\left(d_{2}\right)=1$.
- In particular, addition formulas can be used to double.
- Addition law for curves with $\operatorname{Tr}\left(d_{2}\right)=1$ is not only strongly unified but even complete.
- No exceptional points, completely uniform group operations.
- These are the first complete binary elliptic curves!
- Even better every ordinary elliptic curve over $\mathbb{F}_{2^{n}}$ is birationally equivalent to a complete binary Edwards curve if $n \geq 3$.

Generality \& doubling

- Nice doubling formulas (use curve equation to simplify)

$$
\begin{aligned}
& x_{3}=1+\frac{d_{1}+d_{2}\left(x_{1}^{2}+y_{1}^{2}\right)+y_{1}^{2}+y_{1}^{4}}{d_{1}+x_{1}^{2}+y_{1}^{2}+\left(d_{2} / d_{1}\right)\left(x_{1}^{4}+y_{1}^{4}\right)} \\
& y_{3}=1+\frac{d_{1}+d_{2}\left(x_{1}^{2}+y_{1}^{2}\right)+x_{1}^{2}+x_{1}^{4}}{d_{1}+x_{1}^{2}+y_{1}^{2}+\left(d_{2} / d_{1}\right)\left(x_{1}^{4}+y_{1}^{4}\right)}
\end{aligned}
$$

- In projective coordinates:
$2 \mathrm{M}+6 \mathrm{~S}+3 \mathrm{D}$, where the 3D are multiplications by d_{1}, d_{2} / d_{1}, and d_{2}.
- Can choose at least one of these constants to be small or use curves where $d_{1}=d_{2}$ is possible; then only $2 \mathrm{M}+$ $5 S+2 \mathrm{D}$ for a doubling.

Comparison with other doubling formulas

Assume curves are chosen with small coefficients.

System	Cost of doubling
Projective	$7 \mathrm{M}+4 \mathrm{~S}$; see HEHCC
Jacobian	$4 \mathrm{M}+5 \mathrm{~S}$; see HEHCC
Lopez-Dahab	$3 \mathrm{M}+5 \mathrm{~S}$; Lopez-Dahab
Edwards	$2 \mathrm{M}+6 \mathrm{~S}$; new, complete
Lopez-Dahab $a_{2}=1$	$2 \mathrm{M}+5 \mathrm{~S}$; Kim-Kim
Edwards $d_{1}=d_{2}$	$2 \mathrm{M}+5 \mathrm{~S}$; new, complete

Explicit-Formulas Database

```
www.hyperelliptic.org/EFD
```

contains also formulas for characteristic 2 ; including some speed-ups for non-Edwards coordinates, e.g. 2M + 4S +2D for case considered by Kim-Kim.

Differential addition I

- Compute $P+Q$ given P, Q, and $Q-P$.
- Represent $P=\left(x_{1}, y_{1}\right)$ by $w(P)=x_{1}+y_{1}$.
- Have $w(P)=w(-P)=w(P+(1,1))=w(-P+(1,1))$.
- Can double in this representation: Let $\left(x_{4}, y_{4}\right)=\left(x_{2}, y_{2}\right)+\left(x_{2}, y_{2}\right)$. Then

$$
w_{4}=\frac{d_{1} w_{2}^{2}+d_{1} w_{2}^{4}}{d_{1}^{2}+d_{1} w_{2}^{2}+d_{2} w_{2}^{4}}=\frac{w_{2}^{2}+w_{2}^{4}}{d_{1}+w_{2}^{2}+\left(d_{2} / d_{1}\right) w_{2}^{4}}
$$

- If $d_{2}=d_{1}$ then

$$
w_{4}=1+\frac{d_{1}}{d_{1}+w_{2}^{2}+w_{2}^{4}} .
$$

- Projective version takes $1 \mathrm{M}+3 \mathrm{~S}+2 \mathrm{D}$ (or 1M+3S+1D for $d_{2}=d_{1}$).

Differential addition II

- Let $\left(x_{1}, y_{1}\right)=\left(x_{3}, y_{3}\right)-\left(x_{2}, y_{2}\right)$, $\left(x_{5}, y_{5}\right)=\left(x_{2}, y_{2}\right)+\left(x_{3}, y_{3}\right)$.
-

$$
\begin{aligned}
w_{1}+w_{5} & =\frac{d_{1} w_{2} w_{3}\left(1+w_{2}\right)\left(1+w_{3}\right)}{d_{1}^{2}+w_{2} w_{3}\left(d_{1}\left(1+w_{2}+w_{3}\right)+d_{2} w_{2} w_{3}\right)} \\
w_{1} w_{5} & =\frac{d_{1}^{2}\left(w_{2}+w_{3}\right)^{2}}{d_{1}^{2}+w_{2} w_{3}\left(d_{1}\left(1+w_{2}+w_{3}\right)+d_{2} w_{2} w_{3}\right)}
\end{aligned}
$$

- If $d_{2}=d_{1}$ then

$$
\begin{aligned}
w_{1}+w_{5} & =1+\frac{d_{1}}{d_{1}+w_{2} w_{3}\left(1+w_{2}\right)\left(1+w_{3}\right)}, \\
w_{1} w_{5} & =\frac{d_{1}\left(w_{2}+w_{3}\right)^{2}}{d_{1}+w_{2} w_{3}\left(1+w_{2}\right)\left(1+w_{3}\right)} .
\end{aligned}
$$

- Some operations can be shared between differential addition and doubling.

Differential addition III

- Mixed differential addition: w_{1} given as affine, $w_{2}=W_{2} / Z_{2}, w_{3}=W_{3} / Z_{3}$ in projective.

	general case	$d_{2}=d_{1}$
mixed diff addition	$6 \mathrm{M}+1 \mathrm{~S}+2 \mathrm{D}$	$5 \mathrm{M}+1 \mathrm{~S}+1 \mathrm{D}$
mixed diff addition+doubling	$6 \mathrm{M}+4 \mathrm{~S}+4 \mathrm{D}$	$5 \mathrm{M}+4 \mathrm{~S}+2 \mathrm{D}$
projective diff addition	$8 \mathrm{M}+1 \mathrm{~S}+2 \mathrm{D}$	$7 \mathrm{M}+1 \mathrm{~S}+1 \mathrm{D}$
projective diff addition+doubling	$8 \mathrm{M}+4 \mathrm{~S}+4 \mathrm{D}$	$7 \mathrm{M}+4 \mathrm{~S}+2 \mathrm{D}$

- Note that the new diff addition formulas are complete.
- Lopez and Dahab use 6M+5S for mixed dADD\&DBL.
- Stam uses $6 \mathrm{M}+1 \mathrm{~S}$ for projective dADD; 4M+1S for mixed dADD addition; and 1M+3S+1D for DBL.
- Gaudry uses 5M+5S+1D for mixed dADD\&DBL.

Operation counts

These curves are the first binary curves to offer complete addition laws. They are also surprisingly fast:

- ADD on binary Edwards curves takes 21M+1S+4D, mADD takes $13 \mathrm{M}+3 \mathrm{~S}+3 \mathrm{D}$.
- For small \mathbf{D} and $d_{1}=d_{2}$ much better: ADD in $16 \mathrm{M}+1 \mathrm{~S}$.
- Differential addition takes $8 \mathrm{M}+1 \mathrm{~S}+2 \mathrm{D}$; mixed version takes 6M+1S+2D.
- Differential addition+doubling (typical step in Montgomery ladder) takes $8 \mathrm{M}+4 \mathrm{~S}+2 \mathrm{D}$; mixed version takes 6M+4S+2D.
See our paper and the EFD for full details, speedups for $d_{1}=d_{2}$, how to choose small coefficients, affine formulas,

Operation counts

These curves are the first binary curves to offer complete addition laws. They are also surprisingly fast:

- ADD on binary Edwards curves takes 21M+1S+4D, mADD takes $13 \mathrm{M}+3 \mathrm{~S}+3 \mathrm{D}$.
- For small \mathbf{D} and $d_{1}=d_{2}$ much better: ADD in $16 \mathrm{M}+1 \mathrm{~S}$.
- Differential addition takes $8 \mathrm{M}+1 \mathrm{~S}+2 \mathrm{D}$; mixed version takes 6M+1S+2D.
- Differential addition+doubling (typical step in Montgomery ladder) takes $8 \mathrm{M}+4 \mathrm{~S}+2 \mathrm{D}$; mixed version takes 6M+4S+2D.
See our paper and the EFD for full details, speedups for $d_{1}=d_{2}$, how to choose small coefficients, affine formulas, ... (only updates, no patents, pending).

Happy End!

