Edwards curves

D. J. Bernstein

University of Illinois at Chicago

The $p-1$ factorization method

$2^{232792560}-1$ has prime divisors
$3,5,7,11,13,17,19,23,29,31$,
37, 41, 43, 53, 61, 67, 71, 73, 79,
89, 97, 103, 109, 113, 127, 131, 137, 151, 157, 181, 191, 199, etc.

These divisors include 70 of the 168 primes $\leq 10^{3}$; 156 of the 1229 primes $\leq 10^{4}$; 296 of the 9592 primes $\leq 10^{5}$; 470 of the 78498 primes $\leq 10^{6}$; etc.

An odd prime p

divides $2^{232792560}-1$
iff order of 2 in the
multiplicative group \mathbf{F}_{p}^{*}
divides 232792560.
Many ways for this to happen:
232792560 has 960 divisors.
Why so many?
Answer: 232792560
$=\operatorname{Icm}\{1,2,3,4,5, \ldots, 20\}$
$=2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19$.

Can compute $2^{232792560}-1$ using 41 ring operations.
(Side note: 41 is not minimal.)
Ring operation: $0,1,+,-,$.
This computation: $1 ; 2=1+1$;
$2^{2}=2 \cdot 2 ; 2^{3}=2^{2} \cdot 2 ; 2^{6}=2^{3} \cdot 2^{3}$; $2^{12}=2^{6} \cdot 2^{6} ; 2^{13}=2^{12} \cdot 2 ; 2^{26} ; 2^{27} ; 2^{54}$; $2^{55} ; 2^{110} ; 2^{111} ; 2^{222} ; 2^{444} ; 2^{888} ; 2^{1776}$; $2^{3552} ; 2^{7104} ; 2^{14208} ; 2^{28416} ; 2^{28417}$; $2^{56834} ; 2^{113668} ; 2^{227336} ; 2^{454672} ; 2^{909344}$; $2^{909345} ; 2^{1818690} ; 2^{1818691} ; 2^{3637382}$; $2^{3637383} ; 2^{7274766} ; 2^{7274767} ; 2^{14549534}$; $2^{14549535} ; 2^{29099070} ; 2^{58198140}$; $2^{116396280} ; 2^{232792560} ; 2^{232792560}-1$.

Given positive integer n, can compute $2^{232792560}-1 \bmod n$ using 41 operations in \mathbf{Z} / n. Notation: $a \bmod b=a-b\lfloor a / b\rfloor$. e.g. $n=8597231219$:
$2^{27} \bmod n=134217728$;
$2^{54} \bmod n=134217728^{2} \bmod n$

$$
=935663516
$$

$2^{55} \bmod n=1871327032 ;$
$2^{110} \bmod n=1871327032^{2} \bmod n$

$$
=1458876811 ; \ldots ;
$$

$2^{232792560}-1 \bmod n=5626089344$.
Easy extra computation (Euclid): $\operatorname{gcd}\{5626089344, n\}=991$.

This $p-1$ method (1974 Pollard) quickly factored $n=8597231219$.
Main work: 27 squarings mod n.
Could instead have checked n 's divisibility by $2,3,5, \ldots$.
The 167th trial division would have found divisor 991.

Not clear which method is better. Dividing by small p is faster than squaring $\bmod n$. The $p-1$ method finds only 70 of the primes ≤ 1000; trial division finds all 168 primes.

Scale up to larger exponent $\operatorname{Icm}\{1,2,3,4,5, \ldots, 100\}$:
using 136 squarings mod n find 2317 of the primes $\leq 10^{5}$.

Is a squaring mod n
faster than 17 trial divisions?
Or $\operatorname{Icm}\{1,2,3,4,5, \ldots, 1000\}$:
using 1438 squarings mod n find 180121 of the primes $\leq 10^{7}$.

Is a squaring $\bmod n$ faster than 125 trial divisions?

Plausible conjecture: if S is
$\exp \sqrt{\left(\frac{1}{2}+o(1)\right) \log H \log \log H}$
then $p-1$ divides $\operatorname{lcm}\{1,2, \ldots, S\}$ for $H / S^{1+o(1)}$ primes $p \leq H$.
Same if $p-1$ is replaced by order of 2 in \mathbf{F}_{p}^{*}.

So uniform random prime $p \leq H$ divides $2^{\mathrm{lcm}\{1,2, \ldots, S\}}-1$ with probability $1 / S^{1+o(1)}$.
$(1.4 \ldots+o(1)) S$ squarings $\bmod n$ produce $2^{\mathrm{lcm}\{1,2, \ldots, S\}}-1 \bmod n$.

Similar time spent on trial division finds far fewer primes for large H.

Interlude: Addition on a clock

y

$x^{2}+y^{2}=1$, parametrized by $x=\sin \alpha, \quad y=\cos \alpha$.
Sum of $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is $\left(x_{1} y_{2}+y_{1} x_{2}, y_{1} y_{2}-x_{1} x_{2}\right)$.

Examples of clock addition:
$2\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{24}{25}, \frac{7}{25}\right)$.
$3\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{117}{125}, \frac{-44}{125}\right)$.
$4\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{336}{625}, \frac{-527}{625}\right)$.
Many equivalent formulations.
e.g. Clock addition represents
multiplication of norm-1 elements
of $\mathbf{C}=\mathbf{R}[i] /\left(i^{2}+1\right)$.
$(x, y) \mapsto y+i x ;$
$(4 / 5+3 i / 5)^{3}$

$$
=-44 / 125+117 i / 125
$$

Addition on an Edwards curve

y

$x^{2}+y^{2}=1-30 x^{2} y^{2}$.
Sum of $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is $\left(\left(x_{1} y_{2}+y_{1} x_{2}\right) /\left(1-30 x_{1} x_{2} y_{1} y_{2}\right)\right.$, $\left.\left(y_{1} y_{2}-x_{1} x_{2}\right) /\left(1+30 x_{1} x_{2} y_{1} y_{2}\right)\right)$.

The clock again, for comparison:

y

$x^{2}+y^{2}=1$.
Sum of $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is $\left(x_{1} y_{2}+y_{1} x_{2}\right.$,
$\left.y_{1} y_{2}-x_{1} x_{2}\right)$.

The $p+1$ factorization method

(1982 Williams)
Define $(X, Y) \in \mathbf{Q} \times \mathbf{Q}$ as the
232792560th multiple of
$(3 / 5,4 / 5)$ in the group $\operatorname{Clock}(\mathbf{Q})$.
The integer $5^{232792560} X$ is divisible by
82 of the primes $\leq 10^{3}$; 223 of the primes $\leq 10^{4}$; 455 of the primes $\leq 10^{5}$; 720 of the primes $\leq 10^{6}$; etc.

Given an integer n, compute $5^{232792560} X \bmod n$ and compute gcd with n, hoping to factor n.

Many p 's not found by \mathbf{F}_{p}^{*} are found by $\operatorname{Clock}\left(\mathbf{F}_{p}\right)$.

If -1 is not a square $\bmod p$ and $p+1$ divides 232792560 then $5^{232792560} X \bmod p=0$.

Proof: $\mathbf{F}_{p}[i] /\left(i^{2}+1\right)$ is a field so $(p+1)(3 / 5,4 / 5)=(0,1)$ in the group $\operatorname{Clock}\left(\mathbf{F}_{p}\right)$ so $232792560(3 / 5,4 / 5)=(0,1)$.

ECM, the elliptic-curve method

(1987 Lenstra)
Analogous method using the elliptic curve $y^{2}=x^{3}-3 x+10$ finds many new primes.

Analogous method using the elliptic curve $y^{2}=x^{3}-3 x+11$ finds many new primes.

Analogous method using the elliptic curve $y^{2}=x^{3}-3 x+12$ finds many new primes.
... As many curves as you want!

Good news: All primes $\leq H$ seem to be found after a reasonable number of curves.

Plausible conjecture: if S is $\exp \sqrt{\left(\frac{1}{2}+o(1)\right) \log H \log \log H}$ then, for each prime $p \leq H$, a uniform random curve mod p has chance $\geq 1 / S^{1+o(1)}$ to find p.

If a curve fails, try another.
Find p using, on average,
$\leq S^{1+o(1)}$ curves;
i.e., $\leq S^{2+o(1)}$ squarings.

Time subexponential in H.

Primality proofs

If $2^{n-1}=1$ in \mathbf{Z} / n, and $n-1$
has a prime divisor $q>\sqrt{n}-1$
with $2^{(n-1) / q}-1$ in $(\mathbf{Z} / n)^{*}$,
then n is prime. (1876 Lucas,
1914 Pocklington, 1927 Lehmer)
What if we don't know a big prime q dividing $n-1$?

Replace multiplicative group by random elliptic-curve group. (1986 Goldwasser/Kilian; point counting: 1985 Schoof)

Use complex-multiplication

 curves; faster point counting. (1988 Atkin; special: 1985 Bosma, 1986 Chudnovsky-Chudnovsky)Conjectured time $\leq(\lg n)^{4+o(1)}$ for fastECPP (1990 Shallit) to find certificate proving n prime. Proven time $\leq(\lg n)^{3+o(1)}$ to verify certificate.

Newer methods prove primality in proven time $\leq(\lg n)^{6+o(1)}$ (2002 Agrawal-Kayal-Saxena; 2005 Lenstra-Pomerance) but fastECPP is conjecturally faster.

Public-key cryptography

(1976 Diffie-Hellman)

Standardize $p=2^{262}-5081$.

Alice's
secret key a

public key $4^{a} \bmod p$

Bob's secret key b

Bob's public key $4^{b} \bmod p$
\{Alice, Bob\}'s shared secret
$4^{a b} \bmod p$

\{Bob, Alice\}'s
$=$ shared secret $4^{a b} \bmod p$

Bad news: Attacker can find a and b by "index calculus."

To protect against this attack, replace $2^{262}-5081$
with a much larger prime. Much slower arithmetic.

Alternative (1985 Miller, independently 1987 Koblitz):
Elliptic-curve cryptography!
Replace the multiplicative group with an elliptic-curve group.
Somewhat slower arithmetic.

What is an elliptic curve?

Fix an odd prime p.
Fix $a, b \in \mathbf{F}_{p}$ with $4 a^{3}+27 b^{2} \neq 0$.
Well-known fact:
The points of the "elliptic curve"
$E: y^{2}=x^{3}+a x+b$ over \mathbf{F}_{p}
form a commutative group $E\left(\mathbf{F}_{p}\right)$.
"So the set of points is
$\left\{(x, y) \in \mathbf{F}_{p} \times \mathbf{F}_{p}\right.$:
$\left.y^{2}=x^{3}+a x+b\right\} ? "$
Not exactly! The set is
$\left\{(x, y) \in \mathbf{F}_{p} \times \mathbf{F}_{p}\right.$:

$$
\left.y^{2}=x^{3}+a x+b\right\} \cup\{\infty\}
$$

To add $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in E\left(\mathbf{F}_{p}\right)$:
Define $x_{3}=\lambda^{2}-x_{1}-x_{2}$
and $y_{3}=\lambda\left(x_{1}-x_{3}\right)-y_{1}$
where $\lambda=\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right)$.
Then $\left(x_{3}, y_{3}\right) \in E\left(\mathbf{F}_{p}\right)$.
Geometric interpretation:
$\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3},-y_{3}\right)$ are on the curve $y^{2}=x^{3}+a x+b$ and on a line;
$\left(x_{3}, y_{3}\right),\left(x_{3},-y_{3}\right)$ are on a vertical line.
"So that's the group law?
$\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{3}, y_{3}\right) ? "$

Not exactly! Definition of λ assumes that $x_{2} \neq x_{1}$.

To add $\left(x_{1}, y_{1}\right),\left(x_{1}, y_{1}\right) \in E\left(\mathbf{F}_{p}\right)$:
Define $x_{3}=\lambda^{2}-x_{1}-x_{2}$
and $y_{3}=\lambda\left(x_{1}-x_{3}\right)-y_{1}$
where $\lambda=\left(3 x_{1}^{2}+a\right) / 2 y_{1}$.
Then $\left(x_{3}, y_{3}\right) \in E\left(\mathbf{F}_{p}\right)$.
Geometric interpretation:
The curve's tangent line at
$\left(x_{1}, y_{1}\right)$ passes through $\left(x_{3},-y_{3}\right)$.
"So that's the group law?
One special case for doubling?"

Not exactly! More exceptions: e.g., y_{1} could be 0 .

Six cases overall: $\infty+\infty=\infty$; $\infty+\left(x_{2}, y_{2}\right)=\left(x_{2}, y_{2}\right)$;
$\left(x_{1}, y_{1}\right)+\infty=\left(x_{1}, y_{1}\right)$;
$\left(x_{1}, y_{1}\right)+\left(x_{1},-y_{1}\right)=\infty$;
for $y_{1} \neq 0,\left(x_{1}, y_{1}\right)+\left(x_{1}, y_{1}\right)=$ $\left(x_{3}, y_{3}\right)$ with $x_{3}=\lambda^{2}-x_{1}-x_{2}$, $y_{3}=\lambda\left(x_{1}-x_{3}\right)-y_{1}$,
$\lambda=\left(3 x_{1}^{2}+a\right) / 2 y_{1}$;
for $x_{1} \neq x_{2},\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=$ $\left(x_{3}, y_{3}\right)$ with $x_{3}=\lambda^{2}-x_{1}-x_{2}$,
$y_{3}=\lambda\left(x_{1}-x_{3}\right)-y_{1}$,
$\lambda=\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right)$.
$E\left(\mathbf{F}_{p}\right)$ is a commutative group:
Has neutral element ∞, and - :
$-\infty=\infty ;-(x, y)=(x,-y)$
Commutativity: $P+Q=Q+P$.
Associativity:
$(P+Q)+R=P+(Q+R)$.
Straightforward but tedious:
use a computer-algebra system
to check each possible case.
Or relate each $P+Q$ case to "ideal-class product."
Many other proofs,
but can't escape case analysis.

Do we need six cases? No!
Can cover $E \times E$ using three (open) addition laws. (1985 H. Lange-Ruppert)

How about just one law that covers $E \times E$?

One complete addition law?
Bad news: "Theorem 1.
The smallest cardinality of a complete system of addition laws on E equals two."
(1995 Bosma-Lenstra)

Edwards curves

Fix an odd prime p.
Fix non-square $d \in \mathbf{F}_{p}$.
$\left\{(x, y) \in \mathbf{F}_{p} \times \mathbf{F}_{p}:\right.$

$$
\left.x^{2}+y^{2}=1+d x^{2} y^{2}\right\}
$$

is a commutative group with
$\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{3}, y_{3}\right)$
defined by Edwards addition law:
$x_{3}=\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}}$,
$y_{3}=\frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}$.

"What if denominators are 0?"

Answer: They aren't!
If $x_{1}^{2}+y_{1}^{2}=1+d x_{1}^{2} y_{1}^{2}$
and $x_{2}^{2}+y_{2}^{2}=1+d x_{2}^{2} y_{2}^{2}$
then $d x_{1} x_{2} y_{1} y_{2}$ can't be ± 1.
Outline of proof:
If $\left(d x_{1} x_{2} y_{1} y_{2}\right)^{2}=1$ then curve equation implies
$\left(x_{1}+d x_{1} x_{2} y_{1} y_{2} y_{1}\right)^{2}=$
$d x_{1}^{2} y_{1}^{2}\left(x_{2}+y_{2}\right)^{2}$.
Conclude that d is a square.
But d is not a square! Q.E.D.

Fact: $x^{2}+y^{2}=1+d x^{2} y^{2}$ is birationally equivalent to an elliptic curve E with $j(E)=16\left(1+14 d+d^{2}\right)^{3} / d(1-d)^{4}$.
The groups are isomorphic.
Can simplify and accelerate elliptic-curve factorization, elliptic-curve primality proving, elliptic-curve cryptography by switching to Edwards curves.

In factorization,

don't mind denominators being 0 , so also allow square d.

What about Bosma-Lenstra?
Recall "Theorem 1.
The smallest cardinality of a complete system of addition laws on E equals two."
"Complete" in the theorem means "covers $E\left(\overline{\boldsymbol{F}_{p}}\right) \times E\left(\overline{\boldsymbol{F}_{p}}\right)$ ";
\bar{F}_{p} is the algebraic closure of \mathbf{F}_{p}.
The Edwards addition law has exceptions defined over $\overline{\mathbf{F}_{p}}$, but no exceptions defined over \mathbf{F}_{p}. Critical (but not sufficient!): all points at ∞ on curve are singular and blow up irrationally.

Historical notes

 on the addition law:1761 Euler, 1866 Gauss:
$d=-1$ over field with $\sqrt[4]{-1}$.
"The lemniscatic elliptic curve."
2007 Edwards: any 4th power d.
Theorem: have now obtained all elliptic curves over $\overline{\mathbf{Q}}$.

2007 Bernstein-T. Lange: general d; proof of
completeness for non-square d; new elliptic-curve speed records!

Faster adds using $(Z / X, Z / Y)$, "inverted Edwards coordinates."

Also built a computer-verified "Explicit-Formulas Database."
(2007 Bernstein-Lange)
First software implementation: new speed records for ECM!
Also found better ECM curves:
smaller curves with large torsion.
(2008 B.-Birkner-L.-Peters)
Twists and isogenies bring same speeds to more curves over \mathbf{F}_{p}. (2008 B.-Birkner-Joye-L.-Peters)

Current project (B.-L.):
for every elliptic curve E,
find complete addition law for E with best possible speeds.

First step:
Found fast complete addition law for "binary Edwards curves"

$$
d_{1}(x+y)+d_{2}\left(x^{2}+y^{2}\right)
$$

$$
=\left(x+x^{2}\right)\left(y+y^{2}\right)
$$

If $m \geq 3$ then these cover all ordinary elliptic curves over $\mathbf{F}_{2} m$. (2008 B.-L.-Rezaeian Farashahi)

Last slide: Advertisement

ECC 2008: 12th Workshop on Elliptic-Curve Cryptography.

22-24 September 2008,
Trianon Zalen, Utrecht
(on the Oudegracht!).
http://
www.hyperelliptic.org
/tanja/conf/ECC08/

Also ECC summer school:
15-19 September 2008,
Technische Universiteit
Eindhoven.

