The rest of the zoo

D. J. Bernstein

University of Illinois at Chicago

EC point counting

1983 (published 1985) Schoof:
Algorithm to count points on elliptic curves over finite fields.

Input: prime power $q ; a, b \in \mathbf{F}_{q}$ such that $6\left(4 a^{3}+27 b^{2}\right) \neq 0$.

Output: $\#\left\{(x, y) \in \mathbf{F}_{q} \times \mathbf{F}_{q}\right.$:
$\left.y^{2}=x^{3}+a x+b\right\}+1=\# E\left(\mathbf{F}_{q}\right)$
where $E: y^{2}=x^{3}+a x+b$.
Time: $(\log q)^{O(1)}$.

Elliptic curves everywhere

1984 (published 1987) Lenstra:
ECM, the elliptic-curve method of factoring integers.

1984 (published 1985) Miller, and independently
1984 (published 1987) Koblitz:
ECC, elliptic-curve cryptography.
Bosma, Goldwasser-Kilian,
Chudnovsky-Chudnovsky, Atkin:
elliptic-curve primality proving.
These applications are different but share many optimizations.

Representing curve points

Crypto 1985, Miller, "Use of elliptic curves in cryptography":

Given $n \in \mathbf{Z}, P \in E\left(\mathbf{F}_{q}\right)$, division-polynomial recurrence computes $n P \in E\left(\mathbf{F}_{q}\right)$ "in $26 \log _{2} n$ multiplications"; but can do better!
"It appears to be best to represent the points on the curve in the following form:
Each point is represented by the triple (x, y, z) which corresponds to the point $\left(x / z^{2}, y / z^{3}\right)$."

1986 Chudnovsky-Chudnovsky, "Sequences of numbers generated by addition in formal groups and new primality and factorization tests":
"The crucial problem becomes
the choice of the model
of an algebraic group variety,
where computations mod p are the least time consuming."

Most important computations:
ADD is $P, Q \mapsto P+Q$.
DBL is $P \mapsto 2 P$.
"It is preferable to use
models of elliptic curves
lying in low-dimensional spaces,
for otherwise the number of
coordinates and operations is
increasing. This limits us ... to
4 basic models of elliptic curves."
Short Weierstrass:
$y^{2}=x^{3}+a x+b$.
Jacobi intersection:
$s^{2}+c^{2}=1, a s^{2}+d^{2}=1$.
Jacobi quartic: $y^{2}=x^{4}+2 a x^{2}+1$.
Hessian: $x^{3}+y^{3}+1=3 d x y$.

Some Newton polygons

\therefore : . Montgomery
Jacobi quartic
$\because \cdot{ }^{\circ} \cdot H^{\circ}$

Binary Edwards

Optimizing Jacobian coordinates

For "traditional" $\left(X / Z^{2}, Y / Z^{3}\right)$ on $y^{2}=x^{3}+a x+b$:
1986 Chudnovsky-Chudnovsky state explicit formulas using 10 M for $\mathrm{DBL} ; 16 \mathrm{M}$ for ADD.

Consequence:
$\approx\left(10 \lg n+16 \frac{\lg n}{\lg \lg n}\right) \mathbf{M}$
to compute $n, P \mapsto n P$
using "sliding windows" method of scalar multiplication.

Notation: $\lg =\log _{2}$;
\mathbf{M} is cost of multiplying in \mathbf{F}_{q}.

Squaring is faster than \mathbf{M}.

Here are the DBL formulas:

$S=4 X_{1} \cdot Y_{1}^{2} ;$
$M=3 X_{1}^{2}+a Z_{1}^{4}$;
$T=M^{2}-2 S$;
$X_{3}=T$;
$Y_{3}=M \cdot(S-T)-8 Y_{1}^{4}$;
$Z_{3}=2 Y_{1} \cdot Z_{1}$.
Total cost $3 \mathbf{M}+6 \mathbf{S}+1 \mathbf{D}$ where
\mathbf{S} is the cost of squaring in \mathbf{F}_{q}, \mathbf{D} is the cost of multiplying by a.

The squarings produce
$X_{1}^{2}, Y_{1}^{2}, Y_{1}^{4}, Z_{1}^{2}, Z_{1}^{4}, M^{2}$.

Most ECC standards choose curves that make formulas faster.

Curve-choice advice from 1986 Chudnovsky-Chudnovsky:

Can eliminate the 1D
by choosing curve with $a=1$.
But "it is even smarter" to choose curve with $a=-3$.

If $a=-3$ then $M=3\left(X_{1}^{2}-Z_{1}^{4}\right)$
$=3\left(X_{1}-Z_{1}^{2}\right) \cdot\left(X_{1}+Z_{1}^{2}\right)$.
Replace $2 \mathbf{S}$ with $1 \mathbf{M}$.
Now DBL costs $4 \mathrm{M}+4 \mathbf{S}$.

2001 Bernstein:
$3 \mathrm{M}+5 \mathrm{~S}$ for DBL. $11 M+5 S$ for ADD.

How? Easy $\mathbf{S} \mathbf{- M}$ tradeoff: instead of computing $2 Y_{1} \cdot Z_{1}$, compute $\left(Y_{1}+Z_{1}\right)^{2}-Y_{1}^{2}-Z_{1}^{2}$.
DBL formulas were already
computing Y_{1}^{2} and Z_{1}^{2}.
Same idea for the ADD formulas, but have to scale X, Y, Z to eliminate divisions by 2 .

ADD for $y^{2}=x^{3}+a x+b:$
$U_{1}=X_{1} Z_{2}^{2}, U_{2}=X_{2} Z_{1}^{2}$,
$S_{1}=Y_{1} Z_{2}^{3}, S_{2}=Y_{2} Z_{1}^{3}$,
many more computations.
1986 Chudnovsky-Chudnovsky:
"We suggest to write
addition formulas involving
$\left(X, Y, Z, Z^{2}, Z^{3}\right)$."
Disadvantages:
Allocate space for Z^{2}, Z^{3}.
Pay $1 \mathbf{S}+1 \mathbf{M}$ in $A D D$ and in DBL.
Advantages:
Save $2 \mathbf{S}+2 \mathbf{M}$ at start of ADD.
Save 1 S at start of DBL.

1998 Cohen-Miyaji-Ono:
Store point as $(X: Y: Z)$.
If point is input to $A D D$,
also cache Z^{2} and Z^{3}.
No cost, aside from space.
If point is input to another ADD, reuse Z^{2}, Z^{3}. Save $1 \mathbf{S}+1 \mathbf{M}$!

Best Jacobian speeds today, including $\mathbf{S}-\mathbf{M}$ tradeoffs:
$3 \mathrm{M}+5 \mathrm{~S}$ for DBL if $a=-3$.
$11 M+5 S$ for ADD.
$10 M+4 S$ for reADE.
$7 \mathrm{M}+4 \mathrm{~S}$ for $\mathrm{mADD}\left(\right.$ ie. $Z_{2}=1$).

Speed-oriented Jacobian standards
2000 IEEE "Std 1363"
uses Weierstrass curves
in Jacobian coordinates
to "provide the fastest arithmetic on elliptic curves."
Also specifies a method of choosing curves $y^{2}=x^{3}-3 x+b$.

2000 NIST "FIPS 186-2" standardizes five such curves.

2005 NSA "Suite B" recommends two of the NIST curves as the only public-key cryptosystems for U.S. government use.

Projective coordinates

1986 Chudnovsky-Chudnovsky:
Speed up ADD by switching from $\left(X / Z^{2}, Y / Z^{3}\right)$ to $(X / Z, Y / Z)$.
$7 \mathrm{M}+3 \mathrm{~S}$ for DBL if $a=-3$.
$12 \mathrm{M}+2 \mathrm{~S}$ for ADD.
$12 \mathrm{M}+2 \mathrm{~S}$ for reADD.
Option has been mostly ignored:
DBL dominates in ECDH etc.
But ADD dominates in some applications: e.g., batch signature verification.

Montgomery curves

1987 Montgomery:

Use $b y^{2}=x^{3}+a x^{2}+x$.
Choose small $(a+2) / 4$.
$2\left(x_{2}, y_{2}\right)=\left(x_{4}, y_{4}\right)$
$\Rightarrow x_{4}=\frac{\left(x_{2}^{2}-1\right)^{2}}{4 x_{2}\left(x_{2}^{2}+a x_{2}+1\right)}$.
$\left(x_{3}, y_{3}\right)-\left(x_{2}, y_{2}\right)=\left(x_{1}, y_{1}\right)$,
$\left(x_{3}, y_{3}\right)+\left(x_{2}, y_{2}\right)=\left(x_{5}, y_{5}\right)$
$\Rightarrow x_{5}=\frac{\left(x_{2} x_{3}-1\right)^{2}}{x_{1}\left(x_{2}-x_{3}\right)^{2}}$.

Represent (x, y)
as $(X: Z)$ satisfying $x=X / Z$.
$B=\left(X_{2}+Z_{2}\right)^{2}$,
$C=\left(X_{2}-Z_{2}\right)^{2}$,
$D=B-C, X_{4}=B \cdot C$,
$Z_{4}=D \cdot(C+D(a+2) / 4) \Rightarrow$
$2\left(X_{2}: Z_{2}\right)=\left(X_{4}: Z_{4}\right)$.
$\left(X_{3}: Z_{3}\right)-\left(X_{2}: Z_{2}\right)=\left(X_{1}: Z_{1}\right)$,
$E=\left(X_{3}-Z_{3}\right) \cdot\left(X_{2}+Z_{2}\right)$,
$F=\left(X_{3}+Z_{3}\right) \cdot\left(X_{2}-Z_{2}\right)$,
$X_{5}=Z_{1} \cdot(E+F)^{2}$,
$Z_{5}=X_{1} \cdot(E-F)^{2} \Rightarrow$
$\left(X_{3}: Z_{3}\right)+\left(X_{2}: Z_{2}\right)=\left(X_{5}: Y_{5}\right)$.

This representation
does not allow ADD but it allows
DADD, "differential addition":
$Q, R, Q-R \mapsto Q+R$.
e.g. $2 P, P, P \mapsto 3 P$.
e.g. $3 P, 2 P, P \mapsto 5 P$.
e.g. $6 P, 5 P, P \mapsto 11 P$.
$2 \mathbf{M}+2 \mathbf{S}+1 \mathbf{D}$ for DBL .
$4 \mathrm{M}+2 \mathrm{~S}$ for DADD .
Save 1 M if $Z_{1}=1$.
Easily compute $n\left(X_{1}: Z_{1}\right)$ using $\approx \lg n \mathrm{DBL}, \approx \lg n \mathrm{DADD}$.
Almost as fast as Edwards $n P$.
Relatively slow for $m P+n Q$ etc.

Doubling-oriented curves

2006 Doche-Icart-Kohel:
Use $y^{2}=x^{3}+a x^{2}+16 a x$.
Choose small a.
Use $\left(X: Y: Z: Z^{2}\right)$
to represent $\left(X / Z, Y / Z^{2}\right)$.
$3 \mathrm{M}+4 \mathrm{~S}$ for DBL.
How? Factor DBL as $\hat{\varphi}(\varphi)$
where φ is a 2-isogeny.
2007 Bernstein-Lange:
$2 \mathrm{M}+5 \mathbf{S}$ for DBL
on the same curves.

$12 \mathrm{M}+5 \mathbf{S}$ for ADD .

Slower ADD than other systems,
typically outweighing benefit of the very fast DBL.

But isogenies are useful.
Example, 2005 Gaudry:
fast DBL+DADD on Jacobians of genus-2 hyperelliptic curves, using similar factorization.

Tricky but potentially helpful: tripling-oriented curves
(see 2006 Doche-Icart-Kohel), double-base chains, ...

Hessian curves

Credited to Sylvester
by 1986 Chudnovsky-Chudnovsky:
$(X: Y: Z)$ represent $(X / Z, Y / Z)$
on $x^{3}+y^{3}+1=3 d x y$.
12M for ADD:
$X_{3}=Y_{1} X_{2} \cdot Y_{1} Z_{2}-Z_{1} Y_{2} \cdot X_{1} Y_{2}$,
$Y_{3}=X_{1} Z_{2} \cdot X_{1} Y_{2}-Y_{1} X_{2} \cdot Z_{1} X_{2}$,
$Z_{3}=Z_{1} Y_{2} \cdot Z_{1} X_{2}-X_{1} Z_{2} \cdot Y_{1} Z_{2}$.
$6 \mathbf{M}+3 \mathbf{S}$ for DBL .

2001 Joye-Quisquater:
$2\left(X_{1}: Y_{1}: Z_{1}\right)=$
$\left(Z_{1}: X_{1}: Y_{1}\right)+\left(Y_{1}: Z_{1}: X_{1}\right)$
so can use ADD to double.
"Unified addition formulas,"
helpful against side channels.
But not strongly unified: need to permute inputs.

2008 Hisil-Wong-Carter-Dawson:
$\left(X: Y: Z: X^{2}: Y^{2}: Z^{2}\right.$

$$
: 2 X Y: 2 X Z: 2 Y Z)
$$

$6 \mathbf{M}+6 \mathbf{S}$ for $A D D$.
$3 \mathbf{M}+6 \mathbf{S}$ for $D B L$.

Jacobi intersections

1986 Chudnovsky-Chudnovsky:
$(S: C: D: Z)$ represent
$(S / Z, C / Z, D / Z)$ on
$s^{2}+c^{2}=1, a s^{2}+d^{2}=1$.
$14 \mathrm{M}+2 \mathrm{~S}+1 \mathrm{D}$ for ADD.
"Tremendous advantage"
of being strongly unified.
$5 \mathrm{M}+3 \mathrm{~S}$ for DBL.
"Perhaps (?) ... the most efficient duplication formulas which do not depend on the coefficients of an elliptic curve."

2001 Liardet-Smart:

$13 \mathbf{M}+2 \mathbf{S}+1 \mathbf{D}$ for ADD.

$4 \mathrm{M}+3 \mathrm{~S}$ for DBL .
2007 Bernstein-Lange:
$3 \mathrm{M}+4 \mathrm{~S}$ for DBL.
2008 Hisil-Wong-Carter-Dawson: $13 \mathbf{M}+1 \mathbf{S}+2 \mathbf{D}$ for ADD.
$2 \mathrm{M}+5 \mathrm{~S}$ for DBL .
Also ($S: C: D: Z: S C: D Z$):
$11 \mathbf{M}+1 \mathbf{S}+2 \mathbf{D}$ for ADD.
$2 \mathbf{M}+5 \mathbf{S}+1 \mathbf{D}$ for DBL .

Jacobi quartics

$(X: Y: Z)$ represent $\left(X / Z, Y / Z^{2}\right)$ on $y^{2}=x^{4}+2 a x^{2}+1$.

1986 Chudnovsky-Chudnovsky: $3 M+6 S+2 D$ for $D B L$.

Slow ADD.
2002 Billet-Joye:
New choice of neutral element. $10 M+3 S+1 D$ for $A D D$, strongly unified.

2007 Bernstein-Lange:
$1 \mathbf{M}+9 \mathbf{S}+1 \mathbf{D}$ for DBL .

2007 Hisil-Carter-Dawson:
$2 \mathbf{M}+6 \mathbf{S}+2 \mathbf{D}$ for DBL .
2007 Feng-Wu:
$2 \mathbf{M}+6 \mathbf{S}+1 \mathbf{D}$ for DBL .
$1 M+7 S+3 D$ for $D B L$
on curves chosen with $a^{2}+c^{2}=1$.
More speedups: 2007 Duquesne,
2007 Hisil-Carter-Dawson,
2008 Hisil-Wong-Carter-Dawson
use $\left(X: Y: Z: X^{2}: Z^{2}\right)$
or $\left(X: Y: Z: X^{2}: Z^{2}: 2 X Z\right)$.
Can combine with Feng-Wu.
Competitive with Edwards!

For more information

Explicit-Formulas Database,
joint work with Tanja Lange:
hyperelliptic.org/EFD
EFD has 296 computer-verified
formulas and operation counts
for $A D D, D B L$, etc.
in 20 representations
on 8 shapes of elliptic curves.
Not yet handled by computer: generality of curve shapes (e.g., Hessian order $\in 3 Z$); complete addition algorithms (e.g., checking for ∞).

