Binary Edwards Curves

Daniel J. Bernstein Tanja Lange
University of Illinois at Chicago and Technische Universiteit Eindhoven
djb@cr.yp.to
tanja@hyperelliptic.org

09.05.2008
joint work with Reza Rezaeian Farashahi, Eindhoven
D. J. Bernstein \& T. Lange
cr.yp.to/papers.html\#edwards2 -p. 1

Harold M. Edwards

- Edwards generalized single example $x^{2}+y^{2}=1-x^{2} y^{2}$ by Euler/Gauss to whole class of curves.
- Shows that - after some field extensions - every elliptic curve over field k of odd characteristic is birationally equivalent to a curve of the form

$$
x^{2}+y^{2}=a^{2}\left(1+x^{2} y^{2}\right), a^{5} \neq a
$$

- Edwards gives addition law for this generalized form, shows
 equivalence with Weierstrass form, proves addition law, gives theta parameterization ... in his paper Bulletin of the AMS, 44, 393-422, 2007

How to add on an Edwards curve

Let k be a field with $2 \neq 0$. Let $d \in k$ with $d \neq 0,1 . \quad y$ Edwards curve:

$$
\left\{(x, y) \in k \times k \mid x^{2}+y^{2}=1+d x^{2} y^{2}\right\}
$$

Generalization covers more curves over k.
Associative operation on points
$\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{3}, y_{3}\right)$
defined by Edwards addition law

$$
x_{3}=\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}} \text { and } y_{3}=\frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}} .
$$

How to add on an Edwards curve

Let k be a field with $2 \neq 0$. Let $d \in k$ with $d \neq 0,1 . \quad y$ Edwards curve:

$$
\left\{(x, y) \in k \times k \mid x^{2}+y^{2}=1+d x^{2} y^{2}\right\}
$$

Generalization covers more curves over k.
Associative operation on points
$\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{3}, y_{3}\right)$
defined by Edwards addition law

$$
x_{3}=\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}} \text { and } y_{3}=\frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}} .
$$

- Neutral element is

How to add on an Edwards curve

Let k be a field with $2 \neq 0$. Let $d \in k$ with $d \neq 0,1 . \quad y$ Edwards curve:

$$
\left\{(x, y) \in k \times k \mid x^{2}+y^{2}=1+d x^{2} y^{2}\right\}
$$

Generalization covers more curves over k.
Associative operation on points
$\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{3}, y_{3}\right)$
defined by Edwards addition law

$$
x_{3}=\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}} \text { and } y_{3}=\frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}} .
$$

- Neutral element is $(0,1)$.

How to add on an Edwards curve

Let k be a field with $2 \neq 0$. Let $d \in k$ with $d \neq 0,1 . \quad y$ Edwards curve:

$$
\left\{(x, y) \in k \times k \mid x^{2}+y^{2}=1+d x^{2} y^{2}\right\}
$$

Generalization covers more curves over k.
Associative operation on points
$\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{3}, y_{3}\right)$
defined by Edwards addition law

$$
x_{3}=\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}} \text { and } y_{3}=\frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}} .
$$

- Neutral element is $(0,1)$.
- $-\left(x_{1}, y_{1}\right)=$

How to add on an Edwards curve

Let k be a field with $2 \neq 0$. Let $d \in k$ with $d \neq 0,1 . \quad y$ Edwards curve:

$$
\left\{(x, y) \in k \times k \mid x^{2}+y^{2}=1+d x^{2} y^{2}\right\}
$$

Generalization covers more curves over k.
Associative operation on points
$\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{3}, y_{3}\right)$
defined by Edwards addition law

$$
x_{3}=\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}} \text { and } y_{3}=\frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}} .
$$

- Neutral element is $(0,1)$.
- $-\left(x_{1}, y_{1}\right)=\left(-x_{1}, y_{1}\right)$.

How to add on an Edwards curve

Let k be a field with $2 \neq 0$. Let $d \in k$ with $d \neq 0,1 . \quad y$ Edwards curve:

$$
\left\{(x, y) \in k \times k \mid x^{2}+y^{2}=1+d x^{2} y^{2}\right\}
$$

Generalization covers more curves over k.
Associative operation on points
$\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{3}, y_{3}\right)$
defined by Edwards addition law

$$
x_{3}=\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}} \text { and } y_{3}=\frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}} .
$$

- Neutral element is $(0,1)$.
- $-\left(x_{1}, y_{1}\right)=\left(-x_{1}, y_{1}\right)$.
- $(0,-1)$ has order $2 ;(1,0)$ and $(-1,0)$ have order 4.

Relationship to elliptic curves

- Every elliptic curve with point of order 4 is birationally equivalent to an Edwards curve.
- Let $P_{4}=\left(u_{4}, v_{4}\right)$ have order 4 and shift u s.t. $2 P_{4}=(0,0)$. Then Weierstrass form:

$$
v^{2}=u^{3}+\left(v_{4}^{2} / u_{4}^{2}-2 u_{4}\right) u^{2}+u_{4}^{2} u .
$$

- Define $d=1-\left(4 u_{4}^{3} / v_{4}^{2}\right)$.
- The coordinates $x=v_{4} u /\left(u_{4} v\right), y=\left(u-u_{4}\right) /\left(u+u_{4}\right)$ satisfy

$$
x^{2}+y^{2}=1+d x^{2} y^{2} .
$$

- Inverse map $u=u_{4}(1+y) /(1-y), v=v_{4} u /\left(u_{4} x\right)$.
- Finitely many exceptional points. Exceptional points have $v\left(u+u_{4}\right)=0$.
- Addition on Edwards and Weierstrass corresponds.

Nice features of the addition law

- Neutral element of addition law is affine point, this avoids special routines (for $(0,1)$ one of the inputs or the result).
- Addition law is symmetric in both inputs.
- $P+Q=\left(\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}}, \frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}\right)$.

Nice features of the addition law

- Neutral element of addition law is affine point, this avoids special routines (for $(0,1)$ one of the inputs or the result).
- Addition law is symmetric in both inputs.
- $P+Q=\left(\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}}, \frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}\right)$.
- $[2] P=\left(\frac{x_{1} y_{1}+y_{1} x_{1}}{1+d x_{1} x_{1} y_{1} y_{1}}, \frac{y_{1} y_{1}-x_{1} x_{1}}{1-d x_{1} x_{1} y_{1} y_{1}}\right)$.

Nice features of the addition law

- Neutral element of addition law is affine point, this avoids special routines (for $(0,1)$ one of the inputs or the result).
- Addition law is symmetric in both inputs.
- $P+Q=\left(\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}}, \frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}\right)$.
- $[2] P=\left(\frac{x_{1} y_{1}+y_{1} x_{1}}{1+d x_{1} x_{1} y_{1} y_{1}}, \frac{y_{1} y_{1}-x_{1} x_{1}}{1-d x_{1} x_{1} y_{1} y_{1}}\right)$.
- No reason that the denominators should be 0 .
- Addition law produces correct result also for doubling.

Nice features of the addition law

- Neutral element of addition law is affine point, this avoids special routines (for $(0,1)$ one of the inputs or the result).
- Addition law is symmetric in both inputs.
- $P+Q=\left(\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}}, \frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}\right)$.
- $[2] P=\left(\frac{x_{1} y_{1}+y_{1} x_{1}}{1+d x_{1} x_{1} y_{1} y_{1}}, \frac{y_{1} y_{1}-x_{1} x_{1}}{1-d x_{1} x_{1} y_{1} y_{1}}\right)$.
- No reason that the denominators should be 0 .
- Addition law produces correct result also for doubling.
- Unified group operations!

Nice features of the addition law

- Neutral element of addition law is affine point, this avoids special routines (for $(0,1)$ one of the inputs or the result).
- Addition law is symmetric in both inputs.
- $P+Q=\left(\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}}, \frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}\right)$.
- $[2] P=\left(\frac{x_{1} y_{1}+y_{1} x_{1}}{1+d x_{1} x_{1} y_{1} y_{1}}, \frac{y_{1} y_{1}-x_{1} x_{1}}{1-d x_{1} x_{1} y_{1} y_{1}}\right)$.
- No reason that the denominators should be 0 .
- Addition law produces correct result also for doubling.
- Unified group operations!
- Having addition law work for doubling removes some checks from the code.

Complete addition law

- If d is not a square in k, then there are no points at infinity on the blow-up of the curve.
- If d is not a square, the only exceptional points of the birational equivalence are P_{∞} corresponding to $(0,1)$ and $(0,0)$ corresponding to $(0,-1)$.
- If d is not a square the denominators $1+d x_{1} x_{2} y_{1} y_{2}$ and $1-d x_{1} x_{2} y_{1} y_{2}$ are never 0 ; addition law is complete.
- Edwards addition law allows omitting all checks
- Neutral element is affine point on curve.
- Addition works to add P and P.
- Addition works to add P and $-P$.
- Addition just works to add P and any Q.
- Only complete addition law in the literature.

Fast addition law

- Very fast point addition $10 \mathrm{M}+1 \mathrm{~S}+1 \mathrm{D}$. (Even faster with Inverted Edwards coordinates.)
- Dedicated doubling formulas need only $3 \mathrm{M}+4 \mathrm{~S}$.
- Fastest scalar multiplication in the literature.
- For comparison: IEEE standard P1363 provides "the fastest arithmetic on elliptic curves" by using Jacobian coordinates on Weierstrass curves.
- Point addition $12 \mathrm{M}+4 \mathrm{~S}$.
- Doubling formulas need only 4M + 4S.
- For more curve shapes, better algorithms (even for Weierstrass curves) and many more operations (mixed addition, re-addition, tripling, scaling,...) see
www.hyperelliptic.org/EFD for the Explicit-Formulas Database.

Edwards Curves - a new star(fish) is born

lecture circuit:

Hoboken
Turku
Warsaw
Fort Meade, Maryland
Melbourne
Ottawa (SAC)
Dublin (ECC)
Bordeaux
Bristol
Magdeburg
Seoul
Malaysia (Asiacrypt)
Madras
Bangalore (AAECC)
D. J. Bernstein \& T. Lange

One year passes ...

Exceptions, $2 \neq 0$...

Fix a field k of characteristic different from 2. Fix $c, d \in k$ such that $c \neq 0$, $d \neq 0$, and $d c^{4} \neq 1$. Consider the Edwards addition law

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \mapsto\left(\frac{x_{1} y_{2}+y_{1} x_{2}}{c\left(1+d x_{1} x_{2} y_{1} y_{2}\right)}, \frac{y_{1} y_{2}-x_{1} x_{2}}{c\left(1-d x_{1} x_{2} y_{1} y_{2}\right)}\right)
$$

$x^{2}+y^{2}=a^{2}\left(1+x^{2} y^{2}\right), a^{5} \neq a$
describes an elliptic curve over field k oodd characteristic.

Theorem 2.1. Let k be a field in which $2 \neq 0$ Let E be an elliptic curve over k such that the group $E(k)$ has an element of order 4 . Then

How can there be an incomplete set of complete curves???

How to design a worthy binary partner?

Our wish-list early February 2008:
A binary Edwards curve should

- be elliptic.
- look like an Edwards curve.
- have a complete addition law.
- cover most (all?) ordinary binary elliptic curves.
- have an easy to compute negation.
- have efficient doublings.
- have efficient additions.

How to design a worthy binary partner?

Our wish-list early February 2008:
A binary Edwards curve should

- be elliptic.
- look like an Edwards curve.
- have a complete addition law.
- cover most (all?) ordinary binary elliptic curves.
- have an easy to compute negation.
- have efficient doublings.
- have efficient additions.
- be found before the CHES deadline, February 29th.

Newton Polygons, odd characteristic

Short Weierstrass

$$
y^{2}=x^{3}+a x+b
$$

Montgomery

$$
b y^{2}=x^{3}+a x^{2}+x
$$

Jacobi quartic

$$
y^{2}=x^{4}+2 a x^{2}+1
$$

Hessian

$$
x^{3}+y^{3}+1=3 d x y z
$$

Edwards

$$
x^{2}+y^{2}=1+d x^{2} y^{2}
$$

D. J. Bernstein \& T. Lange

The design choices

- Want x-degree $\leq 2, y$-degree ≤ 2, i.e.

$$
F(x, y)=\sum_{i=0}^{2} \sum_{j=0}^{2} a_{i j} x^{i} y^{j}
$$

- Want symmetric formulas, i.e. $a_{i j}=a_{j i}$.
- Want elliptic, i.e. $(1,1)$ needs to be an interior point. This means $a_{22} \neq 0$ or $a_{12}=a_{21} \neq 0$.
- If $a_{22}=0$ and $a_{12}=a_{21} \neq 0$ then there are three non-singular points at infinity \Rightarrow addition law cannot be complete (for sufficiently large fields).
- Thus largest degree term $x^{2} y^{2}$ (scale by a_{22}).

Binary Edwards curves?

$$
a_{00}+a_{10}(x+y)+a_{11} x y+a_{20}\left(x^{2}+y^{2}\right)+a_{21} x y(x+y)+x^{2} y^{2}
$$

- Study projective equation
$a_{00} Z^{4}+a_{10}(X+Y) Z^{3}+a_{11} X Y Z^{2}+a_{20}\left(X^{2}+Y^{2}\right) Z^{2}+$ $a_{21} X Y(X+Y) Z+X^{2} Y^{2}=0$
to find points at infinity $(Z=0)$:
$0+X^{2} Y^{2}=0 \Rightarrow(1: 0: 0)$ and $(0: 1: 0)$.
- When are these points singular? (Then make sure that blow-up needs field extension.) Study ($1: 0: 0$):

$$
\begin{aligned}
& G(y, z)=a_{00} z^{4}+a_{10}(1+y) z^{3}+a_{11} y z^{2}+a_{20}\left(1+y^{2}\right) z^{2}+a_{21} y(1+y) z+y^{2} \\
& G_{y}(y, z)=a_{10} z^{3}+a_{11} z^{2}+a_{21} z \\
& G_{z}(y, z)=a_{10}(1+y) z^{2}+a_{21} y(1+y)
\end{aligned}
$$

Both derivatives vanish at $(0,0)$, point is singular.

Blow-up

$$
\left\lceil a_{00} z^{4}+a_{10}(1+y) z^{3}+a_{11} y z^{2}+a_{20}\left(1+y^{2}\right) z^{2}+a_{21} y(1+y) z+y^{2}\right.
$$

Use $y=u z$ to obtain
$a_{00} z^{4}+a_{10}(1+u z) z^{3}+a_{11} u z^{3}+a_{20}\left(1+u^{2} z^{2}\right) z^{2}+a_{21} u(1+$ $u z) z^{2}+u^{2} z^{2}$
and divide by z^{2} to obtain

$$
H(u, z)=a_{00} z^{2}+a_{10}(1+u z) z+a_{11} u z+a_{20}\left(1+u^{2} z^{2}\right)+a_{21} u(1+u z)+u^{2}
$$

Points with $z=0$ on blow-up:
$H(u, 0)=a_{20}+a_{21} u+u^{2}$
Point is defined over k if $u^{2}+a_{21} u+a_{20}$ is reducible.
Want that blow-up is defined only over quadratic extension, so in particular $a_{20}, a_{21} \neq 0$.
Then $H_{u}(u, z)=a_{10} z^{2}+a_{11} z+a_{21}$ is nonzero in $z=0$, so blow-up is non-singular.
Scale curve by $x \rightarrow a_{21} x, y \rightarrow a_{21} y$ to get $a_{21}=1$.

Some choices

$$
\begin{aligned}
& F(x, y)=a_{00}+a_{10}(x+y)+a_{11} x y+a_{20}\left(x^{2}+y^{2}\right)+x y(x+y)+x^{2} y^{2} \\
& F_{x}(x, y)=a_{10}+a_{11} y+y^{2} \\
& F_{y}(x, y)=a_{10}+a_{11} x+x^{2} \\
& \text { At most one of } a_{10} \text { and } a_{00} \text { can be } 0 .
\end{aligned}
$$

Symmetry enforces that with (x, y) also (y, x) is on curve. Simplest possible negation: $-(x, y)=(y, x)$. There are other choices, several with surprisingly expensive negation.
We want an ordinary binary curve, i.e. one with a point of order 2 . So there should be two points fixed under negation. Fixed points are (α, α) and $\left(\alpha+\sqrt{a_{11}}, \alpha+\sqrt{a_{11}}\right)$, where $\alpha, \alpha+\sqrt{a_{11}}$ are the solutions of $a_{00}+a_{11} x^{2}+x^{4}$.
To have two different solutions request $a_{11} \neq 0$. Most convenient choices are $a_{00}=0, a_{11}=1$, neutral element $(0,0)$, point of order 2 is $(1,1)$.

Binary Edwards curves

Let $d_{1} \neq 0$ and $d_{2} \neq d_{1}^{2}+d_{1}$ then

$$
E_{\mathrm{B}, d_{1}, d_{2}}: d_{1}(x+y)+d_{2}\left(x^{2}+y^{2}\right)=x y+x y(x+y)+x^{2} y^{2},
$$

is a binary Edwards curve with parameters d_{1}, d_{2}. Map $(x, y) \mapsto(u, v)$ defined by

$$
\begin{aligned}
& u=d_{1}\left(d_{1}^{2}+d_{1}+d_{2}\right)(x+y) /\left(x y+d_{1}(x+y)\right) \\
& v=d_{1}\left(d_{1}^{2}+d_{1}+d_{2}\right)\left(x /\left(x y+d_{1}(x+y)\right)+d_{1}+1\right)
\end{aligned}
$$

is a birational equivalence from $E_{\mathrm{B}, d_{1}, d_{2}}$ to the elliptic curve

$$
v^{2}+u v=u^{3}+\left(d_{1}^{2}+d_{2}\right) u^{2}+d_{1}^{4}\left(d_{1}^{4}+d_{1}^{2}+d_{2}^{2}\right)
$$

an ordinary elliptic curve in Weierstrass form.

Properties of binary Edwards curves

$$
\begin{gathered}
E_{\mathrm{B}, d_{1}, d_{2}}: d_{1}(x+y)+d_{2}\left(x^{2}+y^{2}\right)=x y+x y(x+y)+x^{2} y^{2} \\
\quad\left(x_{3}, y_{3}\right)=\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right) \text { with } \\
x_{3}=\frac{d_{1}\left(x_{1}+x_{2}\right)+d_{2}\left(x_{1}+y_{1}\right)\left(x_{2}+y_{2}\right)+\left(x_{1}+x_{1}^{2}\right)\left(x_{2}\left(y_{1}+y_{2}+1\right)+y_{1} y_{2}\right)}{d_{1}+\left(x_{1}+x_{1}^{2}\right)\left(x_{2}+y_{2}\right)} \\
y_{3}=\frac{d_{1}\left(y_{1}+y_{2}\right)+d_{2}\left(x_{1}+y_{1}\right)\left(x_{2}+y_{2}\right)+\left(y_{1}+y_{1}^{2}\right)\left(y_{2}\left(x_{1}+x_{2}+1\right)+x_{1} x_{2}\right)}{d_{1}+\left(y_{1}+y_{1}^{2}\right)\left(x_{2}+y_{2}\right)}
\end{gathered}
$$

if denominators are nonzero.

- Neutral element is $(0,0)$.
- $(1,1)$ has order 2.
- $-(x, y)=(y, x)$.
- $\left(x_{1}, y_{1}\right)+(1,1)=\left(x_{1}+1, y_{1}+1\right)$.
D. J. Bernstein \& T. Lange
cr.yp.to/papers.html\#edwards2
-p. 18

Edwards curves over finite fields

- Addition law for curves with $\operatorname{Tr}\left(d_{2}\right)=1$ is complete.
- Denominators $d_{1}+\left(x_{1}+x_{1}^{2}\right)\left(x_{2}+y_{2}\right)$ and
$d_{1}+\left(y_{1}+y_{1}^{2}\right)\left(x_{2}+y_{2}\right)$ are nonzero:
If $x_{2}+y_{2}=0$ then the denominators are $d_{1} \neq 0$.
Otherwise $d_{1} /\left(x_{2}+y_{2}\right)=x_{1}+x_{1}^{2}$ and

$$
\begin{aligned}
\frac{d_{1}}{x_{2}+y_{2}} & =\frac{d_{1}\left(x_{2}+y_{2}\right)}{x_{2}^{2}+y_{2}^{2}}=\frac{d_{2}\left(x_{2}^{2}+y_{2}^{2}\right)+x_{2} y_{2}+x_{2} y_{2}\left(x_{2}+y_{2}\right)+x_{2}^{2} y_{2}^{2}}{x_{2}^{2}+y_{2}^{2}} \\
& =d_{2}+\frac{x_{2} y_{2}+x_{2} y_{2}\left(x_{2}+y_{2}\right)+y_{2}^{2}}{x_{2}^{2}+y_{2}^{2}}+\frac{y_{2}^{2}+x_{2}^{2} y_{2}^{2}}{x_{2}^{2}+y_{2}^{2}} \\
& =d_{2}+\frac{y_{2}+x_{2} y_{2}}{x_{2}+y_{2}}+\frac{y_{2}^{2}+x_{2}^{2} y_{2}^{2}}{x_{2}^{2}+y_{2}^{2}}
\end{aligned}
$$

So $\operatorname{Tr}\left(d_{2}\right)=\operatorname{Tr}\left(x_{1}+x_{1}^{2}\right)=0$, contradiction.

Generality \& doubling

- Every ordinary elliptic curve over $\mathbb{F}_{2^{n}}$ is birationally equivalent to a complete binary Edwards curve if $n \geq 3$. Proof uses counting argument and Hasse bound.
- Nice doubling formulas (use curve equation to simplify)

$$
\begin{aligned}
x_{3} & =1+\frac{d_{1}+d_{2}\left(x_{1}^{2}+y_{1}^{2}\right)+y_{1}^{2}+y_{1}^{4}}{d_{1}+x_{1}^{2}+y_{1}^{2}+\left(d_{2} / d_{1}\right)\left(x_{1}^{4}+y_{1}^{4}\right)} \\
y_{3} & =1+\frac{d_{1}+d_{2}\left(x_{1}^{2}+y_{1}^{2}\right)+x_{1}^{2}+x_{1}^{4}}{d_{1}+x_{1}^{2}+y_{1}^{2}+\left(d_{2} / d_{1}\right)\left(x_{1}^{4}+y_{1}^{4}\right)}
\end{aligned}
$$

- In projective coordinates:
$2 \mathrm{M}+6 \mathrm{~S}+3 \mathrm{D}$, where the 3D are multiplications by d_{1}, d_{2} / d_{1}, and d_{2}.

Operation counts

These curves are the first binary curves to offer complete addition laws. They are also surprisingly fast:

- ADD on binary Edwards curves takes 21M+1S+4D, mADD takes $13 \mathrm{M}+3 \mathrm{~S}+3 \mathrm{D}$.
- Latest results (today, 4 a.m.) ADD in 18M+2S+7D.
- Differential addition $(P+Q$ given P, Q, and $Q-P)$ takes $8 \mathrm{M}+1 \mathrm{~S}+2 \mathrm{D}$; mixed version takes $6 \mathrm{M}+1 \mathrm{~S}+2 \mathrm{D}$.
- Differential addition+doubling (typical step in Montgomery ladder) takes $8 \mathrm{M}+4 \mathrm{~S}+2 \mathrm{D}$; mixed version takes 6M+4S+2D.
See our preprint (ePrint 2008/171) or
cr.yp.to/papers.html\#edwards2
for full details, speedups for $d_{1}=d_{2}$, how to choose small coefficients, affine formulas, ...

Comparison with other doubling formulas

Assume curves are chosen with small coefficients.

System	Cost of doubling
Projective	$7 \mathrm{M}+4 \mathrm{~S}$; see HEHCC
Jacobian	$4 \mathrm{M}+5 \mathrm{~S}$; see HEHCC
Lopez-Dahab	$3 \mathrm{M}+5 \mathrm{~S}$; Lopez-Dahab
Edwards	$2 \mathrm{M}+6 \mathrm{~S}$; new, complete
Lopez-Dahab $a_{2}=1$	$2 \mathrm{M}+5 \mathrm{~S}$; Kim-Kim

Explicit-Formulas Database

```
www.hyperelliptic.org/EFD
```

for characteristic 2 is in preparation; our paper already has some speed-ups for Lopez-Dahab coordinates.

Happy End!

