
Invulnerable software

D. J. Bernstein

University of Illinois at Chicago

Public goal of

computer-security research:

Protection of

the average home computer;

critical-infrastructure computers;

and everything in between.

Public goal of

computer-security research:

Protection of

the average home computer;

critical-infrastructure computers;

and everything in between.

Secret goal of

computer-security research:

Lifetime employment

for computer-security researchers.

ECRYPT is a consortium of

European crypto researchers.

eSTREAM is the “ECRYPT

Stream Cipher Project.”

2004.11: eSTREAM calls for

submissions of stream ciphers.

Receives 34 submissions from 97

cryptographers around the world.

2008.04: After two hundred

papers and several conferences,

eSTREAM selects portfolio of

4 SW ciphers and 4 HW ciphers.

eSTREAM says: The HW ciphers

are aimed at “deployment on

passive RFID tags or low-cost

devices such as might be used

in sensor networks. Such devices

are exceptionally constrained

in computing potential : : :

[Keys are] 80 bits which we

believe to be adequate for the

lower-security applications where

such devices might be used.”

Obviously these ciphers

will be built into many chips

over the next 5 or 10 years.

Iain Devlin, Alan Purvis,

“Assessing the security

of key length,” 2007:

Buy FPGAs for US$3 million;

break 80-bit keys in 1 year.

Or: US$165 million; 1 week.

Cost will continue to drop.

Will come within reach

of more and more attackers.

Same story in public-key crypto.

1024-bit RSA will be broken.

160-bit ECC will be broken.

So users will pay us for

96-bit ciphers and 192-bit ECC.

And then those will be broken.

Continue for decades.

So users will pay us for

96-bit ciphers and 192-bit ECC.

And then those will be broken.

Continue for decades.

Success: Lifetime employment!

This is not a new pattern.

Consider, e.g., 56-bit DES,

or 48-bit Mifare CRYPTO1,

or MD5, or Keeloq.

All breakable by brute force,

and often by faster methods.

Naive conclusion

from all these attacks:

“There is no such thing as

100% secure cryptography!

Crypto breaks are inevitable!”

Naive conclusion

from all these attacks:

“There is no such thing as

100% secure cryptography!

Crypto breaks are inevitable!”

This conclusion is unjustified

and almost certainly wrong.

Nobody has found patterns

in output of 256-bit AES.

Most cryptographers think

that nobody ever will.

“AES software leaks keys

to cache-timing attacks!”

True, but we know how

to eliminate this problem

by (for example) bitslicing.

“Maybe secret-key crypto is okay,

but large quantum computers will

kill public-key cryptography!”

If large quantum computers are

built, they’ll break RSA and ECC,

but we have replacements.

See PQCrypto workshops.

Enough crypto for this talk.

How about all the rest

of computer security?

Flood of successful attacks,

even more than in crypto.

Conventional wisdom:

We’ll never stop the flood.

Viega and McGraw: “Because

there is no such thing as 100%

security, attacks will happen.”

Schneier: “Software bugs

(and therefore security flaws)

are inevitable.”

Analogy:

“We’ll never build a tunnel

from England to France.”

Why not? “It’s impossible.”

Or: “Maybe it’s possible,

but it’s much too expensive.”

Engineer’s reaction:

How expensive is it?

How big a tunnel can we build?

How can we reduce the costs?

Eventually a tunnel was built

from England to France.

Here’s what I think:

Invulnerable software systems

can and will be built,

and will become standard.

Most “security” research today

doesn’t aim for invulnerability,

doesn’t contribute to it,

and will be discarded once

we have invulnerable software.

Eliminating bugs

Every security hole is a bug.

Everyone agrees that

we can eliminate all bugs

in extremely small programs.

What about larger programs?

Space-shuttle software:

“The last three versions of the

program—each 420000 lines

long—had just one error each.

The last 11 versions of this

software had a total of 17 errors.”

Estimate bug rate of

software-engineering processes

by carefully reviewing code.

(Estimate is reliable enough;

“all bugs are shallow.”)

Meta-engineer processes

that have lower bug rates.

Note: progress is quantified.

Well-known example:

Drastically reduce bug rate

of typical engineering process

by adding coverage tests.

Example where my qmail software

did well: “Don’t parse.”

Typical user interfaces

copy “normal” inputs and

quote “abnormal” inputs.

Inherently bug-prone:

simpler copying is wrong

but passes “normal” tests.

Example (1996 Bernstein):

format-string danger in logger.

qmail’s internal file structures

and program-level interfaces

don’t have exceptional cases.

Simplest code is correct code.

Example where qmail did badly:

integer arithmetic.

In C et al., a + b usually means

exactly what it says,

but occasionally doesn’t.

To detect these occasions,

need to check for overflows.

Extra work for programmer.

To guarantee sane semantics,

extending integer range and

failing only if out of memory,

need to use large-integer library.

Extra work for programmer.

The closest that qmail

has come to a security hole

(Guninski): potential overflow

of an unchecked counter.

Fortunately, counter growth

was limited by memory

and thus by configuration,

but this was pure luck.

Anti-bug meta-engineering:

Use language where a + b

means exactly what it says.

“Large-integer libraries are slow!”

That’s a silly objection.

We need invulnerable systems,

and we need them today,

even if they are 10ˆ slower

than our current systems.

Tomorrow we’ll make them faster.

Most CPU time is consumed

by a very small portion

of all the system’s code.

Most large-integer overheads

are removed by smart compilers.

Occasional exceptions can be

handled manually at low cost.

More anti-bug meta-engineering

examples in my qmail paper:

automatic array extensions;

partitioning variables

to make data flow visible;

automatic updates of

“summary” variables;

abstraction for testability.

“Okay, we can achieve

much smaller bug rates.

But in a large system

we’ll still have many bugs,

including many security holes!”

Eliminating code

Measure code rate of

software-engineering processes.

Meta-engineer processes

that spend less code

to get the same job done.

Note: progress is quantified.

This is another classic topic

of software-engineering research.

Combines reasonably well

with reducing bug rate.

Example where qmail did well:

reusing access-control code.

A story from twenty years ago:

My .forward ran a program

creating a new file in /tmp.

Surprise: the program was

sometimes run under another uid!

How Sendmail handles .forward:

Check whether user can read it.

(Prohibit symlinks to secrets!)

Extract delivery instructions.

Keep track (often via queue file)

of instructions and user.

Many disastrous bugs here.

Kernel already tracks users.

Kernel already checks readability.

Why not reuse this code?

How qmail delivers to a user:

Start qmail-local

under the right uid.

When qmail-local reads

the user’s delivery instructions,

the kernel checks readability.

When qmail-local runs a

program, the kernel assigns

the same uid to that program.

No extra code required!

Example where qmail did badly:

exception handling.

qmail has thousands

of conditional branches.

About half are simply

checking for temporary errors.

Easy to get wrong: e.g.,

“if ipme init() returned -1,

qmail-remote would continue”

(fixed in qmail 0.92).

Easily fixed by better language.

More small-code meta-engineering

examples in my qmail paper:

identifying common functions;

reusing network tools;

reusing the filesystem.

“Okay, we can

build a system with less code,

and write code with fewer bugs.

But in a large system

we’ll still have bugs,

including security holes!”

Eliminating trusted code

Can architect computer systems

to place most of the code

into untrusted prisons.

Definition of “untrusted”:

no matter what the code does,

no matter how badly it behaves,

no matter how many bugs it has,

it cannot violate the

user’s security requirements.

Measure trusted code volume,

and meta-engineer processes

that reduce this volume.

Note: progress is quantified.

Warning: “Minimizing privilege”

rarely eliminates trusted code.

Every security mechanism,

no matter how pointless,

says it’s “minimizing privilege.”

This is not a useful concept.

qmail did very badly here.

Almost all qmail code is trusted.

I spent considerable effort

“minimizing privilege”; stupid!

This distracted me from

eliminating trusted code.

What are the user’s

security requirements?

My fundamental requirement:

The system keeps track

of sources of data.

When the system is asked

for data from source X,

it does not allow

data from source Y

to influence the result.

Example: When I view an

account statement from my bank,

I am not seeing data from other

web pages or email messages.

There is no obstacle to

centralization and minimization

of source-tracking code.

Can and should be small enough

to eliminate all bugs.

Classic military TCBs

used very few lines of code

to track (e.g.) Top Secret data.

VAX VMM Security Kernel

had < 50000 lines of code.

Minor programming problem to

support arbitrary source labels

instead of Top Secret etc.

“Doesn’t the UNIX/Linux kernel

already track sources?”

If I log into a system,

the kernel copies my uid

to my login process,

to other processes I start,

to files I create, etc.

But if I transfer data

to another user’s processes—

through the network or a file—

the kernel doesn’t remember

that I’m the source.

Source tracking today

is implemented by programmers

writing web browsers, mail clients,

PHP scripts, etc.

All of this code is trusted.

All other code in these programs

is also trusted, thanks to

nonexistent internal partitioning.

Your laptop has tens of millions

of lines of trusted code written by

thousands of novice programmers.

A screwup anywhere in that code

can violate security policy.

“Teach every programmer

how to write secure code.”

No, no, no!

If every programmer

is writing trusted code

then the system has

far too much trusted code.

We need new systems

with far less trusted code.

Enforce security in TCB

so that typical programmers

don’t have to worry about it.

Imagine a TCB tracking sources.

Alice’s process reads Bob’s file.

TCB automatically labels

process as /Alice/Bob.

Process creates a file.

TCB automatically labels

file as /Alice/Bob

(and refuses to touch a file

labelled only /Alice).

Joe’s process reads the file

and another file from Charlie.

Process then has two labels:

/Joe/Alice/Bob; /Joe/Charlie.

A web-browsing process

that reads from mbna.com

and from nytimes.com

will have both labels.

TCB won’t allow process

to write under just one label.

Solution 1: Track sources

separately for each variable

inside the web-browsing process.

Doable with compiler support.

Solution 2: Rewrite browser

in the classic UNIX style,

one process for each page.

More work but smaller TCB.

Quantitative questions:

How much code is required

for a TCB that enforces

source-tracking policy

against all other code?

How many bugs do we expect

in a TCB of this size?

Note: Can afford expensive

techniques to reduce bug rate.

If code volume is small enough,

and bug rate is small enough,

then we will be confident

that sources are tracked.

