Hyperelliptic-curve cryptography

D. J. Bernstein
University of Illinois at Chicago

Thanks to:
NSF DMS–0140542
NSF ITR–0716498
Alfred P. Sloan Foundation
Two parts to this talk:

1. Elliptic curves; “modern cryptography.”
2. Genus-2 hyperelliptic curves; “future cryptography.”

Will cryptography eventually move to genus 3, 4, 5, ...? Maybe, but current guess is that genus 2 is optimal.
Elliptic-curve computations

Write $p = 2^{255} - 19$; p is a prime.

Costs of arithmetic in \mathbb{F}_p with state-of-the-art software:
10 “ops” for $f, g \mapsto f + g$.
55 “ops” for $f \mapsto 121665 f$.
162 “ops” for $f \mapsto f^2$.
243 “ops” for $f, g \mapsto fg$.

1.3GHz Pentium M: 1.3 cycles/ns; typically ≈ 1 “op”/cycle.

Newer chips than the Pentium M: more cycles/ns; more “ops”/cycle.
“Curve25519” is the elliptic curve
\[y^2 = x^3 + 486662x^2 + x \] over \(\mathbb{F}_p \).

“Curve25519(\(\mathbb{F}_p \))” is
the commutative group
\(\{(x, y) \in \mathbb{F}_p \times \mathbb{F}_p : \ y^2 = x^3 + 486662x^2 + x \} \cup \{\infty\} \)
with chord-and-tangent addition.

Neutral element of the group: \(\infty \).

Negation in the group:
\(\infty \mapsto \infty; (x, y) \mapsto (x, -y) \).

Chord-and-tangent idea:
points on a line add to 0,
when counted with multiplicity.
Chord-and-tangent definition:

• \(\infty + \infty = \infty;\)
• \((x_1, y_1) + \infty = (x_1, y_1);\)
• \(\infty + (x_2, y_2) = (x_2, y_2);\)
• \((x_1, y_1) + (x_1, -y_1) = \infty;\)
• for \(y_1 \neq 0, (x_1, y_1) + (x_1, y_1) = (x_3, y_3)\) where
 \[x_3 = \lambda^2 - 486662 - x_1 - x_1,\]
 \[y_3 = \lambda(x_1 - x_3) - y_1,\]
 \[\lambda = \frac{(3x_1^2 + 973324x_1 + 1)}{2y_1};\]
• for \(x_1 \neq x_2, (x_1, y_1) + (x_2, y_2) = (x_3, y_3)\) where
 \[x_3 = \lambda^2 - 486662 - x_1 - x_2,\]
 \[y_3 = \lambda(x_1 - x_3) - y_1,\]
 \[\lambda = \frac{(y_2 - y_1)}{(x_2 - x_1)}.\]
Profusion of cases is annoying for mathematicians and programmers. Do we need so many cases?

Can cover $E(k) \times E(k)$ with 3 open addition laws. (1985 H. Lange–Ruppert)

How about just one law that covers $E(k) \times E(k)$?

One complete addition law?

Can avoid expensive divisions using projective coordinates

\[(X : Y : Z) \mapsto (X/Z, Y/Z)\].

\[12M + 2S\] for \(Q, R \mapsto Q + R\).
\[7M + 3S\] for \(Q \mapsto 2Q\)
on \(y^2 = x^3 - 3x + a_6\);
slightly slower without \(a_4 = -3\).

(1986 Chudnovsky–Chudnovsky)

Here \(M\) is mult in \(F_p\),
\(S\) is squaring in \(F_p\).

For full performance picture
also have to count adds in \(F_p\).
Or “Jacobian” coordinates
\((X : Y : Z) \mapsto (X/Z^2, Y/Z^3)\).

12M + 4S for \(Q, R \mapsto Q + R\).
4M + 4S for \(Q \mapsto 2Q\)
on \(y^2 = x^3 - 3x + \text{const.}\)
(1986 Chudnovsky–Chudnovsky)

11M + 5S; 3M + 5S.
(2001 Bernstein)

Many more coordinate systems.
Survey and various improvements:
“Explicit-Formulas Database,”
http://hyperelliptic.org/EFD
(joint work with Tanja Lange)
From \(n \in \mathbb{Z}, \; Q \in \text{Curve25519}(\mathbb{F}_p) \) compute \(nQ \in \text{Curve25519}(\mathbb{F}_p) \) using \(O(\lg n) \) curve additions.

Recursion: \(0Q = \infty; \; 1Q = Q; \)
\(-1)Q = -Q; \; 2nQ = 2(nQ); \)
\((2n + 1)Q = 2nQ + Q.\)

Faster: “Sliding windows.”
e.g. \((8n + 7)Q = 8nQ + 7Q\)
after precomputing \(3Q, 5Q, 7Q\).
Asymptotics: \(\approx \lg n \) doublings,
\(\approx (\lg n)/\lg \lg n \) more additions.

For average \(n \approx 2^{255}: \)
\(\approx 252 \) doublings, \(\approx 50 \) additions;
\(\approx 2400 \) “ops” per bit of \(n.\)
Or (1987 Montgomery): Compute $x(Q), x(2nQ), x((2n + 1)Q)$ or $x(Q), x((2n + 1)Q), x((2n + 2)Q)$, given $x(Q), x(nQ), x((n + 1)Q)$, using $5M + 4S + 1D + 8\text{add}$, where D is mult by 121665.

Only 1998 “ops” per bit of n.

$n, x(Q) \mapsto x(nQ)$ for $n \approx 2^{255}$ in $< 500\mu s$ on 1.3GHz Pentium M. (2005 Bernstein)

$n, x(Q) \mapsto x(nQ)$ for $n \approx 2^{255}$ in $< 170\mu s$ on 2.4GHz Core 2; $> 24000 \; nQ/\text{sec}$ using four cores. (2007 Gaudry–Thomé)
Elliptic-curve Diffie–Hellman
(1986 Miller; 1987 Koblitz)

$\bar{g} = (9, \ldots)$ is a standard element of Curve25519(\mathbb{F}_p) with order p_1.

I have a “secret key”: an integer $n \in \{0, 1, \ldots, 2^{256} - 1\}$.

I compute a “public key” $x(n\bar{g})$ and publish it. 32 bytes.

You have a secret key m.
You publish $x(m\bar{g})$.

We compute secret $x(mn\bar{g})$.
Then “ciphers” such as “AES” encrypt and authenticate data.
\#Curve25519(F_p) \approx 2^{255};
in fact \#Curve25519(F_p) = 8p_1
for a known prime \(p_1 \approx 2^{252} \).

Attacker can compute \(x(mn\bar{9}) \)
using \(\approx \sqrt{p_1} \approx 2^{126} \) adds.
No faster attacks known.

Side notes to cryptographers:
\(p \) has large order mod \(p_1 \);
\(2p + 2 - \#Curve25519(F_p) = 4p_2 \)
for a known prime \(p_2 \approx 2^{253} \);
\(p \) has large order mod \(p_2 \);
\((p + 1 - 8p_1)^2 - 4p\) is not
a small multiple of a square.
Elliptic-curve signatures

I sign a message m by generating another secret s, computing $R = s\bar{9}$, computing $t = H(R, m)s + n \mod p_1$. Here H is a standard “hash function” such as “SHA-256.”

Signature is (R, t). Anyone can verify $t\bar{9} = H(R, m)R + n\bar{9}$. No fast attacks known.

(first similar idea: 1985 ElGamal; many generalizations, variations; these choices: 2006 van Duin)
Compute $t\bar{g} - H(R, m)R$ using ≈ 252 doublings, ≈ 100 additions.

Even better: To verify a batch
\[t_1\bar{g} - h_1R_1 = K_1, \]
\[t_2\bar{g} - h_2R_2 = K_2, \]
\[\vdots \]
\[t_{100}\bar{g} - h_{100}R_{100} = K_{100}: \]
Verify linear combination
\[(v_1t_1 + \cdots + v_{100}t_{100})\bar{g} - v_1h_1R_1 - \cdots - v_{100}h_{100}R_{100} - v_1K_1 - \cdots - v_{100}K_{100} = 0 \]
for random 128-bit v_1, \ldots, v_{100}.
(1994 Naccache et al.; 1998 Bellare et al.)
Use subtractive multi-scalar multiplication algorithm:

if \(n_1 \geq n_2 \geq \cdots \) then

\[
R_1 + R_2 + \cdots = (n_1 - qn_2)R_1 + n_2(qR_1 + R_2) + n_3R_3 + \cdots
\]

where \(q = \lfloor n_1/n_2 \rfloor \).

(credited to Bos and Coster by 1994 de Rooij;

see also tweaks by 2007 Wei Dai)

Only \(\approx 25.2 \) curve adds/bit
to verify 100 signatures.

Doublings are negligible here;
want fast \(Q, R \mapsto Q + R \).

Projective is better than Jacobian.
More curves

Same cryptographic protocols work with any “fast” group. Let’s try another group.

\[\{(x, y) \in \mathbb{F}_p \times \mathbb{F}_p : x^2 + y^2 = 1\} \]

is a commutative group with

\[(x_1, y_1) + (x_2, y_2) = (x_3, y_3)\]

where \(x_3 = x_1y_2 + x_2y_1 \)

and \(y_3 = y_1y_2 - x_1x_2 \).

Addition law is complete and fast! Only 3\(\mathbf{M} \) for \(Q, R \mapsto Q + R \).

But this curve is vulnerable to “index calculus.” Security requires larger \(p \), outweighing speedup.
If d is not a square in \mathbb{F}_p
then \[\{(x, y) \in \mathbb{F}_p \times \mathbb{F}_p : \quad x^2 + y^2 = 1 + dx^2y^2\}\]
is a commutative group with
\[(x_1, y_1) + (x_2, y_2) = (x_3, y_3)\]
defined by Edwards addition law:

\[x_3 = \frac{x_1y_2 + x_2y_1}{1 + dx_1x_2y_1y_2},\]
\[y_3 = \frac{y_1y_2 - x_1x_2}{1 - dx_1x_2y_1y_2}.\]

\[d = -1: \ 1761 \text{ Euler, 1866 Gauss};\]
any $d = c^4$: 2007 Edwards;
addition is complete for $d \neq \Box$: 2007 Bernstein–Lange)
Outline of completeness proof: use curve equation to see that
\((dx_1x_2y_1y_2)^2 = 1\)
\(\Rightarrow (x_1 + dx_1x_2y_1y_2y_1)^2 = dx_1^2y_1^2(x_2 + y_2)^2\)
\(\Rightarrow d\) is a square. □

This curve has genus 1!
Equivalent to an elliptic curve.
e.g. Curve25519 is equivalent to the complete Edwards curve
\(x^2 + y^2 = 1 + (1 - 1/121666)x^2y^2\).

Edwards addition law is complete despite Bosma–Lenstra theorem.
Edwards curves are fast!
(2007 Bernstein–Lange)

Can use projective coordinates.
10\textit{M} + 1\textit{S} for \(Q, R \mapsto Q + R \).
3\textit{M} + 4\textit{S} for \(Q \mapsto 2Q \),
assuming \(d \) is small.

Can sacrifice completeness
and use “inverted” coordinates
\((X : Y : Z) \mapsto (Z/X, Z/Y)\).
9\textit{M} + 1\textit{S} for \(Q, R \mapsto Q + R \).
3\textit{M} + 4\textit{S} for \(Q \mapsto 2Q \),
assuming \(d \) is small.
Why do we use \mathbb{F}_p?
Why not, e.g., $\mathbb{F}_{2^{251}}$?

“Binary Edwards curves”

$$d_1(x + y) + d_2(x^2 + y^2)$$

$$= xy(1 + x)(1 + y)$$

have complete addition law
if $x^2 + x + d_2$ is irreducible;
also fast doublings etc.
(2008 Bernstein–Lange–Reza Rezaeian Farashahi)

2008.03.31 news: Intel announces support for \mathbb{F}_2 poly mult
in next year’s chips.
What about genus 2?

Choose much smaller prime q, say $q = 2^{127} - 1$.

Costs of arithmetic in \mathbb{F}_q:
5 “ops” for $f, g \mapsto f + g$.
57 “ops” for $f \mapsto f^2$.
73 “ops” for $f, g \mapsto fg$.

Recall 10, 162, 243 for arithmetic in $\mathbb{F}_{2^{255}-19}$. \mathbb{F}_q is much faster.
$2 \times$ faster for $f, g \mapsto f + g$.
$2.842 \times$ faster for $f \mapsto f^2$.
$3.329 \times$ faster for $f, g \mapsto fg$.
Choose genus-2 hyperelliptic curve C over \mathbb{F}_q with unique ∞.

How fast is arithmetic in the group $(\text{Jac } C)(\mathbb{F}_q)$?

Is $\text{Jac } C$ faster than Curve25519?

Similar group size, $\approx 2^{254}$.

Conjecturally similar security for these cryptographic protocols.

Basic disadvantage of genus 2: $\#\mathcal{M}$ for addition is much larger for $\text{Jac } C$ than for Curve25519.

Basic advantage of genus 2: \mathbb{F}_q is much faster than \mathbb{F}_p. Does this outweigh the disadvantage?
Can use Gauss-style algorithm (Cantor; Koblitz) to multiply in ideal-class group.

Many genus-2 speedups:
2000 Harley; 2001 Lange;
2001 Matsuo–Chao–Tsujii;
2002 Miyamoto–Doi–Matsuo–Chao–Tsujii; 2002 Takahashi;
culminating in 2002 Lange,
\[34M + 7S\text{ for } P \mapsto 2P.\]
Still not as fast as genus 1.

More speedups for binary genus 2.
Faster than binary genus 1!
Still not as fast as non-binary.
Alternative: compute
$x(P), x(2nP), x((2n + 1)P)$ or
$x(P), x((2n + 1)P), x((2n + 2)P)$,
given $x(P), x(nP), x((n + 1)P)$,
where $x : (\text{Jac } C)/\{\pm 1\} \hookrightarrow K$
is a standard rational map
to Kummer surface $K \subset \mathbb{P}^3$.

Can do this computation
in just $16\mathbf{M} + 9\mathbf{S}$.
(2005 Gaudry, improving
1986 Chudnovsky–Chudnovsky)

Analogous to Montgomery’s
$x : E/\{\pm 1\} \hookrightarrow \mathbb{P}^1$.
Gaudry’s formulas use 1841 “ops” for each bit of n.
New software speed records.
(2006 Bernstein)

But wait, there’s more!
“A few multiplications can be saved” by small choices of C.
(2005 Gaudry)

$7M + 12S$ for small C.
1659 “ops,” and as few as
1355 “ops” for extremely small C.
(2006 Bernstein)
Problem: For security, need large prime in \(\#(\text{Jac } C)(\mathbb{F}_q) \), like \(p_1 = \#\text{Curve25519}(\mathbb{F}_p)/8 \). Also, signers need to know prime.

How do we compute \(\# \text{ Jac } C \)?

Strategy 1: Build \(C \) by CM. Trivially write down \(\# \text{ Jac } C \).

Problem: \(C \) isn’t small!

We want better speeds.

Strategy 2: Choose a small \(C \). Compute \(\# \text{ Jac } C \mod \ell \) for several small primes \(\ell \).
Strategy 2 is “polynomial time” (1985 Schoof; 1990 Pila) . . . but much, much, much slower for genus 2 than for genus 1.

$q \approx 2^{64}$: 2000 Gaudry–Harley.

$q \approx 2^{80}$: 2004 Gaudry–Schost.

$q \approx 2^{100}$: 2008 Gaudry–Schost.

For one candidate curve C,

$\approx 1.3 \cdot 2^{51}$ CPU cycles.

$\approx 1.2 \cdot 2^{33}$ bytes RAM.
How does strategy 2 work?

Write down generic point $P \in \text{Jac } C$ with $\ell P = 0$.

Specifically: express $\ell P = 0$ as system of equations on coordinates of P;
extend F_q to ring $R = F_q[\text{coords}]/\text{equations}$;
note that $\ell P = 0$ in $(\text{Jac } C)(R)$.

Genus 1: $\# R \approx q^{\ell^2}$.

Genus 2: $\# R \approx q^{\ell^4}$.

Much larger computations.
Define qth-power Frobenius map $\varphi : (\text{Jac } C)(\mathbb{F}_q) \rightarrow (\text{Jac } C)(\mathbb{F}_q)$.

Genus 1: Find linear equation

$$\varphi^2(P) - s_1 \varphi(P) + qP = 0$$

with $s_1 \in \{0, 1, \ldots, \ell - 1\}$. Then

$$1 - s_1 + q - \# \text{Jac}(C)(\mathbb{F}_q) \in \ell \mathbb{Z}.$$

Genus 2: Find linear equation

$$\varphi^4(P) - s_1 \varphi^3(P) + s_2 \varphi^2(P) - qs_1 \varphi(P) + q^2P = 0$$

with $s_1, s_2 \in \{0, 1, \ldots, \ell - 1\}$. Then

$$1 - s_1 + s_2 - qs_1 + q^2$$

$$- \# \text{Jac}(C)(\mathbb{F}_q) \in \ell \mathbb{Z}.$$
Typical papers replace R by a field quotient, allegedly saving time.

Bad idea for large q.

Finding field quotients loses more time than it saves. “Factorization is slow.”

Can save time in genus 1 by building a smaller R that defines a Frob-stable subgroup of ℓ-torsion. (1991 Elkies; 1992 Atkin)

But analogous techniques seem to lose time in genus 2.
Which coords to choose?

Gaudry et al. write \(P = P_1 - P_2 \) with \(P_i = (x_i, y_i) \in C \to \text{Jac } C \). Equation \(\ell P_i = \ell P_j \) gives two equations in \(x_1, x_2 \). Eliminate \(x_2 \), obtaining equation in \(x_1 \).

Elimination time \((\ell^6 \log q)^{1+o(1)}\) using fast-arithmetic techniques.

Several constant-factor speedups: symmetrize; \# Jac \(C \mod 2^2 \) etc.; reduce \# Jac \(C \) range; et al.
With my student Nikki Pitcher: various improvements, including log-factor speedup ("faster poly multiplication"), log-factor space reduction ("low-memory interpolation").

Clearly \(q \approx 2^{128} \) is reachable. Moderate computation will find small secure genus-2 curves, new leaders for Diffie–Hellman.

But what about signatures? Addition speed is paramount. Open: genus-2 Edwards?