Hyperelliptic-curve cryptography

D. J. Bernstein
University of Illinois at Chicago
Thanks to:
NSF DMS-0140542
NSF ITR-0716498
Alfred P. Sloan Foundation

Two parts to this talk:

- Elliptic curves;
 "modern cryptography."
- Genus-2 hyperelliptic curves;
 "future cryptography."

Will cryptography eventually move to genus 3, 4, 5, . . .? Maybe, but current guess is that genus 2 is optimal.

Elliptic-curve computations

Write $p = 2^{255} - 19$; *p* is a prime.

Costs of arithmetic in \mathbf{F}_p with state-of-the-art software: 10 "ops" for $f, g \mapsto f + g$. 55 "ops" for $f \mapsto 121665f$. 162 "ops" for $f \mapsto f^2$. 243 "ops" for $f, g \mapsto fg$.

1.3GHz Pentium M: 1.3 cycles/ns; typically \approx 1 "op"/cycle.

Newer chips than the Pentium M: more cycles/ns; more "ops"/cycle.

"Curve25519" is the elliptic curve $y^2 = x^3 + 486662x^2 + x$ over ${\sf F}_p$.

"Curve25519 (\mathbf{F}_p) " is the commutative group $\{(x, y) \in \mathbf{F}_p imes \mathbf{F}_p :$ $y^2 = x^3 + 486662x^2 + x\} \cup \{\infty\}$ with chord-and-tangent addition.

Neutral element of the group: ∞ .

Negation in the group: $\infty\mapsto\infty;\ (x,y)\mapsto(x,-y).$

Chord-and-tangent idea: points on a line add to 0, when counted with multiplicity. Chord-and-tangent definition:

•
$$\infty + \infty = \infty;$$

• $(x_1, y_1) + \infty = (x_1, y_1);$
• $\infty + (x_2, y_2) = (x_2, y_2);$
• $(x_1, y_1) + (x_1, -y_1) = \infty;$
• for $y_1 \neq 0$, $(x_1, y_1) + (x_1, y_1)$
 $= (x_3, y_3)$ where
 $x_3 = \lambda^2 - 486662 - x_1 - x_1,$
 $y_3 = \lambda(x_1 - x_3) - y_1,$
 $\lambda = (3x_1^2 + 973324x_1 + 1)/2y_1;$
• for $x_1 \neq x_2, (x_1, y_1) + (x_2, y_2)$
 $= (x_3, y_3)$ where
 $x_3 = \lambda^2 - 486662 - x_1 - x_2,$
 $y_3 = \lambda(x_1 - x_3) - y_1,$
 $\lambda = (y_2 - y_1)/(x_2 - x_1).$

Profusion of cases is annoying for mathematicians and programmers. Do we need so many cases?

Can cover $E(k) \times E(k)$ with 3 open addition laws. (1985 H. Lange–Ruppert)

How about just one law that covers $E(k) \times E(k)$? One complete addition law?

Bad news: "Theorem 1. The smallest cardinality of a complete system of addition laws on *E* equals two." (1995 Bosma–Lenstra)

Can avoid expensive divisions using projective coordinates $(X:Y:Z)\mapsto (X/Z,Y/Z).$ $12\mathbf{M} + 2\mathbf{S}$ for $Q, R \mapsto Q + R$. $7\mathbf{M} + 3\mathbf{S}$ for $Q \mapsto 2Q$ on $y^2 = x^3 - 3x + a_6$; slightly slower without $a_4 = -3$. (1986 Chudnovsky-Chudnovsky) Here **M** is mult in \mathbf{F}_{p} , **S** is squaring in \mathbf{F}_{p} .

For full performance picture also have to count adds in \mathbf{F}_p .

Or "Jacobian" coordinates $(X : Y : Z) \mapsto (X/Z^2, Y/Z^3).$

 $12\mathbf{M} + 4\mathbf{S}$ for $Q, R \mapsto Q + R$.

 $4\mathbf{M} + 4\mathbf{S}$ for $Q \mapsto 2Q$

on $y^2 = x^3 - 3x + \text{const.}$

(1986 Chudnovsky–Chudnovsky)

11M + 5S; 3M + 5S.(2001 Bernstein)

Many more coordinate systems. Survey and various improvements: "Explicit-Formulas Database,"

http://hyperelliptic.org/EFD
(joint work with Tanja Lange)

From $n \in \mathbb{Z}$, $Q \in \text{Curve25519}(\mathbb{F}_p)$ compute $nQ \in \text{Curve25519}(\mathbb{F}_p)$ using $O(\lg n)$ curve additions.

Recursion: $0Q = \infty$; 1Q = Q; (-1)Q = -Q; 2nQ = 2(nQ); (2n + 1)Q = 2nQ + Q.

Faster: "Sliding windows." e.g. (8n + 7)Q = 8nQ + 7Qafter precomputing 3Q, 5Q, 7Q. Asymptotics: $\approx \lg n$ doublings, $\approx (\lg n)/\lg \lg n$ more additions. For average $n \approx 2^{255}$: ≈ 252 doublings, ≈ 50 additions; ≈ 2400 "ops" per bit of n.

Or (1987 Montgomery): Compute x(Q), x(2nQ), x((2n+1)Q) or x(Q), x((2n+1)Q), x((2n+2)Q),given x(Q), x(nQ), x((n+1)Q),using $5\mathbf{M} + 4\mathbf{S} + 1\mathbf{D} + 8\mathbf{add}$, where \mathbf{D} is mult by 121665. Only 1998 "ops" per bit of n. $n, x(Q) \mapsto x(nQ)$ for $n pprox 2^{255}$ in $< 500 \mu s$ on 1.3GHz Pentium M. (2005 Bernstein)

 $n, x(Q) \mapsto x(nQ)$ for $n \approx 2^{255}$ in $< 170 \mu$ s on 2.4GHz Core 2; $> 24000 \ nQ/\text{sec}$ using four cores. (2007 Gaudry-Thomé)

Elliptic-curve Diffie-Hellman

(1986 Miller; 1987 Koblitz)

 $\overline{9} = (9, ...)$ is a standard element of Curve25519(\mathbf{F}_p) with order p_1 .

I have a "secret key": an integer $n \in \left\{0, 1, \ldots, 2^{256} - 1
ight\}$.

I compute a "public key" $x(n\overline{9})$ and publish it. 32 bytes.

You have a secret key m. You publish $x(m\overline{9})$.

We compute secret $x(mn\overline{9})$. Then "ciphers" such as "AES" encrypt and authenticate data. #Curve25519(\mathbf{F}_p) $\approx 2^{255}$; in fact #Curve25519(\mathbf{F}_p) $= 8p_1$ for a known prime $p_1 \approx 2^{252}$.

Attacker can compute $x(mn\overline{9})$ using $\approx \sqrt{p_1} \approx 2^{126}$ adds. No faster attacks known.

Side notes to cryptographers: p has large order mod p_1 ; 2p + 2 - #Curve25519(\mathbf{F}_p) = $4p_2$ for a known prime $p_2 \approx 2^{253}$; p has large order mod p_2 ; $(p+1-8p_1)^2 - 4p$ is not a small multiple of a square.

Elliptic-curve signatures

I sign a message mby generating another secret s, computing $R = s\overline{9}$, computing $t = H(R, m)s + n \mod p_1$. Here H is a standard "hash function" such as "SHA-256."

Signature is (R, t). Anyone can verify $t\overline{9} = H(R, m)R + n\overline{9}$. No fast attacks known.

(first similar idea: 1985 ElGamal; many generalizations, variations; these choices: 2006 van Duin) Compute $t\overline{9} - H(R, m)R$ using pprox 252 doublings, pprox 100 additions.

Even better: To verify a batch $t_19 - h_1R_1 = K_1$, $t_29 - h_2R_2 = K_2$ $t_{100}\overline{9} - h_{100}R_{100} = K_{100}$: Verify linear combination $(v_1t_1 + \cdots + v_{100}t_{100})\overline{9}$ $-v_1h_1R_1-\cdots-v_{100}h_{100}R_{100}$ $-v_1K_1-\cdots-v_{100}K_{100}=0$ for random 128-bit v_1, \ldots, v_{100} . (1994 Naccache et al.; 1998 Bellare et al.)

Use subtractive multi-scalar multiplication algorithm: if $n_1 > n_2 > \cdots$ then $n_1R_1 + n_2R_2 + n_3R_3 + \cdots =$ $(n_1 - qn_2)R_1 + n_2(qR_1 + R_2) +$ $n_3R_3 + \cdots$ where $q = |n_1/n_2|$. (credited to Bos and Coster by 1994 de Rooij; see also tweaks by 2007 Wei Dai) Only \approx 25.2 curve adds/bit to verify 100 signatures.

Doublings are negligible here; want fast $Q, R \mapsto Q + R$. Projective is better than Jacobian.

More curves

Same cryptographic protocols work with any "fast" group. Let's try another group.

 $ig\{(x,y)\in {\sf F}_p imes {\sf F}_p:x^2+y^2=1ig\}$ is a commutative group with $(x_1,y_1)+(x_2,y_2)=(x_3,y_3)$ where $x_3=x_1y_2+x_2y_1$ and $y_3=y_1y_2-x_1x_2.$

Addition law is complete and fast! Only 3**M** for $Q, R \mapsto Q + R$. But this curve is vulnerable to "index calculus." Security requires larger p, outweighing speedup. If d is not a square in ${f F}_p$ then $\{(x,y)\in {f F}_p imes {f F}_p: x^2+y^2=1+dx^2y^2\}$

is a commutative group with $(x_1, y_1) + (x_2, y_2) = (x_3, y_3)$ defined by Edwards addition law:

$$x_3=rac{x_1y_2+x_2y_1}{1+dx_1x_2y_1y_2}$$
,

$$y_3 = rac{y_1y_2 - x_1x_2}{1 - dx_1x_2y_1y_2}$$

(d = -1: 1761 Euler, 1866 Gauss; any $d = c^4: 2007$ Edwards; addition is complete for $d \neq \Box$: 2007 Bernstein–Lange) Outline of completeness proof: use curve equation to see that $(dx_1x_2y_1y_2)^2 = 1$ $\Rightarrow (x_1 + dx_1x_2y_1y_2y_1)^2 =$ $dx_1^2y_1^2(x_2 + y_2)^2$ $\Rightarrow d$ is a square. \Box

This curve has genus 1! Equivalent to an elliptic curve. e.g. Curve25519 is equivalent to the complete Edwards curve $x^2 + y^2 = 1 + (1 - 1/121666)x^2y^2$.

Edwards addition law is complete despite Bosma–Lenstra theorem.

Edwards curves are fast! (2007 Bernstein–Lange)

Can use projective coordinates. $10\mathbf{M} + 1\mathbf{S}$ for $Q, R \mapsto Q + R$. $3\mathbf{M} + 4\mathbf{S}$ for $Q \mapsto 2Q$, assuming d is small.

Can sacrifice completeness and use "inverted" coordinates $(X : Y : Z) \mapsto (Z/X, Z/Y).$ $9\mathbf{M} + 1\mathbf{S}$ for $Q, R \mapsto Q + R.$ $3\mathbf{M} + 4\mathbf{S}$ for $Q \mapsto 2Q$, assuming d is small. Why do we use \mathbf{F}_p ? Why not, e.g., $\mathbf{F}_{2^{251}}$?

"Binary Edwards curves" $d_1(x + y) + d_2(x^2 + y^2)$ = xy(1 + x)(1 + y)have complete addition law if $x^2 + x + d_2$ is irreducible; also fast doublings etc. (2008 Bernstein–Lange– Reza Rezaeian Farashahi)

2008.03.31 news: Intel announces support for **F**₂ poly mult in next year's chips.

What about genus 2?

Choose much smaller prime q, say $q = 2^{127} - 1$.

Costs of arithmetic in \mathbf{F}_q : 5 "ops" for $f, g \mapsto f + g$. 57 "ops" for $f \mapsto f^2$. 73 "ops" for $f, g \mapsto fg$.

Recall 10, 162, 243 for arithmetic in $\mathbf{F}_{2^{255}-19}$. \mathbf{F}_q is much faster. $2 \times$ faster for $f, g \mapsto f + g$. $2.842 \times$ faster for $f \mapsto f^2$. $3.329 \times$ faster for $f, g \mapsto fg$. Choose genus-2 hyperelliptic curve C over \mathbf{F}_q with unique ∞ .

How fast is arithmetic in the group $(Jac C)(\mathbf{F}_q)$? Is Jac C faster than Curve25519?

Similar group size, $\approx 2^{254}$. Conjecturally similar security for these cryptographic protocols.

Basic disadvantage of genus 2: #**M** for addition is much larger for Jac *C* than for Curve25519.

Basic advantage of genus 2: \mathbf{F}_q is much faster than \mathbf{F}_p . Does this outweigh the disadvantage? Can use Gauss-style algorithm (Cantor; Koblitz) to multiply in ideal-class group.

Many genus-2 speedups: 2000 Harley; 2001 Lange; 2001 Matsuo–Chao–Tsujii; 2002 Miyamoto–Doi–Matsuo– Chao–Tsujii; 2002 Takahashi; culminating in 2002 Lange, $34\mathbf{M} + 7\mathbf{S}$ for $P \mapsto 2P$. Still not as fast as genus 1.

More speedups for binary genus 2. Faster than binary genus 1! Still not as fast as non-binary. Alternative: compute

x(P), x(2nP), x((2n+1)P) or x(P), x((2n+1)P), x((2n+2)P),given x(P), x(nP), x((n+1)P),where $x : (Jac C)/{\pm 1} \hookrightarrow K$ is a standard rational map to Kummer surface $K \subset \mathbf{P}^3$.

Can do this computation in just 16**M** + 9**S**. (2005 Gaudry, improving 1986 Chudnovsky–Chudnovsky)

Analogous to Montgomery's $x: E/\{\pm 1\} \hookrightarrow \mathbf{P}^1.$

Gaudry's formulas use 1841 "ops" for each bit of *n*.

Better than Montgomery's 1998. New software speed records. (2006 Bernstein)

But wait, there's more! "A few multiplications can be saved" by small choices of *C*. (2005 Gaudry)

7**M** + 12**S** for small *C*. 1659 "ops," and as few as 1355 "ops" for extremely small *C*. (2006 Bernstein)

Problem: For security, need large prime in $\#(\operatorname{Jac} C)(\mathbf{F}_q)$, like $p_1 = \#$ Curve25519(F_p)/8. Also, signers need to know prime. How do we compute $\# \operatorname{Jac} C$? Strategy 1: Build C by CM. Trivially write down $\# \operatorname{Jac} C$. Problem: C isn't small! We want better speeds.

Strategy 2: Choose a small C. Compute # Jac C mod ℓ for several small primes ℓ . Strategy 2 is "polynomial time" (1985 Schoof; 1990 Pila) ... but much, much, much slower for genus 2 than for genus 1. $q \approx 2^{64}$: 2000 Gaudry–Harley. $q \approx 2^{80}$: 2004 Gaudry–Schost. $q \approx 2^{100}$: 2008 Gaudry–Schost. For one candidate curve C, $pprox 1.3 \cdot 2^{51}$ CPU cycles. $pprox 1.2 \cdot 2^{33}$ bytes RAM.

How does strategy 2 work? Write down generic point $P \in \operatorname{Jac} C$ with $\ell P = 0$. Specifically: express $\ell P = 0$ as system of equations on coordinates of P; extend \mathbf{F}_q to ring $R = \mathbf{F}_{a}$ [coords]/equations; note that $\ell P = 0$ in $(\operatorname{Jac} C)(R)$. Genus 1: $\#R \approx q^{\ell^2}$. Genus 2: $\#R \approx q^{\ell^4}$. Much larger computations.

Define qth-power Frobenius map $\varphi : (\operatorname{Jac} C)(R) \to (\operatorname{Jac} C)(R).$

Genus 1: Find linear equation $\varphi^2(P) - s_1 \varphi(P) + qP = 0$ with $s_1 \in \{0, 1, \dots, \ell - 1\}$. Then $1 - s_1 + q - \# \operatorname{Jac}(C)(\mathbf{F}_q) \in \ell \mathbf{Z}$.

Genus 2: Find linear equation $\varphi^4(P) - s_1\varphi^3(P) + s_2\varphi^2(P)$ $- qs_1\varphi(P) + q^2P = 0$ with $s_1, s_2 \in \{0, 1, \dots, \ell - 1\}$. Then $1 - s_1 + s_2 - qs_1 + q^2$

 $- \# \operatorname{Jac}(C)(\mathbf{F}_q) \in \ell \mathbf{Z}.$

Typical papers replace *R* by a field quotient, allegedly saving time.

Bad idea for large *q*. *Finding* field quotients loses more time than it saves. "Factorization is slow."

Can save time in genus 1 by building a smaller *R* that defines a Frob-stable subgroup of *l*-torsion. (1991 Elkies; 1992 Atkin) But analogous techniques seem to lose time in genus 2. Which coords to choose?

Gaudry et al. write $P = P_1 - P_2$ with $P_i = (x_i, y_i) \in C \rightarrow \text{Jac } C$. Equation $\ell P_i = \ell P_j$ gives two equations in x_1, x_2 . Eliminate x_2 , obtaining equation in x_1 .

Elimination time $(\ell^6 \log q)^{1+o(1)}$ using fast-arithmetic techniques.

Several constant-factor speedups: symmetrize; # Jac C mod 2^2 etc.; reduce # Jac C range; et al. With my student Nikki Pitcher: various improvements, including log-factor speedup ("faster poly multiplication"), log-factor space reduction ("low-memory interpolation"). Clearly $q \approx 2^{128}$ is reachable. Moderate computation will find small secure genus-2 curves, new leaders for Diffie-Hellman.

But what about signatures? Addition speed is paramount. Open: genus-2 Edwards?