
Hyperelliptic-curve cryptography

D. J. Bernstein

University of Illinois at Chicago

Thanks to:

NSF DMS–0140542

NSF ITR–0716498

Alfred P. Sloan Foundation



Two parts to this talk:

1. Elliptic curves;

“modern cryptography.”

2. Genus-2 hyperelliptic curves;

“future cryptography.”

Will cryptography eventually

move to genus 3; 4; 5; : : :?

Maybe, but current guess

is that genus 2 is optimal.



Elliptic-curve computations

Write p = 2255 ` 19; p is a prime.

Costs of arithmetic in Fp
with state-of-the-art software:

10 “ops” for f; g 7! f + g.

55 “ops” for f 7! 121665f .

162 “ops” for f 7! f2.

243 “ops” for f; g 7! fg.

1.3GHz Pentium M: 1:3 cycles/ns;

typically ı 1 “op”/cycle.

Newer chips than the Pentium M:

more cycles/ns; more “ops”/cycle.



“Curve25519” is the elliptic curve

y2 = x3 + 486662x2 + x over Fp.

“Curve25519(Fp)” is

the commutative group

f(x; y) 2 Fp ˆ Fp :

y2 = x3 +486662x2 +xg[f1g
with chord-and-tangent addition.

Neutral element of the group: 1.

Negation in the group:

1 7! 1; (x; y) 7! (x;`y).

Chord-and-tangent idea:

points on a line add to 0,

when counted with multiplicity.



Chord-and-tangent definition:

› 1+1 =1;

› (x1; y1) +1 = (x1; y1);

› 1+ (x2; y2) = (x2; y2);

› (x1; y1) + (x1;`y1) =1;

› for y1 6= 0, (x1; y1) + (x1; y1)

= (x3; y3) where

x3 = –2 ` 486662` x1 ` x1,
y3 = –(x1 ` x3)` y1,
– = (3x21 + 973324x1 + 1)=2y1;

› for x1 6= x2, (x1; y1) + (x2; y2)

= (x3; y3) where

x3 = –2 ` 486662` x1 ` x2,
y3 = –(x1 ` x3)` y1,
– = (y2 ` y1)=(x2 ` x1).



Profusion of cases is annoying for

mathematicians and programmers.

Do we need so many cases?

Can cover E(k)ˆ E(k)

with 3 open addition laws.

(1985 H. Lange–Ruppert)

How about just one law

that covers E(k)ˆ E(k)?

One complete addition law?

Bad news: “Theorem 1.

The smallest cardinality of a

complete system of addition laws

on E equals two.”

(1995 Bosma–Lenstra)



Can avoid expensive divisions

using projective coordinates

(X : Y : Z) 7! (X=Z; Y=Z).

12M + 2S for Q;R 7! Q+ R.

7M + 3S for Q 7! 2Q

on y2 = x3 ` 3x+ a6;

slightly slower without a4 = `3.

(1986 Chudnovsky–Chudnovsky)

Here M is mult in Fp,

S is squaring in Fp.

For full performance picture

also have to count adds in Fp.



Or “Jacobian” coordinates

(X : Y : Z) 7! (X=Z2; Y=Z3).

12M + 4S for Q;R 7! Q+ R.

4M + 4S for Q 7! 2Q

on y2 = x3 ` 3x+ const.

(1986 Chudnovsky–Chudnovsky)

11M + 5S; 3M + 5S.

(2001 Bernstein)

Many more coordinate systems.

Survey and various improvements:

“Explicit-Formulas Database,”

http://hyperelliptic.org/EFD

(joint work with Tanja Lange)



From n 2 Z, Q 2 Curve25519(Fp)

compute nQ 2 Curve25519(Fp)

using O(lgn) curve additions.

Recursion: 0Q =1; 1Q = Q;

(`1)Q = `Q; 2nQ = 2(nQ);

(2n+ 1)Q = 2nQ+Q.

Faster: “Sliding windows.”

e.g. (8n+ 7)Q = 8nQ+ 7Q

after precomputing 3Q; 5Q; 7Q.

Asymptotics: ı lgn doublings,

ı (lgn)=lg lgn more additions.

For average n ı 2255:

ı 252 doublings, ı 50 additions;

ı 2400 “ops” per bit of n.



Or (1987 Montgomery): Compute

x(Q); x(2nQ); x((2n+ 1)Q) or

x(Q); x((2n+1)Q); x((2n+2)Q),

given x(Q); x(nQ); x((n+ 1)Q),

using 5M + 4S + 1D + 8add,

where D is mult by 121665.

Only 1998 “ops” per bit of n.

n; x(Q) 7! x(nQ) for n ı 2255 in

< 500—s on 1.3GHz Pentium M.

(2005 Bernstein)

n; x(Q) 7! x(nQ) for n ı 2255 in

< 170—s on 2.4GHz Core 2;

> 24000 nQ/sec using four cores.

(2007 Gaudry–Thomé)



Elliptic-curve Diffie–Hellman

(1986 Miller; 1987 Koblitz)

9 = (9; : : :) is a standard element

of Curve25519(Fp) with order p1.

I have a “secret key”: an integer

n 2
˘
0; 1; : : : ; 2256 ` 1

¯
.

I compute a “public key” x(n9)

and publish it. 32 bytes.

You have a secret key m.

You publish x(m9).

We compute secret x(mn9).

Then “ciphers” such as “AES”

encrypt and authenticate data.



#Curve25519(Fp) ı 2255;

in fact #Curve25519(Fp) = 8p1
for a known prime p1 ı 2252.

Attacker can compute x(mn9)

using ı pp1 ı 2126 adds.

No faster attacks known.

Side notes to cryptographers:

p has large order mod p1;

2p+ 2`#Curve25519(Fp) = 4p2
for a known prime p2 ı 2253;

p has large order mod p2;

(p+ 1` 8p1)
2 ` 4p is not

a small multiple of a square.



Elliptic-curve signatures

I sign a message m

by generating another secret s,

computing R = s9, computing

t = H(R;m)s+ n mod p1.

Here H is a standard “hash

function” such as “SHA-256.”

Signature is (R; t). Anyone

can verify t9 = H(R;m)R + n9.

No fast attacks known.

(first similar idea: 1985 ElGamal;

many generalizations, variations;

these choices: 2006 van Duin)



Compute t9`H(R;m)R using

ı 252 doublings, ı 100 additions.

Even better: To verify a batch

t19` h1R1 = K1,

t29` h2R2 = K2,
...,

t1009` h100R100 = K100:

Verify linear combination

(v1t1 + ´ ´ ´+ v100t100)9

` v1h1R1 ` ´ ´ ´ ` v100h100R100

` v1K1 ` ´ ´ ´ ` v100K100 = 0

for random 128-bit v1; : : : ; v100.

(1994 Naccache et al.;

1998 Bellare et al.)



Use subtractive multi-scalar

multiplication algorithm:

if n1 – n2 – ´ ´ ´ then

n1R1 + n2R2 + n3R3 + ´ ´ ´ =
(n1 ` qn2)R1 + n2(qR1 + R2) +

n3R3 + ´ ´ ´ where q = bn1=n2c.
(credited to Bos and Coster

by 1994 de Rooij;

see also tweaks by 2007 Wei Dai)

Only ı 25:2 curve adds/bit

to verify 100 signatures.

Doublings are negligible here;

want fast Q;R 7! Q+ R.

Projective is better than Jacobian.



More curves

Same cryptographic protocols

work with any “fast” group.

Let’s try another group.˘
(x; y) 2 Fp ˆ Fp : x2 + y2 = 1

¯
is a commutative group with

(x1; y1) + (x2; y2) = (x3; y3)

where x3 = x1y2 + x2y1
and y3 = y1y2 ` x1x2.

Addition law is complete and fast!

Only 3M for Q;R 7! Q+ R.

But this curve is vulnerable to

“index calculus.” Security requires

larger p, outweighing speedup.



If d is not a square in Fp
then f(x; y) 2 Fp ˆ Fp :

x2 + y2 = 1 + dx2y2g
is a commutative group with

(x1; y1) + (x2; y2) = (x3; y3)

defined by Edwards addition law:

x3 =
x1y2 + x2y1

1 + dx1x2y1y2
,

y3 =
y1y2 ` x1x2

1` dx1x2y1y2
.

(d = `1: 1761 Euler, 1866 Gauss;

any d = c4: 2007 Edwards;

addition is complete for d 6= �:

2007 Bernstein–Lange)



Outline of completeness proof:

use curve equation to see that

(dx1x2y1y2)
2 = 1

) (x1 + dx1x2y1y2y1)
2 =

dx21y
2
1(x2 + y2)

2

) d is a square. �

This curve has genus 1!

Equivalent to an elliptic curve.

e.g. Curve25519 is equivalent

to the complete Edwards curve

x2 +y2 = 1+(1`1=121666)x2y2.

Edwards addition law is complete

despite Bosma–Lenstra theorem.



Edwards curves are fast!

(2007 Bernstein–Lange)

Can use projective coordinates.

10M + 1S for Q;R 7! Q+ R.

3M + 4S for Q 7! 2Q,

assuming d is small.

Can sacrifice completeness

and use “inverted” coordinates

(X : Y : Z) 7! (Z=X;Z=Y ).

9M + 1S for Q;R 7! Q+ R.

3M + 4S for Q 7! 2Q,

assuming d is small.



Why do we use Fp?

Why not, e.g., F2251?

“Binary Edwards curves”

d1(x+ y) + d2(x
2 + y2)

= xy(1 + x)(1 + y)

have complete addition law

if x2 + x+ d2 is irreducible;

also fast doublings etc.

(2008 Bernstein–Lange–

Reza Rezaeian Farashahi)

2008.03.31 news: Intel announces

support for F2 poly mult

in next year’s chips.



What about genus 2?

Choose much smaller prime q,

say q = 2127 ` 1.

Costs of arithmetic in Fq:

5 “ops” for f; g 7! f + g.

57 “ops” for f 7! f2.

73 “ops” for f; g 7! fg.

Recall 10; 162; 243 for arithmetic

in F2255`19. Fq is much faster.

2ˆ faster for f; g 7! f + g.

2:842ˆ faster for f 7! f2.

3:329ˆ faster for f; g 7! fg.



Choose genus-2 hyperelliptic curve

C over Fq with unique 1.

How fast is arithmetic

in the group (JacC)(Fq)?

Is JacC faster than Curve25519?

Similar group size, ı 2254.

Conjecturally similar security

for these cryptographic protocols.

Basic disadvantage of genus 2:

#M for addition is much larger

for JacC than for Curve25519.

Basic advantage of genus 2:

Fq is much faster than Fp. Does

this outweigh the disadvantage?



Can use Gauss-style algorithm

(Cantor; Koblitz) to multiply

in ideal-class group.

Many genus-2 speedups:

2000 Harley; 2001 Lange;

2001 Matsuo–Chao–Tsujii;

2002 Miyamoto–Doi–Matsuo–

Chao–Tsujii; 2002 Takahashi;

culminating in 2002 Lange,

34M + 7S for P 7! 2P .

Still not as fast as genus 1.

More speedups for binary genus 2.

Faster than binary genus 1!

Still not as fast as non-binary.



Alternative: compute

x(P ); x(2nP ); x((2n+ 1)P ) or

x(P ); x((2n+1)P ); x((2n+2)P ),

given x(P ); x(nP ); x((n+ 1)P ),

where x : (JacC)=f˚1g ,! K
is a standard rational map

to Kummer surface K  P3.

Can do this computation

in just 16M + 9S.

(2005 Gaudry, improving

1986 Chudnovsky–Chudnovsky)

Analogous to Montgomery’s

x : E=f˚1g ,! P1.



Gaudry’s formulas use 1841 “ops”

for each bit of n.

Better than Montgomery’s 1998.

New software speed records.

(2006 Bernstein)

But wait, there’s more!

“A few multiplications can be

saved” by small choices of C.

(2005 Gaudry)

7M + 12S for small C.

1659 “ops,” and as few as

1355 “ops” for extremely small C.

(2006 Bernstein)



Problem: For security, need

large prime in #(JacC)(Fq),

like p1 = #Curve25519(Fp)=8.

Also, signers need to know prime.

How do we compute # JacC?

Strategy 1: Build C by CM.

Trivially write down # JacC.

Problem: C isn’t small!

We want better speeds.

Strategy 2: Choose a small C.

Compute # JacC mod ‘ for

several small primes ‘.



Strategy 2 is “polynomial time”

(1985 Schoof; 1990 Pila)

: : : but much, much, much slower

for genus 2 than for genus 1.

q ı 264: 2000 Gaudry–Harley.

q ı 280: 2004 Gaudry–Schost.

q ı 2100: 2008 Gaudry–Schost.

For one candidate curve C,

ı 1:3 ´ 251 CPU cycles.

ı 1:2 ´ 233 bytes RAM.



How does strategy 2 work?

Write down generic point

P 2 JacC with ‘P = 0.

Specifically: express ‘P = 0

as system of equations

on coordinates of P ;

extend Fq to ring

R = Fq[coords]=equations;

note that ‘P = 0 in (JacC)(R).

Genus 1: #R ı q‘2 .

Genus 2: #R ı q‘4 .
Much larger computations.



Define qth-power Frobenius map

’ : (JacC)(R)! (JacC)(R).

Genus 1: Find linear equation

’2(P )` s1’(P ) + qP = 0

with s1 2 f0; 1; : : : ; ‘` 1g. Then

1` s1 + q `# Jac(C)(Fq) 2 ‘Z.

Genus 2: Find linear equation

’4(P )` s1’3(P ) + s2’
2(P )

` qs1’(P ) + q2P = 0

with s1; s2 2 f0; 1; : : : ; ‘` 1g.
Then 1` s1 + s2 ` qs1 + q2

` # Jac(C)(Fq) 2 ‘Z.



Typical papers replace R

by a field quotient,

allegedly saving time.

Bad idea for large q.

Finding field quotients

loses more time than it saves.

“Factorization is slow.”

Can save time in genus 1

by building a smaller R

that defines a Frob-stable

subgroup of ‘-torsion.

(1991 Elkies; 1992 Atkin)

But analogous techniques

seem to lose time in genus 2.



Which coords to choose?

Gaudry et al. write P = P1 ` P2

with Pi = (xi; yi) 2 C ! JacC.

Equation ‘Pi = ‘Pj
gives two equations in x1; x2.

Eliminate x2,

obtaining equation in x1.

Elimination time (‘6 log q)1+o(1)

using fast-arithmetic techniques.

Several constant-factor speedups:

symmetrize; # JacC mod 22 etc.;

reduce # JacC range; et al.



With my student Nikki Pitcher:

various improvements,

including log-factor speedup

(“faster poly multiplication”),

log-factor space reduction

(“low-memory interpolation”).

Clearly q ı 2128 is reachable.

Moderate computation will find

small secure genus-2 curves,

new leaders for Diffie–Hellman.

But what about signatures?

Addition speed is paramount.

Open: genus-2 Edwards?


