Rump Eurocrypt’07 - Elliptic strikes back

\square

D. J. Bernstein, T. Lange \& R. Rezaeian Farashahi cr.yp.to/papers.html\#edwards2 -p. 1

Edwards Curves - a new star(fish) is born

2007 conference lecture circuit:

Hoboken
Turku
Warsaw
Fort Meade, Maryland
Melbourne
Ottawa (SAC)
Dublin (ECC)
Bordeaux
Bristol
Magdeburg
Seoul
Malaysia (Asiacrypt)
Madras
Bangalore (AAECC)
D. J. Bernstein, T. Lange \& R. Rezaeian Farashahi cr.yp.to/papers.html\#edwards2

One year passes ...

Exceptions, $2 \neq 0$...

Fix a field k of characteristic different from 2. Fix $c, d \in k$ such that $c \neq 0$, $d \neq 0$, and $d c^{4} \neq 1$. Consider the Edwards addition law

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \mapsto\left(\frac{x_{1} y_{2}+y_{1} x_{2}}{c\left(1+d x_{1} x_{2} y_{1} y_{2}\right)}, \frac{y_{1} y_{2}-x_{1} x_{2}}{c\left(1-d x_{1} x_{2} y_{1} y_{2}\right)}\right)
$$

$x^{2}+y^{2}=a^{2}\left(1+x^{2} y^{2}\right), a^{5} \neq a$

describes an elliptic curve over field k oodd characteristic.

Theorem 2.1. Let k be a field in which $2 \neq 0$ Let E be an elliptic curve over k such that the group $E(k)$ has an element of order 4 . Then

How can there be an incomplete set of complete curves???

After extensive (finite) field studies ...

(joint work with Reza Rezaeian Farashahi)

- Assume $d_{1}, d_{2} \in \mathbb{F}_{2^{n}}, d_{1} \neq 0, \operatorname{Tr}\left(d_{2}\right)=1$. Then

$$
d_{1}(x+y)+d_{2}(x+y)^{2}=x y+x y(x+y)+x^{2} y^{2}
$$

describes an elliptic curve. (Curve shape is symmetric and has highest term $x^{2} y^{2}$ like 'classic' Edwards curves $x^{2}+y^{2}=1+d x^{2} y^{2}$.)

- Neutral element is $(0,0)$. Negative of (x, y) is (y, x).
- The addition law on this curve is complete! It works for adding arbitrary points - doubling, adding negatives, adding the neutral element, ...
- Every ordinary elliptic curve over $\mathbb{F}_{2^{n}}$ is birationally equivalent to a complete binary Edwards curve.

Timeline (after some early aborts)

- February 13th, 2008: Binary Edwards curves born
- February 15th, 2008: Binary Edwards takes first steps
- February 15th, 2008: Binary Edwards curves are complete (!) for $d_{2}=1$ and n odd.
- February 16th, 2008: Binary Edwards plays with d_{1}, d_{2}
- February 20th, 2008: Binary Edwards adds differentially
- February 29th, 2008: Binary Edwards reaches all ordinary curves
- March 31st, 2008: Intel announces that next year's chips will have "carry-less multiplication (PCMULQDQ)" (aka $\mathbb{F}_{2^{n}}$ support).
- Rumors have it that other chip manufacturers follow, now that characteristic 2 is finally complete.

Operation counts

These curves are the first binary curves to offer complete addition laws. They are also surprisingly fast:

- DBL on binary Edwards curves takes 2M+6S+3D.
- ADD on binary Edwards curves takes 21M+1S+4D, mADD takes $13 \mathrm{M}+3 \mathrm{~S}+3 \mathrm{D}$.
- Differential addition ($P+Q$ given P, Q, and $Q-P$) takes $8 \mathrm{M}+1 \mathrm{~S}+2 \mathrm{D}$; mixed version takes $6 \mathrm{M}+1 \mathrm{~S}+2 \mathrm{D}$.
- Differential addition+doubling (typical step in Montgomery ladder) takes $8 \mathrm{M}+4 \mathrm{~S}+2 \mathrm{D}$; mixed version takes 6M+4S+2D.
See our preprint (soon on ePrint) currently on
cr.yp.to/papers.html\#edwards2
for full details, speedups for $d_{1}=d_{2}$, how to choose small coefficients, affine formulas, ...

Comparison with other doubling formulas

Assume curves are chosen with small coefficients.

System	Cost of doubling
Projective	$7 \mathrm{M}+4 \mathrm{~S}$; see HEHCC
Jacobian	$4 \mathrm{M}+5 \mathrm{~S}$; see HEHCC
Lopez-Dahab	$3 \mathrm{M}+5 \mathrm{~S}$; Lopez-Dahab
Edwards	$2 \mathrm{M}+6 \mathrm{~S}$; new, complete
Lopez-Dahab $a_{2}=1$	$2 \mathrm{M}+5 \mathrm{~S}$; Kim-Kim

Meanwhile we improved the Explicit-Formulas Database www.hyperelliptic.org/EFD
for elliptic curves in large characteristic.
EFD2 is in preparation; our paper already has some speed-ups for Lopez-Dahab coordinates.

Happy End!

