Rump Eurocrypt'07 – Elliptic strikes back

Edwards Curves – a new star(fish) is born

2007 conference lecture circuit: Hoboken Turku Warsaw Fort Meade, Maryland Melbourne Ottawa (SAC) Dublin (ECC) Bordeaux **Bristol** Magdeburg Seoul Malaysia (Asiacrypt) Madras **Bangalore** (AAECC)

One year passes ...

Exceptions, $2 \neq 0 \dots$

Fix a field k of characteristic different from 2. Fix $c, d \in k$ such that $c \neq 0$, $d \neq 0$, and $dc^4 \neq 1$. Consider the *Edwards addition law*

$$(x_1, y_1), (x_2, y_2) \mapsto \left(\frac{x_1y_2 + y_1x_2}{c(1 + dx_1x_2y_1y_2)}, \frac{y_1y_2 - x_1x_2}{c(1 - dx_1x_2y_1y_2)}\right)$$

 $x^2 + y^2 = a^2(1 + x^2y^2), a^5 \neq a$ describes an elliptic curve over field k of odd characteristic.

Theorem 2.1. Let k be a field in which $2 \neq 0$. Let E be an elliptic curve over k such that the group E(k) has an element of order 4. Then

How can there be an incomplete set of complete curves???

After extensive (finite) field studies ...

(joint work with Reza Rezaeian Farashahi)

• Assume $d_1, d_2 \in \mathbb{F}_{2^n}$, $d_1 \neq 0$, $\operatorname{Tr}(d_2) = 1$. Then

$$d_1(x+y) + d_2(x+y)^2 = xy + xy(x+y) + x^2y^2$$

describes an elliptic curve.

(Curve shape is symmetric and has highest term x^2y^2 like 'classic' Edwards curves $x^2 + y^2 = 1 + dx^2y^2$.)

- Neutral element is (0,0). Negative of (x,y) is (y,x).
- The addition law on this curve is complete! It works for adding arbitrary points – doubling, adding negatives, adding the neutral element,
- Every ordinary elliptic curve over \mathbb{F}_{2^n} is birationally equivalent to a complete binary Edwards curve.

Timeline (after some early aborts)

- February 13th, 2008: Binary Edwards curves born
- February 15th, 2008: Binary Edwards takes first steps
- February 15th, 2008: Binary Edwards curves are complete (!) for $d_2 = 1$ and n odd.
- **•** February 16th, 2008: Binary Edwards plays with d_1, d_2
- February 20th, 2008: Binary Edwards adds differentially
- February 29th, 2008: Binary Edwards reaches all ordinary curves
- March 31st, 2008: Intel announces that next year's chips will have "carry-less multiplication (PCMULQDQ)" (aka IF_{2ⁿ} support).
- Rumors have it that other chip manufacturers follow, now that characteristic 2 is finally complete.

Operation counts

These curves are the first binary curves to offer complete addition laws. They are also surprisingly fast:

- DBL on binary Edwards curves takes 2M+6S+3D.
- ADD on binary Edwards curves takes 21M+1S+4D, mADD takes 13M+3S+3D.
- Differential addition (P + Q given P, Q, and Q P) takes 8M+1S+2D; mixed version takes 6M+1S+2D.
- Differential addition+doubling (typical step in Montgomery ladder) takes 8M+4S+2D; mixed version takes 6M+4S+2D.

See our preprint (soon on ePrint) currently on

cr.yp.to/papers.html#edwards2 for full details, speedups for $d_1 = d_2$, how to choose small coefficients, affine formulas, ...

Comparison with other doubling formulas

Assume curves are chosen with small coefficients.

System	Cost of doubling
Projective	7M+4S; see HEHCC
Jacobian	4M+5S; see HEHCC
Lopez-Dahab	3M+5S; Lopez-Dahab
Edwards	2M+6S; new, complete
Lopez-Dahab $a_2 = 1$	2M+5S; Kim-Kim

Meanwhile we improved the Explicit-Formulas Database www.hyperelliptic.org/EFD for elliptic curves in large characteristic.

EFD2 is in preparation; our paper already has some speed-ups for Lopez-Dahab coordinates.

Happy End!

