SHARCS vs. SWIFFT

D. J. Bernstein
University of Illinois at Chicago

Thanks to: NSF ITR–0716498
EUROCRYPT ’97,
Bellare–Micciancio: Compress

\((m_1, m_2, \ldots, m_{16})\) to \(B\)-bit output

\(f_1(m_1) + f_2(m_2) + \cdots + f_{16}(m_{16})\).
FSE 2008, yesterday, Lyubashevsky–Micciancio–Peikert–Rosen: “SWIFFT”; “provable security”; $B = 512$; fastest known collision attack “takes time at least 2^{106} and requires almost as much space.”
SHARCS 2007, Bernstein:
time $2^{B/13} \approx 2^{40}$
using circuit of size $2^{2B/13} \approx 2^{80}$.
Or time $2^{B/7}$, circuit size $2^{B/7}$.
Many other tradeoffs possible.
Also some analysis of constants:

SHARCS talk also mentioned idea—
not written up yet—
to achieve slightly better exponents:
e.g., time $2^{2B/15}$, size $2^{2B/15}$.