
An introduction to

high-speed arithmetic

D. J. Bernstein

University of Illinois at Chicago

How to multiply big integers

Standard idea: Use polynomial

with coefficients in f0; 1; : : : ; 9g
to represent integer in radix 10.

Example of representation:

839 = 8 ´ 102 + 3 ´ 101 + 9 ´ 100 =

value (at t = 10) of polynomial

8t2 + 3t1 + 9t0.

Convenient to express polynomial

inside computer as array 9; 3; 8

(or 9; 3; 8; 0 or 9; 3; 8; 0; 0 or : : :):

“p[0] = 9; p[1] = 3; p[2] = 8”

Multiply two integers

by multiplying polynomials

that represent the integers.

Polynomial multiplication

involves small integer coefficients.

Have split one big multiplication

into many small operations.

Example, squaring 839:

(8t2 + 3t1 + 9t0)2 =

64t4 + 48t3 + 153t2 + 54t1 + 81t0.

Oops, product polynomial

usually has coefficients > 9.

So “carry” extra digits:

ctj ! bc=10c tj+1 + (c mod 10)tj .

Example, squaring 839:

64t4 + 48t3 + 153t2 + 54t1 + 81t0;

64t4 + 48t3 + 153t2 + 62t1 + 1t0;

64t4 + 48t3 + 159t2 + 2t1 + 1t0;

64t4 + 63t3 + 9t2 + 2t1 + 1t0;

70t4 + 3t3 + 9t2 + 2t1 + 1t0;

7t5 + 0t4 + 3t3 + 9t2 + 2t1 + 1t0.

In other words, 8392 = 703921.

What operations were used here?

8

�� ((PPPPPPPPPPPP 3

����

9

vvnnnnnnnnnnnn

multiply
��

72

 @
@@

@@
@ 9

��

72

add~~~~
~~

~~

153

��

. .
.

����
��

��

6

add~~}}
}}

}}

159
divide by 10

~~}}
}}

}}
mod 10
��

15 9

8

�� �� ��

((

00

��

3

�� !! ''

((

��

��
11

11
9

�� �� ""

��

vv

��
72

��

27

��
++

++
++

+ 81
((QQQQ

24

��
%%
%%
%%
%%
%%
%%
%%
% 9

��
11

11
11

11
11

27

%%LLLLLLLL 81

��
64

��
))

))
))

))
))

))
))

))
))

24

��
44

44
44

44
44

44
44

72

$$
IIIIIIIIIIII

54

��

81
��}}||

8
}}||

1

153

��

62
��}}||

6
}}||

2

48

��

159
��}}||

15
}}||

9

64

��

63
��}}||

6
}}||

3

70
��}}||

7
}}||

0

7
��
7

The scaled variation

839 = 800 + 30 + 9 =

value (at t = 1) of polynomial

800t2 + 30t1 + 9t0.

Squaring: (800t2 +30t1 +9t0)2 =

640000t4 + 48000t3 + 15300t2 +

540t1 + 81t0.

Carrying:

640000t4 + 48000t3 + 15300t2 +

540t1 + 81t0;

640000t4 + 48000t3 + 15300t2 +

620t1 + 1t0; : : :

700000t5 +0t4 +3000t3 +900t2 +

20t1 + 1t0.

What operations were used here?

800

��))TTTTTTTTTTTTTT 30

����

9

uujjjjjjjjjjjjjjj

multiply
��

7200

$$I
IIIIII 900

��

7200

add{{www
ww

ww

15300

��

. .
.

}}{{
{{

{{

600

addzzvvv
vvv

v

15900
subtract
zzuuuuuuu

mod 1000
��

15000 900

Speedup: double inside squaring

(´ ´ ´+ f2t2 + f1t
1 + f0t

0)2

has coefficients such as

f4f0 + f3f1 + f2f2 + f1f3 + f0f4.

Compute more efficiently as

2f4f0 + 2f3f1 + f2f2.

Or, slightly faster,

2(f4f0 + f3f1) + f2f2.

Or, slightly faster,

(2f4)f0 + (2f3)f1 + f2f2
after precomputing 2f1; 2f2; : : :.

Overall save ı 1=2 of the work

if there are many coefficients.

Speedup: allow negative coeffs

Recall 159 7! 15; 9.

Scaled: 15900 7! 15000; 900.

Alternative: 159 7! 16;`1.

Scaled: 15900 7! 16000;`100.

Use digits f`5;`4; : : : ; 4; 5g
instead of f0; 1; : : : ; 9g.
Small disadvantage: need `.

Several small advantages:

easily handle negative integers;

easily handle subtraction;

reduce products a bit.

Speedup: delay carries

Computing (e.g.) big ab+ c2:

multiply a; b polynomials, carry,

square c poly, carry, add, carry.

e.g. a = 314, b = 271, c = 839:

(3t2+1t1+4t0)(2t2+7t1+1t0) =

6t4 + 23t3 + 18t2 + 29t1 + 4t0;

carry: 8t4 + 5t3 + 0t2 + 9t1 + 4t0.

As before (8t2 + 3t1 + 9t0)2 =

64t4 + 48t3 + 153t2 + 54t1 + 81t0;

7t5 + 0t4 + 3t3 + 9t2 + 2t1 + 1t0.

+: 7t5+8t4+8t3+9t2+11t1+5t0;

7t5 + 8t4 + 9t3 + 0t2 + 1t1 + 5t0.

Faster: multiply a; b polynomials,

square c polynomial, add, carry.

(6t4 + 23t3 + 18t2 + 29t1 + 4t0) +

(64t4 +48t3 +153t2 +54t1 +81t0)

= 70t4+71t3+171t2+83t1+85t0;

7t5 + 8t4 + 9t3 + 0t2 + 1t1 + 5t0.

Eliminate intermediate carries.

Outweighs cost of handling

slightly larger coefficients.

Important to carry between

multiplications (and squarings)

to reduce coefficient size;

but carries are usually a bad idea

before additions, subtractions, etc.

Speedup: polynomial Karatsuba

How much work to multiply polys

f = f0 + f1t+ ´ ´ ´+ f19t
19,

g = g0 + g1t+ ´ ´ ´+ g19t
19?

Using the obvious method:

400 coeff mults, 361 coeff adds.

Faster: Write f as F0 + F1t
10;

F0 = f0 + f1t+ ´ ´ ´+ f9t9;
F1 = f10 + f11t+ ´ ´ ´+ f19t

9.

Similarly write g as G0 + G1t
10.

Then fg = (F0 + F1)(G0 + G1)t
10

+ (F0G0 ` F1G1t
10)(1` t10).

20 adds for F0 + F1, G0 + G1.

300 mults for three products

F0G0, F1G1, (F0 + F1)(G0 + G1).

243 adds for those products.

9 adds for F0G0 ` F1G1t
10

with subs counted as adds

and with delayed negations.

19 adds for ´ ´ ´ (1` t10).

19 adds to finish.

Total 300 mults, 310 adds.

Larger coefficients, slight expense;

still saves time.

Can apply idea recursively

as poly degree grows.

Many other algebraic speedups

in polynomial multiplication:

“Toom,” “FFT,” etc.

Increasingly important as

polynomial degree grows.

O(n lgn lg lgn) coeff operations

to compute n-coeff product.

Useful for sizes of n

that occur in cryptography?

Maybe; active research area.

Using CPU’s integer instructions

Replace radix 10 with, e.g., 224.

Power of 2 simplifies carries.

Adapt radix to platform.

e.g. Every 2 cycles, Athlon 64

can compute a 128-bit product

of two 64-bit integers.

(5-cycle latency; parallelize!)

Also low cost for 128-bit add.

Reasonable to use radix 260.

Sum of many products of digits

fits comfortably below 2128.

Be careful: analyze largest sum.

e.g. In 4 cycles, Intel 8051

can compute a 16-bit product

of two 8-bit integers.

Could use radix 26.

Could use radix 28,

with 24-bit sums.

e.g. Every 2 cycles, Pentium 4 F3

can compute a 64-bit product

of two 32-bit integers.

(11-cycle latency; yikes!)

Reasonable to use radix 228.

Warning: Multiply instructions

are very slow on some CPUs.

Pentium 4 F2: every 10 cycles!

Using floating-point instructions

Big CPUs have separate

floating-point instructions,

aimed at numerical simulation

but useful for cryptography.

In my experience,

floating-point instructions

support faster multiplication

(often much, much faster)

than integer instructions.

Other advantages: portability;

easily scaled coefficients.

Exceptions: some 64-bit CPUs.

e.g. Every 2 cycles, Pentium III

can compute a 64-bit product

of two floating-point numbers,

and an independent 64-bit sum.

e.g. Every cycle, UltraSPARC III

can compute a 53-bit product

and an independent 53-bit sum.

Reasonable to use radix 224.

e.g. Every 2 cycles, Pentium 4

can compute two 53-bit products

and two independent 53-bit sums.

e.g. Every 2 cycles, Pentium M

can compute two 53-bit products

and two independent 53-bit sums.

e.g. Every cycle, Athlon

can compute a 64-bit product

and an independent 64-bit sum.

e.g. Every cycle, Core 2 Solo

can compute two 53-bit products

and two independent 53-bit sums.

(Beware relatively high latency.)

How to do carries in

floating-point registers?

(No CPU carry instruction:

not useful for simulations.)

Exploit floating-point rounding:

add and subtract big constant.

e.g. Given ¸ with j¸j » 275:

compute 53-bit floating-point sum

of ¸ and constant 3 ´ 275,

obtaining a multiple of 224;

subtract 3 ´ 275 from result,

obtaining multiple of 224

nearest ¸; subtract from ¸.

Modular arithmetic

ba=pc is the quotient

when a is divided by p:

the largest integer » a=p.

a mod p is the remainder:

a mod p = a` p ba=pc.

Examples:

b43=12c = 3; 43 mod 12 = 7.

b17=12c = 1; 17 mod 12 = 5.

b12=12c = 1; 12 mod 12 = 0.

b7=12c = 0; 7 mod 12 = 7.

b`10=12c = `1;

`10 mod 12 = 2.

Often want to compute a mod p

where a is a gigantic integer

produced by mults, adds, subs

and p is relatively small.

e.g. p = 314159; a = 71024 =

(((((((((72)2)2)2)2)2)2)2)2)2.

Useful fact: If we change

the chain of mults, adds, subs

by inserting “mod p” anywhere,

the new chain output a0

satisfies a0 mod p = a mod p.

“a0 ” a”: a0; a are equivalent.

More generally, inserting

adds/subs of any multiples of p

produces a0 ” a.

e.g. p = 17,

a = ((52) ´ 5)2 = 15625:

a mod p = 15625 mod 17 = 2.

Can change a to, e.g., a0

= (((52 mod 17) ´ 5) mod 17)2

= (((25 mod 17) ´ 5) mod 17)2

= ((8 ´ 5) mod 17)2

= (40 mod 17)2 = 62 = 36.

Then a0 mod p = 36 mod 17 = 2.

No big numbers here!

Modular reduction

How to compute f mod p?

Can use definition:

f mod p = f ` p bf=pc.
Can multiply f by a

precomputed 1=p approximation;

easily adjust to obtain bf=pc.
Slight speedup: “2-adic inverse”;

“Montgomery reduction.”

We can do better: normally

p is chosen with a special form

(or dividing a special form; see

“redundant representations”)

to make f mod p much faster.

Example: p = 1000003.

Then 1000000a+ b ” b` 3a.

e.g. 314159265358 =

314159 ´ 1000000 + 265358 ”
314159(`3) + 265358 =

`942477 + 265358 =

`677119.

Easily adjust b` 3a

to the range f0; 1; : : : ; p` 1g
by adding/subtracting a few p’s:

e.g. `677119 ” 322884.

Hmmm, is adjustment so easy?

Conditional branches are slow.

Also dangerous for crypto:

leak secrets through timing.

Can eliminate the branches,

but adjustment isn’t free.

Speedup: Skip the adjustment

for intermediate results.

Adjust only for output.

b` 3a is small enough

to continue computations.

Can delay carries until after

multiplication by 3.

e.g. To square 314159

in Z=1000003: Square poly

3t5 + 1t4 + 4t3 + 1t2 + 5t1 + 9t0,

obtaining 9t10 + 6t9 + 25t8 +

14t7 + 48t6 + 72t5 + 59t4 +

82t3 + 43t2 + 90t1 + 81t0.

Reduce: replace (ci)t
6+i by

(`3ci)t
i, obtaining 72t5 + 32t4 +

64t3 ` 32t2 + 48t1 ` 63t0.

Carry: 8t6 ` 4t5 ` 2t4 +

1t3 + 2t2 + 2t1 ` 3t0.

To minimize poly degree,

mix reduction and carrying,

carrying the top sooner.

e.g. Start from square 9t10 +6t9 +

25t8 +14t7 +48t6 +72t5 +59t4 +

82t3 + 43t2 + 90t1 + 81t0.

Reduce t10 ! t4 and carry t4 !
t5 ! t6: 6t9+25t8+14t7+56t6`
5t5+2t4+82t3+43t2+90t1+81t0.

Finish reduction: `5t5 + 2t4 +

64t3 ` 32t2 + 48t1 ` 87t0. Carry

t0 ! t1 ! t2 ! t3 ! t4 ! t5:
`4t5` 2t4 +1t3 +2t2` 1t1 +3t0.

Speedup: non-integer radix

p = 261 ` 1.

Five coeffs in radix 213?

f4t
4 + f3t

3 + f2t
2 + f1t

1 + f0t
0.

Most coeffs could be 212.

Square ´ ´ ´+2(f4f1+f3f2)t
5+´ ´ ´.

Coeff of t5 could be > 225.

Reduce: 265 = 24 in Z=(261 ` 1);

´ ´ ´ + (25(f4f1 + f3f2) + f2
0)t0.

Coeff could be > 229.

Very little room for

additions, delayed carries, etc.

on 32-bit platforms.

Scaled: Evaluate at t = 1.

f4 is multiple of 252;

f3 is multiple of 239;

f2 is multiple of 226;

f1 is multiple of 213;

f0 is multiple of 20. Reduce:

´ ´ ´+ (2`60(f4f1 + f3f2) + f2
0)t0.

Better: Non-integer radix 212:2.

f4 is multiple of 249;

f3 is multiple of 237;

f2 is multiple of 225;

f1 is multiple of 213;

f0 is multiple of 20.

Saves a few bits in coeffs.

