An introduction to
high-speed arithmetic

D. J. Bernstein

University of lllinois at Chicago

How to multiply big integers

Standard idea: Use polynomial
with coefficients in {0, 1, ..., 9}
to represent integer in radix 10.

Example of representation:

839 = 8-10% +3-101 +9-10° =
value (at t = 10) of polynomial
8t% + 3t! + 9t°.

Convenient to express polynomial
inside computer as array 9, 3, 8

(or 9,3,8,00r9,3,8,0,00r...):
"p[0] =9; p[1] = 3; p[2] = 8"

Multiply two integers
by multiplying polynomials
that represent the integers.

Polynomial multiplication
involves small integer coetficients.
Have split one big multiplication
into many small operations.

Example, squaring 839:
(8% + 3t 4-9t0)? =
t4 + 4883 + 153¢2 4 54¢1 4+ 81¢0.

Oops, product polynomial
usually has coefficients > 9.
So “carry” extra digits:

ct? — |c/10] 7T + (¢ mod 10)#7.

Example, squaring 839:
t4 4+ 4883 + 15382 4+ 54¢1 + 81¢Y;
t4 + 4883 + 15382 + 62t + 140
t* 4+ 4883 + 159¢2 + 2t + 140
t* + 63¢3 + 9t + 2t + 149

70t* 4 3t3 4 ot? 4 2t 4 140,

7t + Ot* + 3¢3 + 9t? + 2¢1 + 140,

In other words, 839% = 703921.

What operations were used here?

3

T}K jmultiply

(2 9

N
/

6

V/Ajd

159

divide by 10
/ lmod 10

15 9

R—
~
\l
N
N
\l
o0
|—l

(3\
(T

81
v
|
e
62
v
| o
4
159
K
| w3
4
63
Y ¢
|
e
70
yas
7 0

~ <~

The scaled variation

839 = 800 + 30 + 9 =
value (at t = 1) of polynomial
800t* + 30t! + 9¢°.

Squaring: (800t 4 30t! +9tY)% =
640000¢* + 48000¢3 + 15300¢2 +
540t 4 810,

Carrying:

640000£% + 48000¢3 + 15300¢2 +
5401 + 81¢Y;

640000¢* + 48000¢3 + 15300¢2 +

620¢1

1£0-

70000082 + 0t* + 3000t3 1+ 9002 +
20t + 149,

What operations were used here?

800 30 9

| b

7200 900 7200

\l add
/

600

b

15900

UPIRS | mod 1000

15000 900

Speedup: double inside squaring

(- + fot® + frt! + fot°)?
has coefficients such as

fafo+ fafi+ fofo + f1f3 + fofa.

Compute more efficiently as

2fafo + 2f3f1 + faf2-
Or, slightly faster,

2(fafo + f3f1) + fafo.
Or, slightly faster,

(2fa)fo + (2f3)f1 + f2fo

after precomputing 2f1,27f,

Overall save ~ 1/2 of the work
if there are many coetficients.

Speedup: allow negative coeffs

Recall 159 — 15, 9.
Scaled: 15900 — 15000, 900.

Alternative: 159 — 16, —1.
Scaled: 15900 — 16000, —100.

Use digits {—5, —4, ..., 4,5}
instead of {0,1, ..., 9}.

Small disadvantage: need —.
Several small advantages:
easily handle negative integers;

easily handle subtraction;

reduce products a bit.

Speedup: delay carries

Computing (e.g.) big ab + ¢*:
multiply a, b polynomials, carry,
square ¢ poly, carry, add, carry.

e.g. a =314, b =271, c = 839:
(3t2 + 1L +4¢0) (282 + 7t +1¢0) =
t4 + 2383 4 182 + 20t + 4¢0;
carry: 8t* + 5t3 + 0t + 9t! + 44
As before (8t% + 3t! + 9tY)? =
t4 14883 + 15382 4+ 54t 1+ 87140:
782 + 0t* + 383 + ot? + 2t + 140,
o TR +8t*+8t3+9t2 +11¢1 +5¢9
782 + 8t* + 9t3 + 02 + 1t + 540,

Faster: multiply a, b polynomials,
square ¢ polynomial, add, carry.

(6¢% +23¢3 + 18¢2 + 20t 4 4¢0) +
(64¢* 4- 4883 + 153¢2 4 54t +81¢Y)
= 70t*+ 71834+ 171¢° 483t 4-85¢°;
7t + 8t + 9t + 0t + 1t + 5t0.

Eliminate intermediate carries.
Outweighs cost of handling
slightly larger coefficients.

Important to carry between

multiplications (and squarings)
to reduce coefficient size;
out carries are usually a bad idea

before additions, subtractions, etc.

Speedup: polynomial Karatsuba

How much work to multiply polys

f=fo+ fit+ -+ fiot®,
g=go+git—+ -+ g19t'7

Using the obvious method:
400 coeff mults, 361 coeff adds.

Faster: Write f as Fy + F1t19:

Fo = fo+ fit+ - + fot”;

F1 = fio + fut + - + fiot”.

Similarly write g as Gg + G1t1Y.

Then fg = (Fo+ F1)(Go + Gl)tlo
-+ (F()Go — FlGltlo)(l — th)_

20 adds for Fg + F1, Gg + G7.
300 mults for three products
FoGo, F1G1, (Fo + F1)(Gp + G1).
243 adds for those products.

O adds for FgGp — F1G1t10

with subs counted as adds

and with delayed negations.
19 adds for - -- (1 — ¢19).
19 adds to finish.

Total 300 mults, 310 adds.
Larger coefficients, slight expense;
still saves time.

Can apply idea recursively

as poly degree grows.

Many other algebraic speedups
in polynomial multiplication:
“Toom,” “FFT," etc.

Increasingly important as
polynomial degree grows.
O(nlgnlglgn) coeff operations
to compute n-coeff product.

Useful for sizes of n

that occur in cryptography?
Maybe; active research area.

Using CPU'’s integer instructions

Replace radix 10 with, e.g., 224
Power of 2 simplifies carries.

Adapt radix to platform.

e.g. Every 2 cycles, Athlon 64
can compute a 128-bit product
of two 64-bit integers.

(5-cycle latency; parallelize!)
Also low cost for 128-bit add.

Reasonable to use radix 2°0.
Sum of many products of digits
fits comfortably below 2128

Be careful: analyze largest sum.

e.g. In 4 cycles, Intel 8051
can compute a 16-bit product
of two 8-bit integers.

Could use radix 2°.

Could use radix 28
with 24-bit sums.

e.g. Every 2 cycles, Pentium 4 F3
can compute a 64-bit product

of two 32-bit integers.

(11-cycle latency; yikes!)

Reasonable to use radix 24°.

Warning: Multiply instructions
are very slow on some CPUs.
Pentium 4 F2: every 10 cycles!

Using floating-point instructions

Big CPUs have separate
floating-point instructions,
aimed at numerical simulation
but useful for cryptography.

In my experience,
floating-point instructions
support faster multiplication
(often much, much faster)
than integer instructions.
Other advantages: portability;
easily scaled coetfficients.

Exceptions: some 64-bit CPUs.

e.g. Every 2 cycles, Pentium |l
can compute a 64-bit product
of two floating-point numbers,
and an independent 64-bit sum.

e.g. Every cycle, UltraSPARC Il
can compute a 53-bit product

and an independent 53-bit sum.

Reasonable to use radix 2%4.

e.g. Every 2 cycles, Pentium 4
can compute two b3-bit products
and two independent 53-bit sums.

e.g. Every 2 cycles, Pentium M
can compute two b3-bit products
and two independent 53-bit sums.

e.g. Every cycle, Athlon
can compute a 64-bit product
and an independent 64-bit sum.

e.g. Every cycle, Core 2 Solo

can compute two 53-bit products
and two independent 53-bit sums.
(Beware relatively high latency.)

How to do carries In
floating-point registers?
(No CPU carry instruction:
not useful for simulations.)

Exploit floating-point rounding:
add and subtract big constant.

e.g. Given a with |a| < 27

compute 53-bit floating-point sum
275
224.

of o and constant 3 -
obtaining a multiple of
subtract 3 - 27 from result,
obtaining multiple of 224

nearest a: subtract from a.

Modular arithmetic

la/p| is the quotient
when a 1s divided by p:
the largest integer < a/p.

a mod D Is the remainder:
amodp=a—pla/p|

Examples:
43/12| =3; 43 mod 12 =17.
17/12| = 1; 17 mod 12 = 5.
12/12| =1; 12 mod 12 = 0.
7/12| =0; 7Tmod 12 =7.
—10/12| = —1,

—10 mod 12 = 2.

Often want to compute a mod p
where a Is a gigantic integer
produced by mults, adds, subs

and p is relatively small.

e.g. p = 314159; a = 71024 _
(GRS RR NN
Useful fact: If we change

the chain of mults, adds, subs
by inserting “mod p’ anywhere,
the new chain output a’
satisfies @’ mod » = a mod ».

“a’ =a": a/,a are equivalent.

More generally, inserting
adds/subs of any multiples of p
produces a' = a.

eg. p=17,
a = ((5%) - 5)? = 15625:
a mod p = 15625 mod 17 = 2.

Can change a to, e.g., a’

= (((5° mod 17) - 5) mod 17)?

= (((25 mod 17) - 5) mod 17)?

— ((8-5) mod 17)?

= (40 mod 17)° = 6 = 36.

Then a’ mod p = 36 mod 17 = 2.
No big numbers herel

Modular reduction

How to compute f mod p?

Can use definition:
fmodp=f—plf/p)

Can multiply f by a
precomputed 1/p approximation;
easily adjust to obtain | f/p|.
Slight speedup: "“2-adic inverse”;
“Montgomery reduction.”

We can do better: normally

p is chosen with a special form
(or dividing a special form; see
“redundant representations”)
to make f mod p much faster.

Example: » = 1000003.
Then 1000000a + 6 = b6 — 3a.

e.g. 314159265358 =

314159 - 1000000 + 265358 =
314159(—3) + 265358 =
—942477 + 265358 =
—677119.

Easily adjust b — 3a

to the range {0,1, ..., p—1}
by adding/subtracting a few p's:
e.g. —6/7119 = 322884.

Hmmm, is adjustment so easy?

Conditional branches are slow.
Also dangerous for crypto:
leak secrets through timing.
Can eliminate the branches,

but adjustment isn't free.

Speedup: Skip the adjustment
for intermediate results.
Adjust only for output.

b — 3a is small enough
to continue computations.

Can delay carries until after
multiplication by 3.

e.g. To square 314159
in Z/1000003: Square poly
3t + 1% + 4¢3 + 12 + 5¢1 + 90,
obtaining 9t10 + 67 + 25¢8 +
t7 4+ 48t0 4 728> + 50t* +
t3 + 43t% + 90t! + 810,

Reduce: replace (¢;)t°** by
(—3c¢;)t*, obtaining 72t° + 32t* +
64t> — 32t° + 48t1 — 63t

Carry: 8t0 — 4¢° — 2% +
183 1+ 2¢2 ot — 340,

To minimize poly degree,
mix reduction and carrying,
carrying the top sooner.

e.g. Start from square 9t10 4+ 627 +
t8 + 147 +48t° 4+ 728> 4 50t* +
t3 +43t% + 90t! + 8140

Reduce t19 — t* and carry t* —

£2 3 6 689 1058 1 14¢7 15680 —
582 +2¢4 1+ 823 +43¢2 490t +81¢Y.

Finish reduction: —5¢2 -+ 2t% +
64t3 — 32t2 + 48t — 87tY. Carry
t0 5t 52 53 5 tF o o
A — 2t 183 + 282 — 1t + 340,

Speedup: non-integer radix

p=201_1

Five coeffs in radix 2137
fat* + f3t° + fot? + fit! + fot°.
Most coeffs could be 212.

Square - - +2(fafi+ f3 o)+ -.
Coeff of 2 could be > 2%°.

Reduce: 2°° = 2% in Z/(2%! —1);

o+ (2(fafy + f32) + £5)E.
Coeff could be > 229,

Very little room for
additions, delayed carries, etc.

on 32-bit platforms.

Scaled: Evaluate at t = 1.
f4 is multiple of 2°2:

f3 is multiple of 239.
226.

fo is multiple of
f1 is multiple of 213
fo is multiple of 2V Reduce:

o+ (20 fafy + f3f2) + £

Better: Non-integer radix 2122,
249.

fa 1s multiple of
f3 1s multiple of 237

f> 1s multiple of 225;
213.

f1 1s multiple of

fo is multiple of 29.
Saves a few bits in coeffs.

