An introduction to high-speed arithmetic

D. J. BernsteinUniversity of Illinois at Chicago

How to multiply big integers

Standard idea: Use polynomial with coefficients in {0, 1, . . . , 9} to represent integer in radix 10.

Example of representation:

$$839 = 8 \cdot 10^2 + 3 \cdot 10^1 + 9 \cdot 10^0 =$$
 value (at $t = 10$) of polynomial $8t^2 + 3t^1 + 9t^0$.

Convenient to express polynomial inside computer as array 9, 3, 8 (or 9, 3, 8, 0 or 9, 3, 8, 0, 0 or ...): "p[0] = 9; p[1] = 3; p[2] = 8"

Multiply two integers by multiplying polynomials that represent the integers.

Polynomial multiplication involves *small* integer coefficients. Have split one big multiplication into many small operations.

Example, squaring 839:

$$(8t^2 + 3t^1 + 9t^0)^2 =$$
 $64t^4 + 48t^3 + 153t^2 + 54t^1 + 81t^0$.

Oops, product polynomial usually has coefficients > 9.

So "carry" extra digits:

$$ct^j
ightarrow \lfloor c/10
floor t^{j+1} + (c mod 10)t^j$$
 .

Example, squaring 839:

$$64t^4 + 48t^3 + 153t^2 + 54t^1 + 81t^0;$$

 $64t^4 + 48t^3 + 153t^2 + 62t^1 + 1t^0;$
 $64t^4 + 48t^3 + 159t^2 + 2t^1 + 1t^0;$
 $64t^4 + 63t^3 + 9t^2 + 2t^1 + 1t^0;$
 $70t^4 + 3t^3 + 9t^2 + 2t^1 + 1t^0;$
 $7t^5 + 0t^4 + 3t^3 + 9t^2 + 2t^1 + 1t^0.$

In other words, $839^2 = 703921$.

What operations were used here?

The scaled variation

$$839 = 800 + 30 + 9 =$$
value (at $t = 1$) of polynomial $800t^2 + 30t^1 + 9t^0$.

Squaring:
$$(800t^2 + 30t^1 + 9t^0)^2 = 640000t^4 + 48000t^3 + 15300t^2 + 540t^1 + 81t^0$$
.

Carrying:

$$640000t^4 + 48000t^3 + 15300t^2 + 540t^1 + 81t^0;$$
 $640000t^4 + 48000t^3 + 15300t^2 + 620t^1 + 1t^0;$
 \dots
 $700000t^5 + 0t^4 + 3000t^3 + 900t^2 + 20t^1 + 1t^0.$

What operations were used here?

Speedup: double inside squaring

$$(\cdots + f_2t^2 + f_1t^1 + f_0t^0)^2$$

has coefficients such as $f_4f_0 + f_3f_1 + f_2f_2 + f_1f_3 + f_0f_4$.

Compute more efficiently as

$$2f_4f_0+2f_3f_1+f_2f_2$$
.

Or, slightly faster,

$$2(f_4f_0+f_3f_1)+f_2f_2$$

Or, slightly faster,

$$(2f_4)f_0 + (2f_3)f_1 + f_2f_2$$

after precomputing $2f_1, 2f_2, \dots$

Overall save $\approx 1/2$ of the work if there are many coefficients.

Speedup: allow negative coeffs

Recall $159 \mapsto 15, 9$.

Scaled: $15900 \mapsto 15000, 900$.

Alternative: $159 \mapsto 16, -1$.

Scaled: $15900 \mapsto 16000, -100$.

Use digits $\{-5, -4, ..., 4, 5\}$ instead of $\{0, 1, ..., 9\}$.

Small disadvantage: need —.

Several small advantages:

easily handle negative integers;

easily handle subtraction;

reduce products a bit.

Speedup: delay carries

Computing (e.g.) big $ab + c^2$: multiply a, b polynomials, carry, square c poly, carry, add, carry.

e.g.
$$a = 314$$
, $b = 271$, $c = 839$:
 $(3t^2 + 1t^1 + 4t^0)(2t^2 + 7t^1 + 1t^0) = 6t^4 + 23t^3 + 18t^2 + 29t^1 + 4t^0$;
carry: $8t^4 + 5t^3 + 0t^2 + 9t^1 + 4t^0$.

As before
$$(8t^2 + 3t^1 + 9t^0)^2 = 64t^4 + 48t^3 + 153t^2 + 54t^1 + 81t^0;$$

 $7t^5 + 0t^4 + 3t^3 + 9t^2 + 2t^1 + 1t^0.$

+:
$$7t^5 + 8t^4 + 8t^3 + 9t^2 + 11t^1 + 5t^0$$
;
 $7t^5 + 8t^4 + 9t^3 + 0t^2 + 1t^1 + 5t^0$.

Faster: multiply a, b polynomials, square c polynomial, add, carry.

$$(6t^4 + 23t^3 + 18t^2 + 29t^1 + 4t^0) +$$

 $(64t^4 + 48t^3 + 153t^2 + 54t^1 + 81t^0)$
 $= 70t^4 + 71t^3 + 171t^2 + 83t^1 + 85t^0;$
 $7t^5 + 8t^4 + 9t^3 + 0t^2 + 1t^1 + 5t^0.$

Eliminate intermediate carries.

Outweighs cost of handling slightly larger coefficients.

Important to carry between multiplications (and squarings) to reduce coefficient size; but carries are usually a bad idea before additions, subtractions, etc.

Speedup: polynomial Karatsuba

How much work to multiply polys

$$f=f_0+f_1t+\cdots+f_{19}t^{19}, \ g=g_0+g_1t+\cdots+g_{19}t^{19}?$$

Using the obvious method: 400 coeff mults, 361 coeff adds.

Faster: Write f as $F_0 + F_1 t^{10}$; $F_0 = f_0 + f_1 t + \dots + f_9 t^9$; $F_1 = f_{10} + f_{11} t + \dots + f_{19} t^9$. Similarly write g as $G_0 + G_1 t^{10}$.

Then
$$fg = (F_0 + F_1)(G_0 + G_1)t^{10} + (F_0G_0 - F_1G_1t^{10})(1 - t^{10}).$$

20 adds for $F_0 + F_1$, $G_0 + G_1$. 300 mults for three products F_0G_0 , F_1G_1 , $(F_0+F_1)(G_0+G_1)$. 243 adds for those products. 9 adds for $F_0G_0 - F_1G_1t^{10}$ with subs counted as adds and with delayed negations. 19 adds for $\cdots (1 - t^{10})$. 19 adds to finish.

Total 300 mults, 310 adds. Larger coefficients, slight expense; still saves time.

Can apply idea recursively as poly degree grows.

Many other algebraic speedups in polynomial multiplication: "Toom," "FFT," etc.

Increasingly important as polynomial degree grows. $O(n \lg n \lg \lg n)$ coeff operations to compute n-coeff product.

Useful for sizes of *n* that occur in cryptography? Maybe; active research area.

Using CPU's integer instructions

Replace radix 10 with, e.g., 2^{24} . Power of 2 simplifies carries.

Adapt radix to platform.

e.g. Every 2 cycles, Athlon 64 can compute a 128-bit product of two 64-bit integers.
(5-cycle latency; parallelize!)
Also low cost for 128-bit add.

Reasonable to use radix 2^{60} . Sum of many products of digits fits comfortably below 2^{128} . Be careful: analyze largest sum. e.g. In 4 cycles, Intel 8051 can compute a 16-bit product of two 8-bit integers.

Could use radix 2⁶.

Could use radix 2⁸, with 24-bit sums.

e.g. Every 2 cycles, Pentium 4 F3 can compute a 64-bit product of two 32-bit integers.

(11-cycle latency; yikes!)

Reasonable to use radix 2²⁸.

Warning: Multiply instructions are very slow on some CPUs. Pentium 4 F2: every 10 cycles!

Using floating-point instructions

Big CPUs have separate floating-point instructions, aimed at numerical simulation but useful for cryptography.

In my experience, floating-point instructions support faster multiplication (often much, much faster) than integer instructions. Other advantages: portability; easily scaled coefficients.

Exceptions: some 64-bit CPUs.

- e.g. Every 2 cycles, Pentium III can compute a 64-bit product of two floating-point numbers, and an independent 64-bit sum.
- e.g. Every cycle, UltraSPARC III can compute a 53-bit product and an independent 53-bit sum. Reasonable to use radix 2²⁴.
- e.g. Every 2 cycles, Pentium 4 can compute two 53-bit products and two independent 53-bit sums.

- e.g. Every 2 cycles, Pentium M can compute two 53-bit products and two independent 53-bit sums.
- e.g. Every cycle, Athlon can compute a 64-bit product and an independent 64-bit sum.
- e.g. Every cycle, Core 2 Solo can compute two 53-bit products and two independent 53-bit sums. (Beware relatively high latency.)

How to do carries in floating-point registers?
(No CPU carry instruction: not useful for simulations.)

Exploit floating-point rounding: add and subtract big constant.

e.g. Given α with $|\alpha| \leq 2^{75}$: compute 53-bit floating-point sum of α and constant $3 \cdot 2^{75}$, obtaining a multiple of 2^{24} ; subtract $3 \cdot 2^{75}$ from result, obtaining multiple of 2^{24} nearest α ; subtract from α .

Modular arithmetic

 $\lfloor a/p \rfloor$ is the quotient when a is divided by p: the largest integer $\leq a/p$.

 $a \mod p$ is the remainder: $a \mod p = a - p |a/p|$.

Examples:

$$\lfloor 43/12 \rfloor = 3$$
; 43 mod 12 = 7.
 $\lfloor 17/12 \rfloor = 1$; 17 mod 12 = 5.
 $\lfloor 12/12 \rfloor = 1$; 12 mod 12 = 0.
 $\lfloor 7/12 \rfloor = 0$; 7 mod 12 = 7.
 $\lfloor -10/12 \rfloor = -1$;
 $-10 \mod 12 = 2$.

Often want to compute $a \mod p$ where a is a gigantic integer produced by mults, adds, subs and p is relatively small.

Useful fact: If we change the chain of mults, adds, subs by inserting "mod p" anywhere, the new chain output a' satisfies a' mod $p = a \mod p$. " $a' \equiv a$ ": a', a are equivalent.

More generally, inserting adds/subs of any multiples of p produces $a' \equiv a$.

e.g.
$$p = 17$$
, $a = ((5^2) \cdot 5)^2 = 15625$: $a \mod p = 15625 \mod 17 = 2$.

Can change a to, e.g., a' $= (((5^2 \text{ mod } 17) \cdot 5) \text{ mod } 17)^2$ $= (((25 \text{ mod } 17) \cdot 5) \text{ mod } 17)^2$ $= ((8 \cdot 5) \text{ mod } 17)^2$ $= (40 \text{ mod } 17)^2 = 6^2 = 36.$ Then a' mod n = 36 mod 17 = 6

Then $a' \mod p = 36 \mod 17 = 2$. No big numbers here!

Modular reduction

How to compute $f \mod p$?

Can use definition: $f \mod p = f - p \lfloor f/p \rfloor$. Can multiply f by a precomputed 1/p approximation; easily adjust to obtain $\lfloor f/p \rfloor$. Slight speedup: "2-adic inverse"; "Montgomery reduction."

We can do better: normally p is chosen with a special form (or dividing a special form; see "redundant representations") to make $f \mod p$ much faster.

Example: p=1000003. Then $1000000a+b\equiv b-3a$.

e.g.
$$314159265358 =$$
 $314159 \cdot 10000000 + 265358 =$
 $314159(-3) + 265358 =$
 $-942477 + 265358 =$
 -677119 .

Easily adjust b-3a to the range $\{0,1,\ldots,p-1\}$ by adding/subtracting a few p's: e.g. $-677119 \equiv 322884$.

Hmmm, is adjustment so easy?

Conditional branches are slow. Also dangerous for crypto: leak secrets through timing. Can eliminate the branches, but adjustment isn't free.

Speedup: Skip the adjustment for intermediate results.

Adjust only for output.

b-3a is small enough to continue computations.

Can delay carries until after multiplication by 3.

e.g. To square 314159 in $\mathbf{Z}/1000003$: Square poly $3t^5+1t^4+4t^3+1t^2+5t^1+9t^0$, obtaining $9t^{10}+6t^9+25t^8+14t^7+48t^6+72t^5+59t^4+82t^3+43t^2+90t^1+81t^0$.

Reduce: replace $(c_i)t^{6+i}$ by $(-3c_i)t^i$, obtaining $72t^5 + 32t^4 + 64t^3 - 32t^2 + 48t^1 - 63t^0$.

Carry: $8t^6 - 4t^5 - 2t^4 + 1t^3 + 2t^2 + 2t^1 - 3t^0$.

To minimize poly degree, mix reduction and carrying, carrying the top sooner.

e.g. Start from square
$$9t^{10} + 6t^9 + 25t^8 + 14t^7 + 48t^6 + 72t^5 + 59t^4 + 82t^3 + 43t^2 + 90t^1 + 81t^0$$
.

Reduce
$$t^{10} \rightarrow t^4$$
 and carry $t^4 \rightarrow t^5 \rightarrow t^6$: $6t^9 + 25t^8 + 14t^7 + 56t^6 - 5t^5 + 2t^4 + 82t^3 + 43t^2 + 90t^1 + 81t^0$.

Finish reduction: $-5t^5 + 2t^4 + 64t^3 - 32t^2 + 48t^1 - 87t^0$. Carry $t^0 o t^1 o t^2 o t^3 o t^4 o t^5$: $-4t^5 - 2t^4 + 1t^3 + 2t^2 - 1t^1 + 3t^0$.

Speedup: non-integer radix

$$p=2^{61}-1$$
.

Five coeffs in radix 2^{13} ?

$$f_4t^4+f_3t^3+f_2t^2+f_1t^1+f_0t^0$$
.

Most coeffs could be 2^{12} .

Square
$$\cdots + 2(f_4f_1 + f_3f_2)t^5 + \cdots$$
. Coeff of t^5 could be $> 2^{25}$.

Reduce:
$$2^{65} = 2^4$$
 in $\mathbf{Z}/(2^{61} - 1)$; $\cdots + (2^5(f_4f_1 + f_3f_2) + f_0^2)t^0$. Coeff could be $> 2^{29}$.

Very little room for additions, delayed carries, etc. on 32-bit platforms.

Scaled: Evaluate at t = 1. f_4 is multiple of 2^{52} ; f_3 is multiple of 2^{39} ; f_2 is multiple of 2^{26} ; f_1 is multiple of 2^{13} ; f_0 is multiple of 2^0 . Reduce: $\cdots + (2^{-60}(f_4f_1 + f_3f_2) + f_0^2)t^0$.

Better: Non-integer radix $2^{12.2}$. f_4 is multiple of 2^{49} ; f_3 is multiple of 2^{37} ; f_2 is multiple of 2^{25} ;

 f_1 is multiple of 2^{13} ;

 f_0 is multiple of 2^0 .

Saves a few bits in coeffs.