An introduction to
high-speed arithmetic
D. J. Bernstein University of Illinois at Chicago

How to multiply big integers

Standard idea: Use polynomial with coefficients in $\{0,1, \ldots, 9\}$ to represent integer in radix 10 .

Example of representation:
$839=8 \cdot 10^{2}+3 \cdot 10^{1}+9 \cdot 10^{0}=$
value (at $t=10$) of polynomial $8 t^{2}+3 t^{1}+9 t^{0}$.

Convenient to express polynomial inside computer as array $9,3,8$ (or $9,3,8,0$ or $9,3,8,0,0$ or . .) : "p [0] $=9 ; p[1]=3 ; p[2]=8 "$

Multiply two integers
by multiplying polynomials
that represent the integers.
Polynomial multiplication involves small integer coefficients. Have split one big multiplication into many small operations.

Example, squaring 839:
$\left(8 t^{2}+3 t^{1}+9 t^{0}\right)^{2}=$
$64 t^{4}+48 t^{3}+153 t^{2}+54 t^{1}+81 t^{0}$.

Oops, product polynomial usually has coefficients >9.
So "carry" extra digits:
$c t^{j} \rightarrow\lfloor c / 10\rfloor t^{j+1}+(c \bmod 10) t^{j}$.
Example, squaring 839:
$64 t^{4}+48 t^{3}+153 t^{2}+54 t^{1}+81 t^{0} ;$
$64 t^{4}+48 t^{3}+153 t^{2}+62 t^{1}+1 t^{0} ;$ $64 t^{4}+48 t^{3}+159 t^{2}+2 t^{1}+1 t^{0} ;$ $64 t^{4}+63 t^{3}+9 t^{2}+2 t^{1}+1 t^{0} ;$ $70 t^{4}+3 t^{3}+9 t^{2}+2 t^{1}+1 t^{0} ;$ $7 t^{5}+0 t^{4}+3 t^{3}+9 t^{2}+2 t^{1}+1 t^{0}$.

In other words, $839^{2}=703921$.

What operations were used here?

The scaled variation

$839=800+30+9=$
value (at $t=1$) of polynomial
$800 t^{2}+30 t^{1}+9 t^{0}$.
Squaring: $\left(800 t^{2}+30 t^{1}+9 t^{0}\right)^{2}=$ $640000 t^{4}+48000 t^{3}+15300 t^{2}+$ $540 t^{1}+81 t^{0}$.
Carrying:
$640000 t^{4}+48000 t^{3}+15300 t^{2}+$ $540 t^{1}+81 t^{0} ;$
$640000 t^{4}+48000 t^{3}+15300 t^{2}+$ $620 t^{1}+1 t^{0}$;
$700000 t^{5}+0 t^{4}+3000 t^{3}+900 t^{2}+$ $20 t^{1}+1 t^{0}$.

What operations were used here?

subtract

15000900

Speedup: double inside squaring
$\left(\cdots+f_{2} t^{2}+f_{1} t^{1}+f_{0} t^{0}\right)^{2}$ has coefficients such as
$f_{4} f_{0}+f_{3} f_{1}+f_{2} f_{2}+f_{1} f_{3}+f_{0} f_{4}$.
Compute more efficiently as
$2 f_{4} f_{0}+2 f_{3} f_{1}+f_{2} f_{2}$.
Or, slightly faster,
$2\left(f_{4} f_{0}+f_{3} f_{1}\right)+f_{2} f_{2}$.
Or, slightly faster,
$\left(2 f_{4}\right) f_{0}+\left(2 f_{3}\right) f_{1}+f_{2} f_{2}$ after precomputing $2 f_{1}, 2 f_{2}, \ldots$

Overall save $\approx 1 / 2$ of the work if there are many coefficients.

Speedup: allow negative coeffs

Recall $159 \mapsto 15,9$.
Scaled: $15900 \mapsto 15000,900$.
Alternative: $159 \mapsto 16,-1$.
Scaled: $15900 \mapsto 16000,-100$.
Use digits $\{-5,-4, \ldots, 4,5\}$ instead of $\{0,1, \ldots, 9\}$.
Small disadvantage: need - . Several small advantages: easily handle negative integers; easily handle subtraction; reduce products a bit.

Speedup: delay carries

Computing (e.g.) big $a b+c^{2}$: multiply a, b polynomials, carry, square c poly, carry, add, carry.
e.g. $a=314, b=271, c=839$: $\left(3 t^{2}+1 t^{1}+4 t^{0}\right)\left(2 t^{2}+7 t^{1}+1 t^{0}\right)=$ $6 t^{4}+23 t^{3}+18 t^{2}+29 t^{1}+4 t^{0} ;$ carry: $8 t^{4}+5 t^{3}+0 t^{2}+9 t^{1}+4 t^{0}$.

As before $\left(8 t^{2}+3 t^{1}+9 t^{0}\right)^{2}=$ $64 t^{4}+48 t^{3}+153 t^{2}+54 t^{1}+81 t^{0} ;$ $7 t^{5}+0 t^{4}+3 t^{3}+9 t^{2}+2 t^{1}+1 t^{0}$.
$+: 7 t^{5}+8 t^{4}+8 t^{3}+9 t^{2}+11 t^{1}+5 t^{0} ;$ $7 t^{5}+8 t^{4}+9 t^{3}+0 t^{2}+1 t^{1}+5 t^{0}$.

Faster: multiply a, b polynomials, square c polynomial, add, carry.
$\left(6 t^{4}+23 t^{3}+18 t^{2}+29 t^{1}+4 t^{0}\right)+$ $\left(64 t^{4}+48 t^{3}+153 t^{2}+54 t^{1}+81 t^{0}\right)$ $=70 t^{4}+71 t^{3}+171 t^{2}+83 t^{1}+85 t^{0}$; $7 t^{5}+8 t^{4}+9 t^{3}+0 t^{2}+1 t^{1}+5 t^{0}$.

Eliminate intermediate carries.
Outweighs cost of handling slightly larger coefficients.

Important to carry between multiplications (and squarings) to reduce coefficient size; but carries are usually a bad idea before additions, subtractions, etc.

Speedup: polynomial Karatsuba
How much work to multiply polys
$f=f_{0}+f_{1} t+\cdots+f_{19} t^{19}$,
$g=g_{0}+g_{1} t+\cdots+g_{19} t^{19}$?
Using the obvious method:
400 coeff milts, 361 coeff adds.
Faster: Write f as $F_{0}+F_{1} t^{10}$; $F_{0}=f_{0}+f_{1} t+\cdots+f_{9} t^{9}$;
$F_{1}=f_{10}+f_{11} t+\cdots+f_{19} t^{9}$.
Similarly write g as $G_{0}+G_{1} t^{10}$.
Then $f g=\left(F_{0}+F_{1}\right)\left(G_{0}+G_{1}\right) t^{10}$ $+\left(F_{0} G_{0}-F_{1} G_{1} t^{10}\right)\left(1-t^{10}\right)$.

20 adds for $F_{0}+F_{1}, G_{0}+G_{1}$. 300 molts for three products
$F_{0} G_{0}, F_{1} G_{1},\left(F_{0}+F_{1}\right)\left(G_{0}+G_{1}\right)$.
243 adds for those products.
9 adds for $F_{0} G_{0}-F_{1} G_{1} t^{10}$
with subs counted as adds
and with delayed negations.
19 adds for $\cdots\left(1-t^{10}\right)$.
19 adds to finish.
Total 300 mults, 310 adds.
Larger coefficients, slight expense; still saves time.

Can apply idea recursively as poly degree grows.

Many other algebraic speedups in polynomial multiplication: "Toom," "FFT," etc.

Increasingly important as polynomial degree grows.
$O(n \lg n \lg \lg n)$ coeff operations to compute n-coeff product.

Useful for sizes of n
that occur in cryptography?
Maybe; active research area.

Using CPU's integer instructions

Replace radix 10 with, e.g., 2^{24}. Power of 2 simplifies carries.

Adapt radix to platform.
e.g. Every 2 cycles, Athlon 64 can compute a 128-bit product of two 64-bit integers.
(5-cycle latency; parallelize!)
Also low cost for 128-bit add.
Reasonable to use radix 2^{60}. Sum of many products of digits fits comfortably below 2^{128}. Be careful: analyze largest sum.
e.g. In 4 cycles, Intel 8051
can compute a 16-bit product of two 8-bit integers.
Could use radix 2^{6}.
Could use radix 2^{8},
with 24-bit sums.
e.g. Every 2 cycles, Pentium 4 F3
can compute a 64-bit product of two 32-bit integers.
(11-cycle latency; yikes!)
Reasonable to use radix 2^{28}.
Warning: Multiply instructions are very slow on some CPUs.
Pentium 4 F2: every 10 cycles!

Using floating-point instructions

Big CPUs have separate floating-point instructions, aimed at numerical simulation but useful for cryptography.

In my experience,
floating-point instructions support faster multiplication (often much, much faster) than integer instructions.
Other advantages: portability; easily scaled coefficients.

Exceptions: some 64-bit CPUs.
e.g. Every 2 cycles, Pentium III can compute a 64-bit product of two floating-point numbers, and an independent 64-bit sum.
e.g. Every cycle, UltraSPARC III can compute a 53-bit product and an independent 53-bit sum. Reasonable to use radix 2^{24}.
e.g. Every 2 cycles, Pentium 4 can compute two 53-bit products and two independent 53-bit sums.
e.g. Every 2 cycles, Pentium M can compute two 53-bit products and two independent 53-bit sums.
e.g. Every cycle, Athlon can compute a 64-bit product and an independent 64-bit sum.
e.g. Every cycle, Core 2 Solo can compute two 53-bit products and two independent 53-bit sums. (Beware relatively high latency.)

How to do carries in
floating-point registers?
(No CPU carry instruction:
not useful for simulations.)
Exploit floating-point rounding: add and subtract big constant.
e.g. Given α with $|\alpha| \leq 2^{75}$: compute 53-bit floating-point sum of α and constant $3 \cdot 2^{75}$, obtaining a multiple of 2^{24}; subtract $3 \cdot 2^{75}$ from result, obtaining multiple of 2^{24} nearest α; subtract from α.

Modular arithmetic

$\lfloor a / p\rfloor$ is the quotient
when a is divided by p :
the largest integer $\leq a / p$.
$a \bmod p$ is the remainder:
$a \bmod p=a-p\lfloor a / p\rfloor$.

Examples:

$\lfloor 43 / 12\rfloor=3 ; 43 \bmod 12=7$.
$\lfloor 17 / 12\rfloor=1 ; 17 \bmod 12=5$.
$\lfloor 12 / 12\rfloor=1 ; 12 \bmod 12=0$.
$\lfloor 7 / 12\rfloor=0 ; 7 \bmod 12=7$.
$\lfloor-10 / 12\rfloor=-1$;
$-10 \bmod 12=2$.

Often want to compute $a \bmod p$ where a is a gigantic integer produced by mults, adds, subs and p is relatively small.
e.g. $p=314159 ; a=7^{1024}=$ $\left.\left(\left(\left(\left(\left(\left(\left(\left(7^{2}\right)^{2}\right)^{2}\right)^{2}\right)^{2}\right)^{2}\right)^{2}\right)^{2}\right)^{2}\right)^{2}$.

Useful fact: If we change the chain of mults, adds, subs by inserting "mod p " anywhere, the new chain output a^{\prime} satisfies $a^{\prime} \bmod p=a \bmod p$. $" a ' \equiv a^{\prime}$ ": a^{\prime}, a are equivalent.

More generally, inserting adds/subs of any multiples of p produces $a^{\prime} \equiv a$.
e.g. $p=17$,
$a=\left(\left(5^{2}\right) \cdot 5\right)^{2}=15625$:
$a \bmod p=15625 \bmod 17=2$.
Can change a to, e.g., a^{\prime}
$=\left(\left(\left(5^{2} \bmod 17\right) \cdot 5\right) \bmod 17\right)^{2}$
$=(((25 \bmod 17) \cdot 5) \bmod 17)^{2}$
$=((8 \cdot 5) \bmod 17)^{2}$
$=(40 \bmod 17)^{2}=6^{2}=36$.
Then $a^{\prime} \bmod p=36 \bmod 17=2$.
No big numbers here!

Modular reduction

How to compute $f \bmod p$?

Can use definition:
$f \bmod p=f-p\lfloor f / p\rfloor$.
Can multiply f by a
precomputed $1 / p$ approximation; easily adjust to obtain $\lfloor f / p\rfloor$.
Slight speedup: "2-adic inverse"; "Montgomery reduction."

We can do better: normally p is chosen with a special form (or dividing a special form; see "redundant representations") to make $f \bmod p$ much faster.

Example: $p=1000003$.

Then $1000000 a+b \equiv b-3 a$.
e.g. $314159265358=$
$314159 \cdot 1000000+265358 \equiv$
$314159(-3)+265358=$
$-942477+265358=$
-677119.
Easily adjust $b-3 a$
to the range $\{0,1, \ldots, p-1\}$
by adding/subtracting a few p 's: e.g. $-677119 \equiv 322884$.

Hmmm, is adjustment so easy?
Conditional branches are slow.
Also dangerous for crypto:
leak secrets through timing.
Can eliminate the branches, but adjustment isn't free.

Speedup: Skip the adjustment for intermediate results.
Adjust only for output.
$b-3 a$ is small enough to continue computations.

Can delay carries until after multiplication by 3 .
e.g. To square 314159
in $\mathbf{Z} / 1000003$: Square poly
$3 t^{5}+1 t^{4}+4 t^{3}+1 t^{2}+5 t^{1}+9 t^{0}$,
obtaining $9 t^{10}+6 t^{9}+25 t^{8}+$
$14 t^{7}+48 t^{6}+72 t^{5}+59 t^{4}+$
$82 t^{3}+43 t^{2}+90 t^{1}+81 t^{0}$.
Reduce: replace $\left(c_{i}\right) t^{6+i}$ by $\left(-3 c_{i}\right) t^{i}$, obtaining $72 t^{5}+32 t^{4}+$ $64 t^{3}-32 t^{2}+48 t^{1}-63 t^{0}$.

Carry: $8 t^{6}-4 t^{5}-2 t^{4}+$ $1 t^{3}+2 t^{2}+2 t^{1}-3 t^{0}$.

To minimize poly degree,

 mix reduction and carrying, carrying the top sooner.e.g. Start from square $9 t^{10}+6 t^{9}+$ $25 t^{8}+14 t^{7}+48 t^{6}+72 t^{5}+59 t^{4}+$ $82 t^{3}+43 t^{2}+90 t^{1}+81 t^{0}$.

Reduce $t^{10} \rightarrow t^{4}$ and carry $t^{4} \rightarrow$ $t^{5} \rightarrow t^{6}: 6 t^{9}+25 t^{8}+14 t^{7}+56 t^{6}-$ $5 t^{5}+2 t^{4}+82 t^{3}+43 t^{2}+90 t^{1}+81 t^{0}$.

Finish reduction: $-5 t^{5}+2 t^{4}+$ $64 t^{3}-32 t^{2}+48 t^{1}-87 t^{0}$. Carry $t^{0} \rightarrow t^{1} \rightarrow t^{2} \rightarrow t^{3} \rightarrow t^{4} \rightarrow t^{5}:$ $-4 t^{5}-2 t^{4}+1 t^{3}+2 t^{2}-1 t^{1}+3 t^{0}$.

Speedup: non-integer radix
$p=2^{61}-1$.
Five coeffs in radix 2^{13} ?
$f_{4} t^{4}+f_{3} t^{3}+f_{2} t^{2}+f_{1} t^{1}+f_{0} t^{0}$.
Most coeffs could be 2^{12}.
Square $\cdots+2\left(f_{4} f_{1}+f_{3} f_{2}\right) t^{5}+\cdots$. Coeff of t^{5} could be $>2^{25}$.

Reduce: $2^{65}=2^{4}$ in $\mathbf{Z} /\left(2^{61}-1\right)$; $\cdots+\left(2^{5}\left(f_{4} f_{1}+f_{3} f_{2}\right)+f_{0}^{2}\right) t^{0}$. Coeff could be $>2^{29}$.
Very little room for
additions, delayed carries, etc. on 32-bit platforms.

Scaled: Evaluate at $t=1$.
f_{4} is multiple of 2^{52};
f_{3} is multiple of 2^{39};
f_{2} is multiple of 2^{26};
f_{1} is multiple of 2^{13};
f_{0} is multiple of 2^{0}. Reduce:
$\cdots+\left(2^{-60}\left(f_{4} f_{1}+f_{3} f_{2}\right)+f_{0}^{2}\right) t^{0}$.
Better: Non-integer radix $2^{12.2}$. f_{4} is multiple of 2^{49}; f_{3} is multiple of 2^{37}; f_{2} is multiple of 2^{25}; f_{1} is multiple of 2^{13}; f_{0} is multiple of 2^{0}.
Saves a few bits in coeffs.

