The tangent FFT

D. J. Bernstein
University of lllinois at Chicago

See online version of paper,

particularly for bibliography:
http://cr.yp.to
/papers.html#tangentfft

Algebraic algorithms

fo

\
ho

X mu

N
/]

+ add

T

\/

h1

tiplies its two Inputs.
s Its two Inputs.

+~ subtracts its two inputs.

This "R-algebraic algorithm”

computes product hg+hi1z+ hoz?

of fo + fiz, g0 + g1z € R|z|.

More precisely: It computes

the coeffs of the product

(on standard basis 1, z, z°)

given the coeffs of the factors
(on standard bases 1,z and 1, z).

3 mults, 4 adds.
Compare to obvious algorithm:
4 mults, 1 add.

(1963 Karatsuba)

Algebraic complexity

Are 3 mults, 4 adds
better than 4 mults, 1 add?

In this talk: No!

Cost measure for this talk:

“total R-algebraic complexity.”
+ (“add”): cost 1.

+~ (also “add”): cost 1.
X (“mult”): cost 1.
Constant in R: cost 0.

3 mults, 4 adds: cost 7.

4 mults, 1 add: cost b.

Cost 6 to multiply in C
(on standard basis 1, 2):

e

Ay

Cost 4 to muItipIy by Vi

/l//
AN

Can use (e.g.) Pentium M’s
80-bit floating-point instructions
to approximate operations in R.

Each cycle, Pentium M follows
< 1 floating-point instruction.

So #Pentium M cycles

> total R-algebraic complexity.

Usually can achieve #cycles

~ total R-algebraic complexity.
Analysis of “usually” and “=~"
Is beyond this talk.

Many other cost measures.

Some measures emphasize adds.
e.g. 64-bit fp on one core
of Core 2 Duo: #cycles

~ max{#R-adds, #R-mults} /2.
Typically more adds than mults.

Some measures emphasize mults.
e.g. Dedicated hardware
for floating-point arithmetic:

mults more expensive than adds.

But “cost” In this talk
means #R-adds + #R-mults.

Fast Fourier transforms

Define (,, € C as exp(27i/n).
Define T,, : Clz]/(z™ — 1) — C"
as f— f(1), f(¢n), .-, f(777,1_1)-

Can very quickly compute 7,.

First publication of fast algorithm:
1866 Gauss.

Easy to see that Gauss's FFT uses
O(nlgn) arithmetic operations

ifne{l,248,...}.

Several subsequent reinventions,
ending with 1965 Cooley/Tukey.

Inverse map is also very fast.

Multiplication in C" is very fast.

1966 Sande, 1966 Stockham:
Can very quickly multiply

in Clz]/(z™ — 1) or C[z] or R[]
by mapping C|z]/(z™ — 1) to C".
“Fast convolution.”

Given f,g € Clz]/(z" — 1):
compute fg as T,,:l(Tn(f)Tn(g)).

Given f,g € Clz], deg fg < n:
compute fg from
its image in Clz]/(z™ — 1).

Cost O(nlgn).

A closer look at costs

More precise analysis of Gauss
FFT (and Cooley-Tukey FFT):

Clz]/(z™ — 1) < C™ using
nlgn C-adds (costing 2 each),
(nlgn)/2 C-mults (6 each),
ifne{l,248,...}.

Total cost bnlgn.

After peephole optimizations:
cost bnlgn — 10n + 16

if n € {4,8,16,32,...}.

Either way, 5nlgn 4+ O(n).
This talk focuses on the 5.

What about cost of convolution?

bnlgn 4+ O(n) to compute T (f),
bnlgn + O(n) to compute T,(9),
O(n) to multiply in C™,

similar 5nlgn + O(n) for T, 1.

Total cost 15nlgn + O(n)
to compute fg € Clz]/(z™ — 1)
given f,g € Clz|/(z™ — 1).

Total cost (15/2)nlgn + O(n)
to compute fg € R[z]/(z™ — 1)
given f,g € Rlz]/(z™ — 1): map
R[z]/(z" — 1) —» R? @ C™/2~]
(Gauss) to save half the time.

1968 R. Yavne: Can do better!
Cost 4nlgn + O(n)

to map Clz|/(z"™ — 1) — C",
if ne{1,24,38,16,...}.

1968 R. Yavne: Can do better!
Cost 4nlgn + O(n)

to map Clz|/(z"™ — 1) — C",
if ne{1,24,38,16,...}.

2004 James Van Buskirk:
Can do better!
Cost (34/9)nlgn + O(n).

Expositions of the new algorithm:
Frigo, Johnson,

in [EEE Trans. Signal Processing;
Lundy, Van Buskirk,

in Computing;

Bernstein, this AAECC paper.

Understanding the FFT

If f € Clz] and
fmodzt—1=

fo+ fiz + f2$2 + f3:123 then
fmodz?—1=

(fo+ f2) + (f1 + f3)z,
fmodz?+1=

(fo — f2) +(f1 — f3)z.

Given f mod t — 1
cost 8 to compute
fmodz?—1, f mod 22 + 1.

“C[z]-morphism C[z]/(z* —1) —
Clz]/(z* — 1) ® C[z]/(2* + 1)

If f € C|z] and

f mod z°™ — 72 =

fo+ fiz+ -+ fon—12°"* then

f mod ™ — r =

(fot+rfn) +(f1+7frr1)zT
+ (fo+Tfni2)z” + -,

f modz™ +1r =

(fo—7fn) +(fi —7fni1)z
+(f2— rhns2)a oo

cost < 10n to compute

fotrfn f1+7fnit, ...,
fo—7fn. 1 —Tfns1, ...

Note: can compute in place.

The FFT: Do this recursively!

fmodz*—1

/N

fmodz?—1 f modz?+1

A

fmod fmod fmod f mod
z—1 xz+1 z—1 xT+1

) f-1) FG) F(-)
(expository idea: 1972 Fiduccia)

Modulus tree for one step:

$2n . ,r2

N,

n_p ™ +r

X

Modulus tree for full size-4 FFT:

t — 1

/N

2 — 1 2 1+ 1

ANEA

z—1 xz+1 zz—12 x+1

Alternative: the twisted FFT

If f € Clz] and
f modz" +1 =

go + g1T + 92:1:2 + - .- then
f((opz) mod " — 1 =

go + Cong1T + sznQQCEQ + -

“C-morphism Clz]/(z™ + 1) —»
Clz]/(z™ = 1) by = (opz.”

Modulus tree:

™ + 1

®|

™ — 1

Merge with the original FFT trick:
2" — 1

/BN

Tz —1 Tz +1

®|

™ — 1

“Twisted FFT" applies
this modulus tree recursively.

Cost bnlgn 4+ O(n),
just like the original FFT.

The split-radix FFT

FFT and twisted FFT end up with

same number of mults by (,,

same number of mults by C'n,/2'

same number of mults by ¢, 4,
etc.

Is this necessary? No!

Split-radix FFT: more easy mults.
“"Don’t twist until you see

the whites of their 2's.”

(Can use same idea to speed up
Schonhage-Strassen algorithm
for integer multiplication.)

T
ACOAN
" 1 " 11
/BN
" — 1 " + 1
l@m lc:ml
" — 1 " — 1

Split-radix FFT applies
this modulus tree recursively.
Cost 4nlgn 4+ O(n).

Compare to how twisted FFT
splits 4n Iinto 2n, n, n:

i 1

VN

(12n) |

The tangent FFT

Several ways to achieve
cost 6 for mult by e®.

One approach: Factor %

as (1 +ztan@)cosé.
Cost 2 for mult by cos?é.
Cost 4 for mult by 1 + 2tané.

For stability and symmetry,
sin 0|}

use max{|cos @

instead of cosé@.

Surprise (Van Buskirk):

Can merge some cost-2 mults!

Rethink basis of Clz]|/(z™ — 1).

Instead of 1. z..... 2" ! use
1/3n,0, 33/572,,1, Cey mn_l/sn,n—l
where s, | =
max{ cos% | 'sin % }
max{ cos% | 'sin % }

21k - 2k
max{ | cos n716 | sin n716 3
Now (90, 91,...,9n_1) represents

gO/Sn,O + -t gn—lxn_l/sn,n—l-

Note that s, k = Sy yn/4-

Note that quf,(sn/4,/c/3n,lc) IS
::(]. + 2tan - -) or ::(COt R ’i).

Look at how split-radix
splits 8n Into 2n, 2n,2n,n, n:

5" —1
/ 16"’\
£ _1 41
s B
L | L | AL 72T 14
/\ 12n) Cgn (127 oo
Y Y
™ —1 1 g1 g2m]
Can (6n)| Gy
Y Y

New basis saves 12n:
An in (gy, twist, 4n in C8_n1 twist,
2n in Can twist, 2n in ¢ 1 twist.

New basis costs 8n:
4m to change basis of 2™ + 1,

4n to change basis
of top-left £2™ — 1.

Overall 68n instead of 72n.
Recurse: (34/9)nlgn 4+ O(n),
as in 2004 Van Buskirk.

Open: Can 34/9 be improved?

