The tangent FFT

D. J. BernsteinUniversity of Illinois at Chicago

See online version of paper, particularly for bibliography: http://cr.yp.to/papers.html#tangentfft

Algebraic algorithms

- × multiplies its two inputs.
- + adds its two inputs.
- + subtracts its two inputs.

This "**R**-algebraic algorithm" computes product $h_0+h_1x+h_2x^2$ of f_0+f_1x , $g_0+g_1x\in \mathbf{R}[x]$.

More precisely: It computes the coeffs of the product (on standard basis $1, x, x^2$) given the coeffs of the factors (on standard bases 1, x and 1, x).

3 mults, 4 adds.

Compare to obvious algorithm:

4 mults, 1 add.

(1963 Karatsuba)

Algebraic complexity

Are 3 mults, 4 adds better than 4 mults, 1 add?

In this talk: No!

Cost measure for this talk: "total **R**-algebraic complexity."

- + ("add"): cost 1.
- $+^{-}$ (also "add"): cost 1.
- \times ("mult"): cost 1.

Constant in R: cost 0.

- 3 mults, 4 adds: cost 7.
- 4 mults, 1 add: cost 5.

Cost 6 to multiply in \mathbf{C} (on standard basis 1, i):

Cost 4 to multiply by \sqrt{i} :

Can use (e.g.) Pentium M's 80-bit floating-point instructions to approximate operations in **R**.

Each cycle, Pentium M follows
≤ 1 floating-point instruction.
So #Pentium M cycles
> total **R**-algebraic complexity.

Usually can achieve #cycles \approx total **R**-algebraic complexity. Analysis of "usually" and " \approx " is beyond this talk.

Many other cost measures.

Some measures emphasize adds. e.g. 64-bit fp on one core of Core 2 Duo: #cycles $\approx \max\{\#\mathbf{R}\text{-adds}, \#\mathbf{R}\text{-mults}\}/2$. Typically more adds than mults.

Some measures emphasize mults.
e.g. Dedicated hardware
for floating-point arithmetic:
mults more expensive than adds.

But "cost" in this talk means $\#\mathbf{R}$ -adds $+ \#\mathbf{R}$ -mults.

Fast Fourier transforms

Define $\zeta_n \in \mathbf{C}$ as $\exp(2\pi i/n)$. Define $T_n : \mathbf{C}[x]/(x^n-1) \hookrightarrow \mathbf{C}^n$ as $f \mapsto f(1), f(\zeta_n), \ldots, f(\zeta_n^{n-1})$.

Can very quickly compute T_n .

First publication of fast algorithm: 1866 Gauss.

Easy to see that Gauss's FFT uses $O(n \lg n)$ arithmetic operations if $n \in \{1, 2, 4, 8, \ldots\}$.

Several subsequent reinventions, ending with 1965 Cooley/Tukey.

Inverse map is also very fast.

Multiplication in \mathbb{C}^n is very fast.

1966 Sande, 1966 Stockham: Can very quickly multiply in $\mathbf{C}[x]/(x^n-1)$ or $\mathbf{C}[x]$ or $\mathbf{R}[x]$ by mapping $\mathbf{C}[x]/(x^n-1)$ to \mathbf{C}^n . "Fast convolution."

Given $f,g\in {f C}[x]/(x^n-1)$: compute fg as $T_n^{-1}(T_n(f)T_n(g))$.

Given $f,g \in \mathbf{C}[x]$, $\deg fg < n$: compute fg from its image in $\mathbf{C}[x]/(x^n-1)$.

Cost $O(n \lg n)$.

A closer look at costs

More precise analysis of Gauss FFT (and Cooley-Tukey FFT):

 $\mathbf{C}[x]/(x^n-1) \hookrightarrow \mathbf{C}^n$ using $n \mid \mathbf{C}$ adds (costing 2 each), $(n \mid \mathbf{g} \mid n)/2 \mid \mathbf{C}$ -mults (6 each), if $n \in \{1, 2, 4, 8, \ldots\}$.

Total cost $5n \lg n$.

After peephole optimizations:

cost $5n \lg n - 10n + 16$ if $n \in \{4, 8, 16, 32, \ldots\}$.

Either way, $5n \lg n + O(n)$. This talk focuses on the 5. What about cost of convolution?

 $5n \lg n + O(n)$ to compute $T_n(f)$, $5n \lg n + O(n)$ to compute $T_n(g)$, O(n) to multiply in ${\bf C}^n$, similar $5n \lg n + O(n)$ for T_n^{-1} .

Total cost $15n\lg n + O(n)$ to compute $fg \in \mathbf{C}[x]/(x^n-1)$ given $f,g \in \mathbf{C}[x]/(x^n-1)$.

Total cost $(15/2)n\lg n + O(n)$ to compute $fg \in \mathbf{R}[x]/(x^n-1)$ given $f,g \in \mathbf{R}[x]/(x^n-1)$: map $\mathbf{R}[x]/(x^n-1) \hookrightarrow \mathbf{R}^2 \oplus \mathbf{C}^{n/2-1}$ (Gauss) to save half the time.

1968 R. Yavne: Can do better! Cost $4n \lg n + O(n)$ to map $\mathbf{C}[x]/(x^n-1) \hookrightarrow \mathbf{C}^n$, if $n \in \{1, 2, 4, 8, 16, \ldots\}$.

1968 R. Yavne: Can do better! Cost $4n \lg n + O(n)$ to map $\mathbf{C}[x]/(x^n-1) \hookrightarrow \mathbf{C}^n$, if $n \in \{1, 2, 4, 8, 16, \ldots\}$.

2004 James Van Buskirk:

Can do better!

Cost $(34/9)n \lg n + O(n)$.

Expositions of the new algorithm:

Frigo, Johnson,

in IEEE Trans. Signal Processing;

Lundy, Van Buskirk,

in Computing;

Bernstein, this AAECC paper.

Understanding the FFT

If $f \in \mathbf{C}[x]$ and $f \mod x^4 - 1 = f_0 + f_1 x + f_2 x^2 + f_3 x^3$ then $f \mod x^2 - 1 = (f_0 + f_2) + (f_1 + f_3)x$, $f \mod x^2 + 1 = (f_0 - f_2) + (f_1 - f_3)x$.

Given $f \mod x^4 - 1$, cost 8 to compute $f \mod x^2 - 1$, $f \mod x^2 + 1$.

" $\mathbf{C}[x]$ -morphism $\mathbf{C}[x]/(x^4-1) \hookrightarrow$ $\mathbf{C}[x]/(x^2-1) \oplus \mathbf{C}[x]/(x^2+1)$."

If $f \in \mathbf{C}[x]$ and $f \mod x^{2n} - r^2 =$ $f_0 + f_1 x + \cdots + f_{2n-1} x^{2n-1}$ then $f \mod x^n - r =$ $(f_0 + rf_n) + (f_1 + rf_{n+1})x$ $+(f_2+rf_{n+2})x^2+\cdots$ $f \mod x^n + r =$ $(f_0 - rf_n) + (f_1 - rf_{n+1})x$ $+(f_2-rf_{n+2})x^2+\cdots$

Given $f_0, f_1, \ldots, f_{2n-1} \in \mathbf{C}$, $\cos t \leq 10n$ to compute $f_0 + rf_n, f_1 + rf_{n+1}, \ldots, f_0 - rf_n, f_1 - rf_{n+1}, \ldots$ Note: can compute in place.

The FFT: Do this recursively!

(expository idea: 1972 Fiduccia)

Modulus tree for one step:

Modulus tree for full size-4 FFT:

Alternative: the twisted FFT

If
$$f \in \mathbf{C}[x]$$
 and $f \mod x^n + 1 =$ $g_0 + g_1x + g_2x^2 + \cdots$ then $f(\zeta_{2n}x) \mod x^n - 1 =$ $g_0 + \zeta_{2n}g_1x + \zeta_{2n}^2g_2x^2 + \cdots$

"C-morphism
$${f C}[x]/(x^n+1) \hookrightarrow {f C}[x]/(x^n-1)$$
 by $x\mapsto \zeta_{2n}x$."

Modulus tree:

$$egin{array}{c} x^n+1 \ \hline 6n \ x^n-1 \end{array}$$

Merge with the original FFT trick:

"Twisted FFT" applies this modulus tree recursively.

Cost $5n \lg n + O(n)$, just like the original FFT.

The split-radix FFT

FFT and twisted FFT end up with same number of mults by ζ_n , same number of mults by $\zeta_{n/2}$, same number of mults by $\zeta_{n/4}$, etc.

Is this necessary? No! Split-radix FFT: more easy mults. "Don't twist until you see the whites of their i's."

(Can use same idea to speed up Schönhage-Strassen algorithm for integer multiplication.)

Split-radix FFT applies this modulus tree recursively. Cost $4n \lg n + O(n)$.

Compare to how twisted FFT splits 4n into 2n, n, n:

The tangent FFT

Several ways to achieve cost 6 for mult by $e^{i\theta}$.

One approach: Factor $e^{i\theta}$ as $(1+i\tan\theta)\cos\theta$. Cost 2 for mult by $\cos\theta$. Cost 4 for mult by $1+i\tan\theta$.

For stability and symmetry, use $\max\{|\cos\theta|, |\sin\theta|\}$ instead of $\cos\theta$.

Surprise (Van Buskirk): Can merge some cost-2 mults! Rethink basis of $\mathbf{C}[x]/(x^n-1)$. Instead of $1,x,\ldots,x^{n-1}$ use $1/s_{n,0},x/s_{n,1},\ldots,x^{n-1}/s_{n,n-1}$ where $s_{n,k}=\max\{\left|\cos\frac{2\pi k}{n}\right|,\left|\sin\frac{2\pi k}{n}\right|\}$ $\max\{\left|\cos\frac{2\pi k}{n/4}\right|,\left|\sin\frac{2\pi k}{n/4}\right|\}$ $\max\{\left|\cos\frac{2\pi k}{n/4}\right|,\left|\sin\frac{2\pi k}{n/4}\right|\}$ $\max\{\left|\cos\frac{2\pi k}{n/16}\right|,\left|\sin\frac{2\pi k}{n/16}\right|\}$

Now (g_0,g_1,\ldots,g_{n-1}) represents $g_0/s_{n,0}+\cdots+g_{n-1}x^{n-1}/s_{n,n-1}.$

Note that $s_{n,k}=s_{n,k+n/4}$. Note that $\zeta_n^k(s_{n/4,k}/s_{n,k})$ is $\pm (1+i\tan\cdots)$ or $\pm (\cot\cdots+i)$.

Look at how split-radix splits 8n into 2n, 2n, 2n, n, n:

New basis saves 12n:

4n in ζ_{8n} twist, 4n in ζ_{8n}^{-1} twist, 2n in ζ_{4n} twist, 2n in ζ_{4n}^{-1} twist.

New basis costs 8n:

4n to change basis of $x^{2n}+1$, 4n to change basis of top-left $x^{2n}-1$.

Overall 68n instead of 72n.

Recurse: $(34/9)n \lg n + O(n)$, as in 2004 Van Buskirk.

Open: Can 34/9 be improved?