Faster Addition and Doubling on Elliptic Curves

Daniel J. Bernstein

Tanja Lange
University of Illinois at Chicago and Technische Universiteit Eindhoven
djb@cr.yp.to

Do you know how to add on a circle?

Let k be a field with $2 \neq 0$.
Circle: $\left\{(x, y) \in k \times k \mid x^{2}+y^{2}=1\right\}$

Do you know how to add on a circle?

Let k be a field with $2 \neq 0$.
Circle: $\left\{(x, y) \in k \times k \mid x^{2}+y^{2}=1\right\}$

Do you know how to add on a circle?

Let k be a field with $2 \neq 0$.
Circle: $\left\{(x, y) \in k \times k \mid x^{2}+y^{2}=1\right\}$
$x_{i}=\sin \left(\alpha_{i}\right), y_{i}=\cos \left(\alpha_{i}\right)$

$$
\begin{aligned}
x_{3} & =\sin \left(\alpha_{1}+\alpha_{2}\right) \\
& =\sin \left(\alpha_{1}\right) \cos \left(\alpha_{2}\right)+\cos \left(\alpha_{1}\right) \sin \left(\alpha_{2}\right) \\
y_{3} & =\cos \left(\alpha_{1}+\alpha_{2}\right) \\
& =\cos \left(\alpha_{1}\right) \cos \left(\alpha_{2}\right)-\sin \left(\alpha_{1}\right) \sin \left(\alpha_{2}\right)
\end{aligned}
$$

Addition of angles defines commutative group law $\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{3}, y_{3}\right)$, where

$$
x_{3}=x_{1} y_{2}+y_{1} x_{2} \text { and } y_{3}=y_{1} y_{2}-x_{1} x_{2}
$$

Now add on an Edwards curve

Let k be a field with $2 \neq 0$. Let $d \in k$ with $d \neq 0,1 . \quad y$ Edwards curve:

$$
\left\{(x, y) \in k \times k \mid x^{2}+y^{2}=1+d x^{2} y^{2}\right\}
$$

Harold M. Edwards, (Bulletin of the AMS, 44, 393-422, 2007)

Now add on an Edwards curve

Let k be a field with $2 \neq 0$. Let $d \in k$ with $d \neq 0,1 . \quad y$ Edwards curve:

$$
\left\{(x, y) \in k \times k \mid x^{2}+y^{2}=1+d x^{2} y^{2}\right\}
$$

Harold M. Edwards, (Bulletin of the AMS, 44, 393-422, 2007) Associative operation on points $\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{3}, y_{3}\right)$
defined by Edwards addition law

$$
x_{3}=\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}} \text { and } y_{3}=\frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}
$$

Now add on an Edwards curve

Let k be a field with $2 \neq 0$. Let $d \in k$ with $d \neq 0,1 . \quad y$ Edwards curve:

$$
\left\{(x, y) \in k \times k \mid x^{2}+y^{2}=1+d x^{2} y^{2}\right\}
$$

Harold M. Edwards, (Bulletin of the AMS, 44, 393-422, 2007) Associative operation on points $\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{3}, y_{3}\right)$ defined by Edwards addition law

$$
x_{3}=\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}} \text { and } y_{3}=\frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}} .
$$

- Neutral element is

Now add on an Edwards curve

Let k be a field with $2 \neq 0$. Let $d \in k$ with $d \neq 0,1 . \quad y$ Edwards curve:

$$
\left\{(x, y) \in k \times k \mid x^{2}+y^{2}=1+d x^{2} y^{2}\right\}
$$

Harold M. Edwards, (Bulletin of the AMS, 44, 393-422, 2007) Associative operation on points $\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{3}, y_{3}\right)$ defined by Edwards addition law

$$
x_{3}=\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}} \text { and } y_{3}=\frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}} .
$$

- Neutral element is $(0,1)$ (like on circle).

Now add on an Edwards curve

Let k be a field with $2 \neq 0$. Let $d \in k$ with $d \neq 0,1 . \quad y$ Edwards curve:

$$
\left\{(x, y) \in k \times k \mid x^{2}+y^{2}=1+d x^{2} y^{2}\right\}
$$

Harold M. Edwards, (Bulletin of the AMS, 44, 393-422, 2007) Associative operation on points

$$
\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{3}, y_{3}\right)
$$

defined by Edwards addition law

$$
x_{3}=\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}} \text { and } y_{3}=\frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}} .
$$

- Neutral element is $(0,1)$ (like on circle).
- $-\left(x_{1}, y_{1}\right)=$

Now add on an Edwards curve

Let k be a field with $2 \neq 0$. Let $d \in k$ with $d \neq 0,1 . \quad y$ Edwards curve:

$$
\left\{(x, y) \in k \times k \mid x^{2}+y^{2}=1+d x^{2} y^{2}\right\}
$$

Harold M. Edwards, (Bulletin of the AMS, 44, 393-422, 2007) Associative operation on points $\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{3}, y_{3}\right)$ defined by Edwards addition law

$$
x_{3}=\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}} \text { and } y_{3}=\frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}
$$

- Neutral element is $(0,1)$ (like on circle).
- $-\left(x_{1}, y_{1}\right)=\left(-x_{1}, y_{1}\right)$.

Explicit formulas: addition

- $\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}}, \frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}\right)$.
- Avoid inversions: Use $\left(X_{1}: Y_{1}: Z_{1}\right)$ with $Z_{1} \neq 0$ to represent $\left(x_{1}, y_{1}\right)=\left(X_{1} / Z_{1}, Y_{1} / Z_{1}\right)$, i. e., $\left(X_{1}: Y_{1}: Z_{1}\right)=\left(\lambda X_{1}: \lambda Y_{1}: \lambda Z_{1}\right)$ for $\lambda \neq 0$.
- Addition formulas in projective coordinates:

$$
\begin{aligned}
A & =Z_{1} \cdot Z_{2} ; B=A^{2} ; C=X_{1} \cdot X_{2} ; D=Y_{1} \cdot Y_{2} ; \\
E & =d \cdot C \cdot D ; F=B-E ; G=B+E ; \\
X_{3} & =A \cdot F \cdot\left(\left(X_{1}+Y_{1}\right) \cdot\left(X_{2}+Y_{2}\right)-C-D\right) ; \\
Y_{3} & =A \cdot G \cdot(D-C) ; \\
Z_{3} & =F \cdot G .
\end{aligned}
$$

- Needs $10 \mathrm{M}+1 \mathrm{~S}+1 \mathrm{D}+7 \mathrm{~A}$.

Explicit formulas: doubling

$$
\begin{aligned}
\left(x_{1}, y_{1}\right)+\left(x_{1}, y_{1}\right) & =\left(\frac{x_{1} y_{1}+y_{1} x_{1}}{1+d x_{1} x_{1} y_{1} y_{1}}, \frac{y_{1} y_{1}-x_{1} x_{1}}{1-d x_{1} x_{1} y_{1} y_{1}}\right) \\
& =\left(\frac{2 x_{1} y_{1}}{1+d\left(x_{1} y_{1}\right)^{2}}, \frac{y_{1}^{2}-x_{1}^{2}}{1-d\left(x_{1} y_{1}\right)^{2}}\right)
\end{aligned}
$$

Explicit formulas: doubling

$$
\begin{aligned}
\left(x_{1}, y_{1}\right)+\left(x_{1}, y_{1}\right) & =\left(\frac{x_{1} y_{1}+y_{1} x_{1}}{1+d x_{1} x_{1} y_{1} y_{1}}, \frac{y_{1} y_{1}-x_{1} x_{1}}{1-d x_{1} x_{1} y_{1} y_{1}}\right) \\
& =\left(\frac{2 x_{1} y_{1}}{1+d\left(x_{1} y_{1}\right)^{2}}, \frac{y_{1}^{2}-x_{1}^{2}}{1-d\left(x_{1} y_{1}\right)^{2}}\right)
\end{aligned}
$$

Use curve equation $x^{2}+y^{2}=1+d x^{2} y^{2}$.

Explicit formulas: doubling

$$
\begin{aligned}
\left(x_{1}, y_{1}\right)+\left(x_{1}, y_{1}\right) & =\left(\frac{x_{1} y_{1}+y_{1} x_{1}}{1+d x_{1} x_{1} y_{1} y_{1}}, \frac{y_{1} y_{1}-x_{1} x_{1}}{1-d x_{1} x_{1} y_{1} y_{1}}\right) \\
& =\left(\frac{2 x_{1} y_{1}}{1+d\left(x_{1} y_{1}\right)^{2}}, \frac{y_{1}^{2}-x_{1}^{2}}{1-d\left(x_{1} y_{1}\right)^{2}}\right) \\
& =\left(\frac{2 x_{1} y_{1}}{x_{1}^{2}+y_{1}^{2}}, \frac{y_{1}^{2}-x_{1}^{2}}{2-\left(x_{1}^{2}+y_{1}^{2}\right)}\right)
\end{aligned}
$$

Explicit formulas: doubling

$$
\begin{aligned}
\left(x_{1}, y_{1}\right)+\left(x_{1}, y_{1}\right) & =\left(\frac{x_{1} y_{1}+y_{1} x_{1}}{1+d x_{1} x_{1} y_{1} y_{1}}, \frac{y_{1} y_{1}-x_{1} x_{1}}{1-d x_{1} x_{1} y_{1} y_{1}}\right) \\
& =\left(\frac{2 x_{1} y_{1}}{1+d\left(x_{1} y_{1}\right)^{2}}, \frac{y_{1}^{2}-x_{1}^{2}}{1-d\left(x_{1} y_{1}\right)^{2}}\right) \\
& =\left(\frac{2 x_{1} y_{1}}{x_{1}^{2}+y_{1}^{2}}, \frac{y_{1}^{2}-x_{1}^{2}}{2-\left(x_{1}^{2}+y_{1}^{2}\right)}\right)
\end{aligned}
$$

- Doubling formulas in projective coordinates:

$$
\begin{aligned}
B & =\left(X_{1}+Y_{1}\right)^{2} ; C=X_{1}^{2} ; D=Y_{1}^{2} \\
E & =C+D ; H=Z_{1}^{2} ; J=E-2 H \\
X_{3} & =(B-E) \cdot J ; Y_{3}=E \cdot(C-D) ; Z_{3}=E \cdot J
\end{aligned}
$$

- Needs $3 M+4 S+6 A$.

Relationship to elliptic curves

- Every elliptic curve with point of order 4 is birationally equivalent to an Edwards curve.
- Let $P_{4}=\left(u_{4}, v_{4}\right)$ have order 4 and shift u s.t. $2 P_{4}=(0,0)$. Then Weierstrass form:

$$
v^{2}=u^{3}+\left(v_{4}^{2} / u_{4}^{2}-2 u_{4}\right) u^{2}+u_{4}^{2} u
$$

- Define $d=1-\left(4 u_{4}^{3} / v_{4}^{2}\right)$.
- The coordinates $x=v_{4} u /\left(u_{4} v\right), y=\left(u-u_{4}\right) /\left(u+u_{4}\right)$ satisfy

$$
x^{2}+y^{2}=1+d x^{2} y^{2} .
$$

- Inverse map $u=u_{4}(1+y) /(1-y), v=v_{4} u /\left(u_{4} x\right)$.
- Finitely many exceptional points. Exceptional points have $v\left(u+u_{4}\right)=0$.

Complete addition law

- Neutral element is affine point on curve.
- Addition works to add P and P.
- Addition works to add P and $-P$.
- For d not a square in k, the Edwards addition law is complete. Denominators in x_{3}, y_{3} are never 0 :
Points ($1: 0: 0$) and $(0: 1: 0)$ are singular; correspond to the four solutions of $v\left(u+u_{4}\right)=0$ other than $(0,0)$.
But those four points are minimally defined over $k(\sqrt{d})$.
- Edwards addition law allows omitting all checks.
- Addition just works to add P and any Q.
- Only complete addition law in the literature.
- About 25% of all elliptic curves over fixed finite field have point of order 4 with non-square d.

Weierstrass projective Coordinates

$$
\begin{aligned}
& P=\left(X_{1}: Y_{1}: Z_{1}\right), Q=\left(X_{2}: Y_{2}: Z_{2}\right), P \oplus Q=\left(X_{3}: Y_{3}: Z_{3}\right) \\
& \text { on } E: Y^{2} Z=X^{3}+a_{4} X Z^{2}+a_{6} Z^{3} ;(x, y) \sim(X / Z, Y / Z)
\end{aligned}
$$

Addition: $P \neq \pm Q$
$A=Y_{2} Z_{1}-Y_{1} Z_{2}, B=X_{2} Z_{1}-X_{1} Z_{2}$,
$C=A^{2} Z_{1} Z_{2}-B^{3}-2 B^{2} X_{1} Z_{2} \quad C=X_{1} Y_{1} B, D=A^{2}-8 C$
$X_{3}=B C, Z_{3}=B^{3} Z_{1} Z_{2} \quad X_{3}=2 B D, Z_{3}=8 B^{3}$.
$Y_{3}=A\left(B^{2} X_{1} Z_{2}-C\right)-B^{3} Y_{1} Z_{2}$,
$Y_{3}=A(4 C-D)-8 Y_{1}^{2} B^{2}$

- No inversion is needed - good for most implementations
- General ADD: 12M+2S
- DBL: 7M+5S
- Fast . . . but very different performance of ADD and DBL

Weierstrass Jacobian Coordinates

$$
\begin{aligned}
& P=\left(X_{1}: Y_{1}: Z_{1}\right), Q=\left(X_{2}: Y_{2}: Z_{2}\right), P \oplus Q=\left(X_{3}: Y_{3}: Z_{3}\right) \\
& \text { on } Y^{2}=X^{3}+a_{4} X Z^{4}+a_{6} Z^{6} ;(x, y) \sim\left(X / Z^{2}, Y / Z^{3}\right)
\end{aligned}
$$

Addition: $P \neq \pm Q$
$A=X_{1} Z_{2}^{2}, B=X_{2} Z_{1}^{2}, C=Y_{1} Z_{2}^{3}$,
$D=Y_{2} Z_{1}^{3}, E=B-A, F=D-C$
$X_{3}=2\left(-E^{3}-2 A E^{2}+F^{2}\right)$
$Z_{3}=E\left(Z_{1}+Z_{2}\right)^{2}-Z_{1}^{2}-Z_{2}^{2}$
$Y_{3}=2\left(-C E^{3}+F\left(A E^{2}-X_{3}\right)\right)$,

Doubling $P=Q \neq-P$
$A=Y_{1}^{2}, B=Z_{1}^{2}$
$C=4 X_{1} A, D=3 X_{1}^{2}+a_{4} B^{2}$
$X_{3}=-2 C+D^{2}$
$Z_{3}=\left(Y_{1}+Z_{1}\right)^{2}-A-B$
$Y_{3}=-8 A^{2}+D\left(C-X_{3}\right)$.

- General ADD: $11 \mathrm{M}+5 \mathrm{~S}$
- mixed $\operatorname{ADD}(\mathcal{J}+\mathcal{A}=\mathcal{J}): 8 \mathrm{M}+3 \mathrm{~S}$
- DBL: 3M+7S (one M by a_{4}); for $a_{4}=-3: 3 \mathrm{M}+5 \mathrm{~S}$

Chudnovsky Jacobian Coordinates

$$
\begin{aligned}
& P=\left(X_{1}: Y_{1}: Z_{1}: Z_{1}^{2}: Z_{1}^{3}\right), Q=\left(X_{2}: Y_{2}: Z_{2}: Z_{2}^{2}: Z_{2}^{3}\right) \\
& P \oplus Q=\left(X_{3}: Y_{3}: Z_{3}: Z_{3}^{2}: Z_{3}^{3}\right) \text { on } Y^{2}=X^{3}+a_{4} X Z^{4}+a_{6} Z^{6} \\
& (x, y) \sim\left(X / Z^{2}, Y / Z^{3}\right)
\end{aligned}
$$

Addition: $P \neq \pm Q$

$$
\begin{aligned}
& A=X_{1} Z_{2}^{2}, B=X_{2} Z_{1}^{2}, C=Y_{1} Z_{2}^{3}, \\
& D=Y_{2} Z_{1}^{3}, E=B-A, F=D-C \\
& X_{3}=2\left(-E^{3}-2 A E^{2}+F^{2}\right) \\
& Z_{3}=E\left(Z_{1}+Z_{2}\right)^{2}-Z_{1}^{2}-Z_{2}^{2} \\
& Y_{3}=2\left(-C E^{3}+F\left(A E^{2}-X_{3}\right)\right), \\
& Z_{3}^{2}, Z_{3}^{3},
\end{aligned}
$$

Doubling $P=Q \neq-P$
$A=Y_{1}^{2}$,
$C=4 X_{1} A, D=3 X_{1}^{2}+a_{4}\left(Z_{1}^{2}\right)^{2}$
$X_{3}=-2 C+D^{2}$
$Z_{3}=\left(Y_{1}+Z_{1}\right)^{2}-A-Z_{1}^{2}$
$Y_{3}=-8 A^{2}+D\left(C-X_{3}\right)$
Z_{3}^{2}, Z_{3}^{3}

- General ADD: $10 \mathrm{M}+4 \mathrm{~S}$
- mixed $\operatorname{ADD}(\mathcal{J}+\mathcal{A}=\mathcal{J}): 8 \mathrm{M}+3 \mathrm{~S}$

Montgomery Form

Generalized to arbitrary multiples
$[n] P=\left(X_{n}: Y_{n}: Z_{n}\right),[m] P=\left(X_{m}: Y_{m}: Z_{m}\right)$ with known difference $[m-n] P$ on

$$
E_{M}: B y^{2}=x^{3}+A x^{2}+x
$$

Addition: $n \neq m$

$$
\begin{aligned}
X_{m+n} & =Z_{m-n}\left(\left(X_{m}-Z_{m}\right)\left(X_{n}+Z_{n}\right)+\left(X_{m}+Z_{m}\right)\left(X_{n}-Z_{n}\right)\right)^{2}, \\
Z_{m+n} & =X_{m-n}\left(\left(X_{m}-Z_{m}\right)\left(X_{n}+Z_{n}\right)-\left(X_{m}+Z_{m}\right)\left(X_{n}-Z_{n}\right)\right)^{2}
\end{aligned}
$$

Doubling: $n=m$

$$
\begin{aligned}
4 X_{n} Z_{n} & =\left(X_{n}+Z_{n}\right)^{2}-\left(X_{n}-Z_{n}\right)^{2} \\
X_{2 n} & =\left(X_{n}+Z_{n}\right)^{2}\left(X_{n}-Z_{n}\right)^{2} \\
Z_{2 n} & =4 X_{n} Z_{n}\left(\left(X_{n}-Z_{n}\right)^{2}+((A+2) / 4)\left(4 X_{n} Z_{n}\right)\right)
\end{aligned}
$$

An addition takes 4 M and 2 S whereas a doubling needs only 3 M and 2 S . Order is divisible by 4.

Side-channel atomicity

- Chevallier-Mames, Ciet, Joye 2004 Idea: build group operation from identical blocks.
- Each block consists of:

1 multiplication, 1 addition, 1 negation, 1 addition; fill with cheap dummy additions and negations

ADD $(\mathcal{A}+\mathcal{J})$ needs 11 blocks
DBL ($2 \mathcal{J}$) needs 10 blocks

- Requires that M and S are indistinguishable from their traces.
- No protection against fault attacks.

Unified Projective coordinates

- Brier, Joye 2002 Idea: unify how the slope is computed.
- improved in Brier, Déchène, and Joye 2004
-

$$
\begin{aligned}
\lambda & =\frac{\left(x_{1}+x_{2}\right)^{2}-x_{1} x_{2}+a_{4}+y_{1}-y_{2}}{y_{1}+y_{2}+x_{1}-x_{2}} \\
& = \begin{cases}\frac{y_{1}-y_{2}}{x_{1}-x_{2}} & \left(x_{1}, y_{1}\right) \neq \pm\left(x_{2}, y_{2}\right) \\
\frac{3 x_{1}^{2}+a_{4}}{2 y_{1}} & \left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right)\end{cases}
\end{aligned}
$$

Multiply numerator \& denominator by $x_{1}-x_{2}$ to see this.

- Proposed formulae can be generalized to projective coordinates.
- Some special cases may occur, but with very low probability, e.g. $x_{2}=y_{1}+y_{2}+x_{1}$. Alternative equation for this case.

Hessian curves

$$
E_{H}: X^{3}+Y^{3}+Z^{3}=c X Y Z
$$

Addition: $P \neq \pm Q \quad$ Doubling $P=Q \neq-P$

$$
\begin{array}{ll}
X_{3}=X_{2} Y_{1}^{2} Z_{2}-X_{1} Y_{2}^{2} Z_{1} & X_{3}=Y_{1}\left(X_{1}^{3}-Z_{1}^{3}\right) \\
Y_{3}=X_{1}^{2} Y_{2} Z_{2}-X_{2}^{2} Y_{1} Z_{1} & Y_{3}=X_{1}\left(Z_{1}^{3}-Y_{1}^{3}\right) \\
Z_{3}=X_{2} Y_{2} Z_{1}^{2}-X_{1} Y_{1} Z_{2}^{2} & Z_{3}=Z_{1}\left(Y_{1}^{3}-X_{1}^{3}\right)
\end{array}
$$

- Curves were first suggested for speed
- Joye and Quisquater show

$$
[2]\left(X_{1}: Y_{1}: Z_{1}\right)=\left(Z_{1}: X_{1}: Y_{1}\right) \oplus\left(Y_{1}: Z_{1}: X_{1}\right)
$$

- Unified formulas need 12M.
- Doubling is done by an addition, but not automatically only unified, not strongly unified.

Jacobi intersections

- Chudnovsky and Chudnovsky 1986; Liardet and Smart CHES 2001
- Elliptic curve given as intersection of two quadratics

$$
s^{2}+c^{2}=1 \text { and } a s^{2}+d^{2}=1 .
$$

- Points $(S: C: D: Z)$ with $(s, c, d)=(S / Z, C / Z, D / Z)$.
- Neutral element is $(0,1,1)$.

$$
\begin{aligned}
S_{3} & =\left(Z_{1} C_{2}+D_{1} S_{2}\right)\left(C_{1} Z_{2}+S_{1} D_{2}\right)-Z_{1} C_{2} C_{1} Z_{2}-D_{1} S_{2} S_{1} D_{2} \\
C_{3} & =Z_{1} C_{2} C_{1} Z_{2}-D_{1} S_{2} S_{1} D_{2} \\
D_{3} & =Z_{1} D_{1} Z_{2} D_{2}-a S_{1} C_{1} S_{2} C_{2} \\
Z_{3} & =Z_{1} C_{2}^{2}+D_{1} S_{2}^{2} .
\end{aligned}
$$

- Unified formulas need $13 \mathrm{M}+2 \mathrm{~S}+1 \mathrm{D}$.

Jacobi quartics

- Billet and Joye AAECC 2003

$$
\begin{aligned}
& E_{J}: Y^{2}=\epsilon X^{4}-2 \delta X^{2} Z^{2}+Z^{4} \\
X_{3}= & X_{1} Z_{1} Y_{2}+Y_{1} X_{2} Z_{2} \\
Z_{3}= & \left(Z_{1} Z_{2}\right)^{2}-\epsilon\left(X_{1} X_{2}\right)^{2} \\
Y_{3}= & \left(Z_{3}+2 \epsilon\left(X_{1} X_{2}\right)^{2}\right)\left(Y_{1} Y_{2}-2 \delta X_{1} X_{2} Z_{1} Z_{2}\right)+ \\
& 2 \epsilon X_{1} X_{2} Z_{1} Z_{2}\left(X_{1}^{2} Z_{2}^{2}+Z_{1}^{2} X_{2}^{2}\right) .
\end{aligned}
$$

- Unified formulas need $10 \mathrm{M}+3 \mathrm{~S}+\mathrm{D}+2 \mathrm{E}$
- Can have ϵ or δ small
- Needs point of order 2; for $\epsilon=1$ the group order is divisible by 4.
- Some recent speed ups due to Duquesne, to Hisil/Carter/Dawson and to Feng/Wu.

Extended Jacobi quartics

- Duquesne 2007

$$
E_{J}: Y^{2}=\epsilon X^{4}-2 \delta X^{2} Z^{2}+Z^{4}
$$

with coordinates $\left(X_{1}, Y_{1}, Z_{1}, X_{1}^{2}, 2 X_{1} Z_{1}, Z_{1}^{2}, X_{1}^{2}+Z_{1}^{2}\right)$

$$
\begin{aligned}
X_{3} & =!X @ \# Y \$ \% \\
Y_{3} & =\text { Why ask Y? } \\
Z_{3} & =3.1415926535897932384626433832795028841971
\end{aligned}
$$

- Some recent speed ups due to Hisil/Carter/Dawson.
- Faster addition...

There is help!

Explicit-Formulas Database www.hyperelliptic.org/EFD

Doubling speed overview

System	Cost of doubling (as of today)
Projective	$5 \mathrm{M}+6 \mathrm{~S}+1 \mathrm{D} ;$ EFD
Projective if $a_{4}=-3$	$7 \mathrm{M}+3 \mathrm{~S}$; EFD
Hessian	$7 \mathrm{M}+1 \mathrm{~S}$; see Hisil/Carter/Dawson '07
Doche/lcart/Kohel-3	$2 \mathrm{M}+7 \mathrm{~S}+2 \mathrm{D} ;$ see B./Birkner/L./Peters
Jacobian	$1 \mathrm{M}+8 \mathrm{~S}+1 \mathrm{D}$; EFD
Jacobian if $a_{4}=-3$	$3 \mathrm{M}+5 \mathrm{~S}$; see DJB '01
Jacobi quartic	$2 \mathrm{M}+6 \mathrm{~S}+1 \mathrm{D}$; see EFD
Ext. Jacobi quartic	$3 \mathrm{M}+4 \mathrm{~S}$; see Hisil/Carter/Dawson '07
Jacobi intersection	$3 \mathrm{M}+4 \mathrm{~S}$; EFD
Edwards	$3 \mathrm{M}+4 \mathrm{~S}$;
Doche/lcart/Kohel-2	$2 \mathrm{M}+5 \mathrm{~S}+2 \mathrm{D} ;$ EFD

- Edwards fastest for general curves, no D.

Addition speed overview

System	Cost of addition
Doche/Icart/Kohel-2	12M+5S+1D; EFD
Doche/lcart/Kohel-3	11M+6S+1D; see B./Birkner/L./Peters '07
Jacobian	11M+5S; EFD
Jacobi intersection	13M+2S+1D; see Liardet/Smart '01
Projective	12M+2S; see Chudnovsky/Chudnovsky '86
Jacobi quartic	10M+3S+1D; see Billet/Joye '03
Hessian	12M; see Sylvester (1800's)
Edwards	10M+1S+1D
Ext. Jacobi quartic	8M+3S+1D; EFD (based on Duquesne)
OOPS	

Inverted Edwards coordinates

Bernstein/Lange, to appear at AAECC 2007

- Using the representation $\left(X_{1}: Y_{1}: Z_{1}\right)$ for the affine point ($\left.Z_{1} / X_{1}, Z_{1} / Y_{1}\right)\left(X_{1} Y_{1} Z_{1} \neq 0\right)$ gives operation counts:
- Doubling takes $3 \mathrm{M}+4 \mathrm{~S}+1 \mathrm{D}$.
- Addition takes $9 \mathrm{M}+1 \mathrm{~S}+1 \mathrm{D}$.
- This saves 1 M for each addition compared to standard Edwards coordinates.
- Doubling slower by 1D; so choose small d.
- Extended Jacobi quartics need $8 \mathrm{M}+3 \mathrm{~S}+1 \mathrm{D}$ to add.
- Inverted Edwards coordinates are strongly unified system - but not complete.

Addition speed overview

System	Cost of addition
Doche/lcart/Kohel-2	$12 \mathrm{M}+5 \mathrm{~S}+1 \mathrm{D} ;$ EFD
Doche/lcart/Kohel-3	$11 \mathrm{M}+6 \mathrm{~S}+1 \mathrm{D} ;$ see B./Birkner/L./Peters '07
Jacobian	$11 \mathrm{M}+5 \mathrm{~S}$; EFD
Jacobi intersection	$13 \mathrm{M}+2 \mathrm{~S}+1 \mathrm{D} ;$ see Liardet/Smart '01
Projective	$12 \mathrm{M}+2 \mathrm{~S}$; see Chudnovsky/Chudnovsky '86
Jacobi quartic	$10 \mathrm{M}+3 \mathrm{~S}+1 \mathrm{D}$; see Billet/Joye '03
Hessian	12 M ; see Sylvester (1800's)
Edwards	$10 \mathrm{M}+1 \mathrm{~S}+1 \mathrm{D}$
Ext. Jacobi quartic	$8 \mathrm{M}+3 \mathrm{~S}+1 \mathrm{D} ;$ EFD (based on Duquesne)
Inverted Edwards	$9 \mathrm{M}+1 \mathrm{~S}+1 \mathrm{D} ;$ see B./L. '07
- New speed leader: inverted Edwards.	

Influence of triplings, Indocrypt’07

Influence of inversions, Fq8 2007

D. J. Bernstein \& T. Lange http://www.hyperelliptic.org/tanja/newelliptic/ -p. 25

Edwards everywhere

- Edwards for SSCA (fastest unified addition).

Edwards everywhere

- Edwards for SSCA (fastest unified addition).
- Edwards for multi-scalar multiplication.

Edwards everywhere

- Edwards for SSCA (fastest unified addition).
- Edwards for multi-scalar multiplication.
- Twisted Edwards curves: Edwards for more curves, higher speeds.

Edwards everywhere

- Edwards for SSCA (fastest unified addition).
- Edwards for multi-scalar multiplication.
- Twisted Edwards curves: Edwards for more curves, higher speeds.
- First implementation results: Edwards for ECM, faster than Montgomery!

Edwards everywhere

- Edwards for SSCA (fastest unified addition).
- Edwards for multi-scalar multiplication.
- Twisted Edwards curves: Edwards for more curves, higher speeds.
- First implementation results: Edwards for ECM, faster than Montgomery!
- In progress: Edwards for ECPP.

Edwards everywhere

- Edwards for SSCA (fastest unified addition).
- Edwards for multi-scalar multiplication.
- Twisted Edwards curves: Edwards for more curves, higher speeds.
- First implementation results: Edwards for ECM, faster than Montgomery!
- In progress: Edwards for ECPP.
- In progress: Edwards for president.

Edwards everywhere

- Edwards for SSCA (fastest unified addition).
- Edwards for multi-scalar multiplication.
- Twisted Edwards curves: Edwards for more curves, higher speeds.
- First implementation results: Edwards for ECM, faster than Montgomery!
- In progress: Edwards for ECPP.
- In progress: Edwards for characteristic 2.

Edwards everywhere

- Edwards for SSCA (fastest unified addition).
- Edwards for multi-scalar multiplication.
- Twisted Edwards curves: Edwards for more curves, higher speeds.
- First implementation results: Edwards for ECM, faster than Montgomery!
- In progress: Edwards for ECPP.
- In progress: Edwards for characteristic 2.
- In progress: Edwards for genus 2.

Thank you for your attention!

Details on the blow-up

- Points with $v\left(u+u_{4}\right)=0$ on Weierstrass curve map to points at infinity on desingularization of Edwards curve.
- Reminder: $d=1-\left(4 u_{4}^{3} / v_{4}^{2}\right)$.
- $u=-u_{4}$ is u-coordinate of a point iff

$$
\begin{aligned}
& \left(-u_{4}\right)^{3}+\left(v_{4}^{2} / u_{4}^{2}-2 u_{4}\right)\left(u_{4}\right)^{2}+u_{4}^{2}\left(u_{5}\right) \\
= & v_{4}^{2}-4 u_{4}^{3}=v_{4}^{2} d
\end{aligned}
$$

is a square, i. e., iff d is a square.

- $v=0$ corresponds to $(0,0)$ which maps to $(0,-1)$ on Edwards curve and to solutions of $u^{2}+\left(v_{4}^{2} / u_{4}^{2}-2 u_{4}\right) u+u_{4}^{2}=0$. Discriminant is

$$
\left(v_{4}^{2} / u_{4}^{2}-2 u_{4}\right)^{2}-4 u_{4}^{2}=v_{4}^{4} d,
$$

i. e., points defined over k iff d is a square.

References

- Harold M. Edwards, "A normal form for elliptic curves" Bulletin of the AMS, 44, 393-422, 2007.
- B./Birkner/L./Peters, "Optimizing double-base elliptic-curve single-scalar multiplication", Indocrypt 2007, pp. 167-182. Online.
- B./L. "Analysis and optimization of elliptic-curve single-scalar multiplication" Proceedings of Fq8, to appear. Online.
- B./L. "Inverted Edwards coordinates", AAECC 2007, pp. 20-27. Online.
- B./Birkner/L./Peters, "Twisted Edwards Curves", submitted.
- B./Birkner/L./Peters, "ECM using Edwards curves", submitted.

