# Edwards Coordinates for Elliptic Curves, part 1 

Tanja Lange<br>Technische Universiteit Eindhoven<br>tanja@hyperelliptic.org<br>joint work with Daniel J. Bernstein

10.11.2007

## Do you know how to add on a circle?

Let $k$ be a field with $2 \neq 0$.

$$
\left\{(x, y) \in k \times k \mid x^{2}+y^{2}=1\right\}
$$

## Do you know how to add on a circle?

Let $k$ be a field with $2 \neq 0$.

$$
\left\{(x, y) \in k \times k \mid x^{2}+y^{2}=1\right\}
$$

is a commutative group with
$\left(x_{1}, y_{1}\right) \oplus\left(x_{2}, y_{2}\right)=\left(x_{3}, y_{3}\right)$, where

$$
x_{3}=x_{1} y_{2}+y_{1} x_{2} \text { and } y_{3}=y_{1} y_{2}-x_{1} x_{2} .
$$

- Polar coordinates and trigonometric identities readily show that the result is on the curve.
- Associativity of the addition boils down to associativity of addition of angles.
- Look, an addition law!
- But it's not elliptic; index calculus work efficiently.


## Now add on an elliptic curve

## An elliptic curve:

## Now add on an elliptic curve

An elliptic curve:

$$
x^{2}+y^{2}=a^{2}\left(1+x^{2} y^{2}\right)
$$

## Now add on an elliptic curve

$$
x^{2}+y^{2}=a^{2}\left(1+x^{2} y^{2}\right)
$$

elliptic?
use $z=y\left(1-a^{2} x^{2}\right) / a$ to obtain

$$
z^{2}=x^{4}-\left(a^{2}+1 / a^{2}\right) x^{2}+1 .
$$

## Now add on an elliptic curve

Let $k$ be a field with $2 \neq 0$ and let $a \in k$ with $a^{5} \neq a$.
There is an - almost everywhere defined - operation on the set

$$
\left\{(x, y) \in k \times k \mid x^{2}+y^{2}=a^{2}\left(1+x^{2} y^{2}\right)\right\}
$$

as

$$
\left(x_{1}, y_{1}\right) \oplus\left(x_{2}, y_{2}\right)=\left(x_{3}, y_{3}\right)
$$

defined by the Edwards addition law

$$
x_{3}=\frac{x_{1} y_{2}+y_{1} x_{2}}{a\left(1+x_{1} x_{2} y_{1} y_{2}\right)} \text { and } y_{3}=\frac{y_{1} y_{2}-x_{1} x_{2}}{a\left(1-x_{1} x_{2} y_{1} y_{2}\right)}
$$

Numerators like in addition on circle!
Where do these curves come from?

## Long, long ago ...

LEONHARDI EULERI OPERA OMNIA
sub auspicis societatis scientiarum naturalium helveticae
FERDINAND RUDIO ADOLF KRAZER PAUL STÄCKEL
SERIES I opera mathematica . volumen xx

## LEONHARDI EULERI

## COMMENTATIONES ANALYTICAE

AD THEORIAM INTEGRALIUM ELLIPTICORUM PERTINENTES

EDIDIT
ADOLF KRAZER

VOLUMEN PRIUS

雨

LIPSIAE ET BEROLINI
TYPIS ET IN AEDIBUS B. G.TEUBNERI

Tanja Lange http://www.hyperelliptic.org/tanja/newelliptic/ -p. 4

## Euler 1761

## Observationes de Comparatione Arcuum Curvarum Irrectificabilium"

## I. DE ELLIPSI

1. Sit quadrans ellipticus $A B C$ (Fig. 1), cuius centrum in $C$, eiusque semiaxes ponantur $C A=1$ et $C B=c$; sumta ergo abscissa quacunque $C P=x$ erit applicata ei respondens $P M=y=c ل(1-x x)$; cuius differentiale cum sit $d y=-\frac{c x d x}{\sqrt{(1-x x)}}$, erit


Fig. 1. abscissae $C P=x$ arcus ellipticus respondens

$$
B M=\int \frac{d x \sqrt{ }(1-(1-c c) x x)}{\sqrt{ }(1-x x)}
$$

Ponatur brevitatis gratia $1-c c=n$, ut sit arcus

$$
B M=\int d x \sqrt{\frac{1-n x x}{1-x x}}
$$

$$
\frac{1}{y^{2}}=\frac{1-n x^{2}}{1-x^{2}} \Leftrightarrow x^{2}+y^{2}=1+n x^{2} y^{2}
$$

## Euler 1761

## COROLLARIUM 3

43. Inventio ergo cordarum arcuum quorumvis multiplorum una cum cordis complementi ita se habebit:

Corda arcus

$$
\begin{aligned}
& \text { simpli }=a \\
& \text { dupli }=b=\frac{2 a A}{1-a a A A} \\
& \text { tripli }=c=\frac{a B+b A}{1-a b A B} \\
& \text { quadrupli }=d=\frac{a C+c A}{1-a c A C} \\
& \text { quintupli }=e=\frac{a D+d A}{1-a d A D} \\
& \text { etc. }
\end{aligned}
$$

Corda complementi

$$
\text { simpli }=A
$$

$$
\mathrm{dupli}=\frac{A A-a a}{1+a a A A}=B
$$

$$
\text { tripli }=\frac{A B-a b}{1+a b A B}=C
$$

$$
\text { quadrupli }=\frac{A C-a c}{1+a c A C}=D
$$

$$
\text { quintupli }=\frac{A D-a d}{1+a d A D}=E
$$

etc.

Euler gives doubling and (special) addition for $(a, A)$ on $a^{2}+A^{2}=1-a^{2} A^{2}$.

## Gauss, posthumously

ELEGANTIORES INTEGRALIS $\int \frac{\mathrm{d} x}{\sqrt{\left(1-x^{2}\right)}}$ PROPRIETATES.


$$
\sin \operatorname{lemn}(-a)=-\sin \text { lemn } a, \quad \cos \operatorname{lemn}(-a)=\cos \text { lemn } a
$$

$$
\sin \operatorname{lemn} k \omega=0 \quad \sin \operatorname{lemn}\left(k+\frac{1}{8}\right) \omega= \pm 1
$$

$$
\cos \operatorname{lemn} k \omega= \pm 1 \quad \cos \operatorname{lemn}\left(k+\frac{1}{2}\right) \omega=0
$$

Gauss gives general addition for arbitrary points on

$$
1=s^{2}+c^{2}+s^{2} c^{2} .
$$

$$
\begin{aligned}
& \text { [2.] } \\
& 1=s s+c c+s s c c \text { sive } \quad 2=(1+s s)(1+c c)=\left(\frac{1}{s s}-1\right)\left(\frac{1}{c c}-\right. \\
& s=\sqrt{ } \frac{1-c c}{1+c c}, \quad c=\sqrt{ } \frac{1-s s}{1+s s} \\
& \sin \operatorname{lemn}(a \pm b)=\frac{s e^{\prime} \pm t^{\prime} c^{\prime}}{1 \mp \operatorname{ses}^{\prime} c^{\prime}} \\
& \cos \operatorname{lemn}(a \pm b)=\frac{c c^{\prime} \mp s s^{\prime}}{1 \pm \sec c^{\prime}}
\end{aligned}
$$

## Ex uno plura

- Harold M. Edwards, Bulletin of the AMS, 44, 393-422, 2007 $x^{2}+y^{2}=a^{2}\left(1+x^{2} y^{2}\right), a^{5} \neq a$ describes an elliptic curve.
- Every elliptic curve can be written in this form - over some extension field.
- Ur-elliptic curve

$$
x^{2}+y^{2}=1-x^{2} y^{2}
$$

needs $\sqrt{-1} \in k$ transform.

- Edwards gives above-mentioned
 addition law for this generalized form, shows equivalence with Weierstrass form, proves addition law, gives theta parameterization...


## Edwards curves over finite fields

- We do not necessarily have $\sqrt{-1} \in k$ ! The example curve $x^{2}+y^{2}=1-x^{2} y^{2}$ from Euler and Gauss is not always an Edwards curve.
- Solution: change the definition of Edwards curves.
- Introduce further parameter $d$ to cover more curves

$$
x^{2}+y^{2}=c^{2}\left(1+d x^{2} y^{2}\right), c, d \neq 0, d c^{4} \neq 1 .
$$

- At least one of $c, d$ small: if $c^{4} d=\bar{c}^{4} \bar{d}$ then $x^{2}+y^{2}=c^{2}\left(1+d x^{2} y^{2}\right)$ and $x^{2}+y^{2}=\bar{c}^{2}\left(1+\bar{d} x^{2} y^{2}\right)$ isomorphic.
We can always choose $c=1$ (and do so in the sequel).
- $\bar{c}^{4} \bar{d}=\left(c^{4} d\right)^{-1}$ gives quadratic twist (might be isomorphic).


## Addition on Edwards curves

$$
\left(x_{1}, y_{1}\right) \oplus\left(x_{2}, y_{2}\right)=\left(\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}}, \frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}\right)
$$

- Neutral element is


## Addition on Edwards curves

$$
\left(x_{1}, y_{1}\right) \oplus\left(x_{2}, y_{2}\right)=\left(\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}}, \frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}\right)
$$

- Neutral element is $(0,1)$, this is an affine point!


## Addition on Edwards curves

$$
\left(x_{1}, y_{1}\right) \oplus\left(x_{2}, y_{2}\right)=\left(\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}}, \frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}\right)
$$

- Neutral element is $(0,1)$, this is an affine point!
- $-\left(x_{1}, y_{1}\right)=$


## Addition on Edwards curves

$$
\left(x_{1}, y_{1}\right) \oplus\left(x_{2}, y_{2}\right)=\left(\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}}, \frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}\right)
$$

- Neutral element is $(0,1)$, this is an affine point!
- $-\left(x_{1}, y_{1}\right)=\left(-x_{1}, y_{1}\right)$.


## Addition on Edwards curves

$$
\left(x_{1}, y_{1}\right) \oplus\left(x_{2}, y_{2}\right)=\left(\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}}, \frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}\right)
$$

- Neutral element is $(0,1)$, this is an affine point!
- $-\left(x_{1}, y_{1}\right)=\left(-x_{1}, y_{1}\right)$.
- $(0,-1)$ has order $2,( \pm 1,0)$ have order 4 , so not every elliptic curve can be transformed to an Edwards curve over $k$ - but every curve with a point of order 4 can!
- Our Asiacrypt 2007 paper makes explicit the birational equivalence between a curve in Edwards form and in Weierstrass form. See also our newelliptic page.


## Nice features of the addition law

$$
\left\lceil\text { - } P \oplus Q=\left(\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}}, \frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}\right)\right. \text {. }
$$

## Nice features of the addition law

$$
\begin{aligned}
& \text { - } P \oplus Q=\left(\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}}, \frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}\right) . \\
& \quad \text { - }[2] P=\left(\frac{x_{1} y_{1}+y_{1} x_{1}}{1+d x_{1} x_{1} y_{1} y_{1}}, \frac{y_{1} y_{1}-x_{1} x_{1}}{1-d x_{1} x_{1} y_{1} y_{1}}\right) .
\end{aligned}
$$

## Nice features of the addition law

- $P \oplus Q=\left(\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}}, \frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}\right)$.
- $[2] P=\left(\frac{x_{1} y_{1}+y_{1} x_{1}}{1+d x_{1} x_{1} y_{1} y_{1}}, \frac{y_{1} y_{1}-x_{1} x_{1}}{1-d x_{1} x_{1} y_{1} y_{1}}\right)$.
- Addition law also works for doubling (compare that to curves in Weierstrass form!)
- Can show: denominator never 0 for non-square $d$.


## Nice features of the addition law

- $P \oplus Q=\left(\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}}, \frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}\right)$.
- $[2] P=\left(\frac{x_{1} y_{1}+y_{1} x_{1}}{1+d x_{1} x_{1} y_{1} y_{1}}, \frac{y_{1} y_{1}-x_{1} x_{1}}{1-d x_{1} x_{1} y_{1} y_{1}}\right)$.
- Addition law also works for doubling (compare that to curves in Weierstrass form!)
- Can show: denominator never 0 for non-square $d$.

Explicit formulas for addition/doubling:

$$
\begin{aligned}
A & =Z_{1} \cdot Z_{2} ; B=A^{2} ; C=X_{1} \cdot X_{2} ; D=Y_{1} \cdot Y_{2} ; \\
E & =\left(X_{1}+Y_{1}\right) \cdot\left(X_{2}+Y_{2}\right)-C-D ; F=d \cdot C \cdot D ; \\
X_{P \oplus Q} & =A \cdot E \cdot(B-F) ; Y_{P \oplus Q}=A \cdot(D-C) \cdot(B+F) ; \\
Z_{P \oplus Q} & =(B-F) \cdot(B+F) .
\end{aligned}
$$

## Nice features of the addition law

- $P \oplus Q=\left(\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}}, \frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}\right)$.
- $[2] P=\left(\frac{x_{1} y_{1}+y_{1} x_{1}}{1+d x_{1} x_{1} y_{1} y_{1}}, \frac{y_{1} y_{1}-x_{1} x_{1}}{1-d x_{1} x_{1} y_{1} y_{1}}\right)$.
- Addition law also works for doubling (compare that to curves in Weierstrass form!)
- Can show: denominator never 0 for non-square $d$.

Explicit formulas for addition/doubling:

$$
\begin{aligned}
A & =Z_{1} \cdot Z_{2} ; B=A^{2} ; C=X_{1} \cdot X_{2} ; D=Y_{1} \cdot Y_{2} ; \\
E & =\left(X_{1}+Y_{1}\right) \cdot\left(X_{2}+Y_{2}\right)-C-D ; F=d \cdot C \cdot D ; \\
X_{P \oplus Q} & =A \cdot E \cdot(B-F) ; Y_{P \oplus Q}=A \cdot(D-C) \cdot(B+F) ; \\
Z_{P \oplus Q} & =(B-F) \cdot(B+F) .
\end{aligned}
$$

Needs $10 M+1 S+1 D+7 A$.

## Strongly unified group operations

- Addition formulas work also for doubling.
- Addition in Weierstrass form $y^{2}=x^{3}+a_{4} x+a_{6}$, involves computation

$$
\lambda= \begin{cases}\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right) & \text { if } x_{1} \neq x_{2}, \\ \left(3 x_{1}^{2}+a_{4}\right) /\left(2 y_{1}\right) & \text { else. }\end{cases}
$$

division by zero if first form is accidentally used for doubling.

- Strongly unified addition laws remove some checks from the code.
- Help against simple side-channel attacks. Attacker sees uniform sequence of identical group operations, no information on secret scalar given (assuming the field operations are handled appropriately).


## Unified Projective coordinates

- Brier, Joye 2002 Idea: unify how the slope is computed.
- improved in Brier, Déchène, and Joye 2004
$\Omega$

$$
\begin{aligned}
\lambda & =\frac{\left(x_{1}+x_{2}\right)^{2}-x_{1} x_{2}+a_{4}+y_{1}-y_{2}}{y_{1}+y_{2}+x_{1}-x_{2}} \\
& = \begin{cases}\frac{y_{1}-y_{2}}{x_{1}-x_{2}} & \left(x_{1}, y_{1}\right) \neq \pm\left(x_{2}, y_{2}\right) \\
\frac{3 x_{1}^{2}+a_{4}}{2 y_{1}} & \left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right)\end{cases}
\end{aligned}
$$

Multiply numerator \& denominator by $x_{1}-x_{2}$ to see this.

- Proposed formulae can be generalized to projective coordinates.
- Some special cases may occur, but with very low probability, e.g. $x_{2}=y_{1}+y_{2}+x_{1}$. Alternative equation for this case.


## Jacobi intersections

- Chudnovsky and Chudnovsky 1986; Liardet and Smart CHES 2001
- Elliptic curve given as intersection of two quadratics

$$
s^{2}+c^{2}=1 \text { and } a s^{2}+d^{2}=1
$$

- Points $(S: C: D: Z)$ with $(s, c, d)=(S / Z, C / Z, D / Z)$.
- Neutral element is $(0,1,1)$.
$S_{3}=\left(Z_{1} C_{2}+D_{1} S_{2}\right)\left(C_{1} Z_{2}+S_{1} D_{2}\right)-Z_{1} C_{2} C_{1} Z_{2}-D_{1} S_{2} S_{1} D_{2}$
$C_{3}=Z_{1} C_{2} C_{1} Z_{2}-D_{1} S_{2} S_{1} D_{2}$
$D_{3}=Z_{1} D_{1} Z_{2} D_{2}-a S_{1} C_{1} S_{2} C_{2}$
$Z_{3}=Z_{1} C_{2}^{2}+D_{1} S_{2}^{2}$.
- Unified formulas need $13 M+2 S+1 D$.


## Jacobi quartics

- Billet and Joye AAECC 2003

$$
\begin{aligned}
& E_{J}: Y^{2}=\epsilon X^{4}-2 \delta X^{2} Z^{2}+Z^{4} \\
& X_{3}= X_{1} Z_{1} Y_{2}+Y_{1} X_{2} Z_{2} \\
& Z_{3}=\left(Z_{1} Z_{2}\right)^{2}-\epsilon\left(X_{1} X_{2}\right)^{2} \\
& Y_{3}=\left(Z_{3}+2 \epsilon\left(X_{1} X_{2}\right)^{2}\right)\left(Y_{1} Y_{2}-2 \delta X_{1} X_{2} Z_{1} Z_{2}\right)+ \\
& 2 \epsilon X_{1} X_{2} Z_{1} Z_{2}\left(X_{1}^{2} Z_{2}^{2}+Z_{1}^{2} X_{2}^{2}\right)
\end{aligned}
$$

- Unified formulas need $10 \mathrm{M}+3 \mathrm{~S}+\mathrm{D}+2 \mathrm{E}$
- Can have $\epsilon$ or $\delta$ small
- Needs point of order 2; for $\epsilon=1$ the group order is divisible by 4.
- Some recent speed ups due to Duquesne and to Hisil, Carter, and Dawson.


## Hessian curves

$$
E_{H}: X^{3}+Y^{3}+Z^{3}=c X Y Z
$$

Addition: $P \neq \pm Q$

$$
X_{3}=X_{2} Y_{1}^{2} Z_{2}-X_{1} Y_{2}^{2} Z_{1} \quad X_{3}=Y_{1}\left(X_{1}^{3}-Z_{1}^{3}\right)
$$

$$
Y_{3}=X_{1}^{2} Y_{2} Z_{2}-X_{2}^{2} Y_{1} Z_{1} \quad Y_{3}=X_{1}\left(Z_{1}^{3}-Y_{1}^{3}\right)
$$

$$
Z_{3}=X_{2} Y_{2} Z_{1}^{2}-X_{1} Y_{1} Z_{2}^{2} \quad Z_{3}=Z_{1}\left(Y_{1}^{3}-X_{1}^{3}\right)
$$

- Curves were first suggested for speed
- Joye and Quisquater show

$$
[2]\left(X_{1}: Y_{1}: Z_{1}\right)=\left(Z_{1}: X_{1}: Y_{1}\right) \oplus\left(Y_{1}: Z_{1}: X_{1}\right)
$$

- Unified formulas need 12M.
- Doubling is done by an addition, but not automatically only unified, not strongly unified.


## Unified addition law

- Unified formulas introduced as countermeasure against side-channel attacks - but useful in general.
- Strongly unified addition laws indeed remove the check for $P \neq Q$ before addition.
- Some systems allow to omit the check $P \neq-Q$ before addition.
- Most systems still have exceptional cases.
- No surprise:
"The smallest cardinality of a complete system of addition laws on $E$ equals two." (Theorem 1 in Wieb Bosma, Hendrik W. Lenstra, Jr., J. Number Theory 53, 229-240, 1995)
- Bosma/Lenstra give such system; similar to unified projective coordinates.


## Complete addition law

- If $d$ is not a square then Edwards addition law is complete: For $x_{i}^{2}+y_{i}^{2}=1+d x_{i}^{2} y_{i}^{2}, i=1,2$, always $d x_{1} x_{2} y_{1} y_{2} \neq \pm 1$. Outline of proof:
If $\left(d x_{1} x_{2} y_{1} y_{2}\right)^{2}=1$ then $\left(x_{1}+d x_{1} x_{2} y_{1} y_{2} y_{1}\right)^{2}=$ $d x_{1}^{2} y_{1}^{2}\left(x_{2}+y_{2}\right)^{2}$. Conclude that $d$ is a square. But $d \neq \square$.
- Edwards addition law allows omitting all checks
- Neutral element is affine point on curve.
- Addition works to add $P$ and $P$.
- Addition works to add $P$ and $-P$.
- Addition just works to add $P$ and any $Q$.
- Only complete addition law in the literature.
- Bosma/Lenstra strikes over quadratic extension. "Pointless exceptional divisor!"


## Fastest unified addition-or-doubling formula

| System | Cost of unified addition-or-doubling |
| :--- | :--- |
| Projective | $11 \mathrm{M}+6 \mathrm{~S}+1 \mathrm{D}$; see Brier/Joye '03 |
| Projective if $a_{4}=-1$ | $13 \mathrm{M}+3 \mathrm{~S}$; see Brier/Joye '02 |
| Jacobi intersection | $13 \mathrm{M}+2 \mathrm{~S}+1 \mathrm{D}$; see Liardet/Smart '01 |
| Jacobi quartic $(\epsilon=1)$ | $10 \mathrm{M}+3 \mathrm{~S}+1 \mathrm{D}$; see Billet/Joye '01 |
| Hessian | 12 M ; see Joye/Quisquater '01 |
| Edwards | $10 \mathrm{M}+1 \mathrm{~S}+1 \mathrm{D}$ |

- Exactly the same formulae for doubling (no re-arrangement like in Hessian; no if-else)
- No exceptional cases if $d$ is not a square.
- Operation counts as in Asiacrypt'07 paper.
- See EFD hyperelliptic.org/EFD.


## What if we know that we double?

## How about non-unified doubling?

$$
\begin{aligned}
{[2] P } & =\left(\frac{x_{1} y_{1}+y_{1} x_{1}}{1+d x_{1} x_{1} y_{1} y_{1}}, \frac{y_{1} y_{1}-x_{1} x_{1}}{1-d x_{1} x_{1} y_{1} y_{1}}\right) \\
& =\left(\frac{2 x_{1} y_{1}}{1+d\left(x_{1} y_{1}\right)^{2}}, \frac{y_{1}^{2}-x_{1}^{2}}{1-d\left(x_{1} y_{1}\right)^{2}}\right)
\end{aligned}
$$

## How about non-unified doubling?

$$
\begin{aligned}
{[2] P } & =\left(\frac{x_{1} y_{1}+y_{1} x_{1}}{1+d x_{1} x_{1} y_{1} y_{1}}, \frac{y_{1} y_{1}-x_{1} x_{1}}{1-d x_{1} x_{1} y_{1} y_{1}}\right) \\
& =\left(\frac{2 x_{1} y_{1}}{1+d\left(x_{1} y_{1}\right)^{2}}, \frac{y_{1}^{2}-x_{1}^{2}}{1-d\left(x_{1} y_{1}\right)^{2}}\right)
\end{aligned}
$$

Use curve equation $x^{2}+y^{2}=1+d x^{2} y^{2}$.

## How about non-unified doubling?

$$
\begin{aligned}
{[2] P } & =\left(\frac{x_{1} y_{1}+y_{1} x_{1}}{1+d x_{1} x_{1} y_{1} y_{1}}, \frac{y_{1} y_{1}-x_{1} x_{1}}{1-d x_{1} x_{1} y_{1} y_{1}}\right) \\
& =\left(\frac{2 x_{1} y_{1}}{1+d\left(x_{1} y_{1}\right)^{2}}, \frac{y_{1}^{2}-x_{1}^{2}}{1-d\left(x_{1} y_{1}\right)^{2}}\right) \\
& =\left(\frac{2 x_{1} y_{1}}{x_{1}^{2}+y_{1}^{2}}, \frac{y_{1}^{2}-x_{1}^{2}}{2-\left(x_{1}^{2}+y_{1}^{2}\right)}\right)
\end{aligned}
$$

## How about non-unified doubling?

$$
\begin{aligned}
{[2] P } & =\left(\frac{x_{1} y_{1}+y_{1} x_{1}}{1+d x_{1} x_{1} y_{1} y_{1}}, \frac{y_{1} y_{1}-x_{1} x_{1}}{1-d x_{1} x_{1} y_{1} y_{1}}\right) \\
& =\left(\frac{2 x_{1} y_{1}}{1+d\left(x_{1} y_{1}\right)^{2}}, \frac{y_{1}^{2}-x_{1}^{2}}{1-d\left(x_{1} y_{1}\right)^{2}}\right) \\
& =\left(\frac{2 x_{1} y_{1}}{x_{1}^{2}+y_{1}^{2}}, \frac{y_{1}^{2}-x_{1}^{2}}{2-\left(x_{1}^{2}+y_{1}^{2}\right)}\right) \\
B & =\left(X_{1}+Y_{1}\right)^{2} ; C=X_{1}^{2} ; D=Y_{1}^{2} ; E=C+D ; H=\left(c \cdot Z_{1}\right)^{2} ; \\
J & =E-2 H ; X_{3}=c \cdot(B-E) \cdot J ; Y_{3}=c \cdot E \cdot(C-D) ; Z_{3}=E .
\end{aligned}
$$

Inversion-free version needs $3 M+4 S+6 A$.

## Very fast doubling formulae

| System | Cost of doubling |
| :---: | :---: |
| Projective | 5M+6S+1D; EFD |
| Projective if $a_{4}=-3$ | 7M+3S; EFD |
| Hessian | 7M+1S; see Hisil/Carter/Dawson '07 |
| Doche/lcart/Kohel-3 | 2M+7S+2D; see Doche/lcart/Kohel '06 |
| Jacobian | 1M+8S+1D; EFD |
| Jacobian if $a_{4}=-3$ | 3M+5S; see DJB '01 |
| Jacobi quartic | 2M+6S+2D; see Hisil/Carter/Dawson '07 |
| Jacobi intersection | 3M+4S; see Liardet/Smart '01 |
| Edwards | 3M+4S; |
| Doche/lcart/Kohel-2 | 2M+5S+2D; see Doche/lcart/Kohel '06 |
| - Edwards fastest for general curves, no D. |  |
| - Operation counts as in our Asiacrypt paper. |  |
| Tania Lange | erelliptic.org/tanja/newelliptic/ -p.22 |

## Fastest addition formulae

| System | Cost of addition |
| :--- | :--- |
| Doche/Icart/Kohel-2 | $12 \mathrm{M}+5 \mathrm{~S}+1 \mathrm{D} ;$ see Doche/Icart/Kohel '06 |
| Doche/lcart/Kohel-3 | $11 \mathrm{M}+6 \mathrm{~S}+1 \mathrm{D} ;$ see Doche/lcart/Kohel '06 |
| Jacobian | $11 \mathrm{M}+5 \mathrm{~S}$; EFD |
| Jacobi intersection | $13 \mathrm{M}+2 \mathrm{~S}+1 \mathrm{D}$; see Liardet/Smart '01 |
| Projective | $12 \mathrm{M}+2 \mathrm{~S} ;$ HECC |
| Jacobi quartic | $10 \mathrm{M}+3 \mathrm{~S}+1 \mathrm{D}$; see Billet/Joye '03 |
| Hessian | $12 \mathrm{M} ;$ see Joye/Quisquater '01 |
| Edwards | $10 \mathrm{M}+1 \mathrm{~S}+1 \mathrm{D}$ |

- EFD and full paper also contain costs for mixed addition (mADD) and re-additions (reADD).
- reADD: non-mixed ADD where one point has been added before and computations have been cached.


## Single-scalar multiplication using NAF

| System | $1 \mathrm{DBL}, 1 / 3 \mathrm{mADD}$ |
| :--- | :--- |
| Projective | $8 \mathrm{M}+6.67 \mathrm{~S}+1 \mathrm{D}$ |
| Projective if $a_{4}=-3$ | $10 \mathrm{M}+3.67 \mathrm{~S}$ |
| Hessian | $10.3 \mathrm{M}+1 \mathrm{~S}$ |
| Doche/lcart/Kohel-3 | $4.33 \mathrm{M}+8.33 \mathrm{~S}+2.33 \mathrm{D}$ |
| Jacobian | $3.33 \mathrm{M}+9.33 \mathrm{~S}+1 \mathrm{D}$ |
| Jacobian if $a_{4}=-3$ | $5.33 \mathrm{M}+6.33 \mathrm{~S}$ |
| Jacobi intersection | $6.67 \mathrm{M}+4.67 \mathrm{~S}+0.333 \mathrm{D}$ |
| Jacobi quartic | $4.67 \mathrm{M}+7 \mathrm{~S}+2.33 \mathrm{D}$ |
| Doche/lcart/Kohel-2 | $4.67 \mathrm{M}+6.33 \mathrm{~S}+2.33 \mathrm{D}$ |
| Edwards | $6 \mathrm{M}+4.33 \mathrm{~S}+0.333 \mathrm{D}$ |

For comparison: Montgomery arithmetic takes 5M+4S+1D per bit.

## Signed width-4 sliding windows

These counts include the precomputations.

| System | $0.98 \mathrm{DBL}, 0.17$ reADD, $0.025 \mathrm{mADD}, 0.0035 \mathrm{~A}$ |
| :--- | :--- |
| Projective | $7.17 \mathrm{M}+6.28 \mathrm{~S}+0.982 \mathrm{D}$ |
| Projective if $a_{4}=-3$ | $9.13 \mathrm{M}+3.34 \mathrm{~S}$ |
| Doche/lcart/Kohel-3 | $3.84 \mathrm{M}+7.99 \mathrm{~S}+2.16 \mathrm{D}$ |
| Hessian | $9.16 \mathrm{M}+0.982 \mathrm{~S}$ |
| Jacobian | $2.85 \mathrm{M}+8.64 \mathrm{~S}+0.982 \mathrm{D}$ |
| Jacobian if $a_{4}=-3$ | $4.82 \mathrm{M}+5.69 \mathrm{~S}$ |
| Doche/lcart/Kohel-2 | $4.2 \mathrm{M}+5.86 \mathrm{~S}+2.16 \mathrm{D}$ |
| Jacobi quartic | $3.69 \mathrm{M}+6.48 \mathrm{~S}+2.16 \mathrm{D}$ |
| Jacobi intersection | $5.09 \mathrm{M}+4.32 \mathrm{~S}+0.194 \mathrm{D}$ |
| Edwards | $4.86 \mathrm{M}+4.12 \mathrm{~S}+0.194 \mathrm{D}$ |
| Montgomery takes $5 \mathrm{M}+4 \mathrm{~S}+1 \mathrm{D}$ per bit. Edwards solidly faster! |  |

## Inverted Edwards coordinates

- Latest news (Bernstein/Lange, to appear at AAECC 2007): inverted Edwards coordinates are even faster strongly unified system - but not complete.
- Using the representation $\left(X_{1}: Y_{1}: Z_{1}\right)$ for the affine point ( $\left.Z_{1} / X_{1}, Z_{1} / Y_{1}\right)\left(X_{1} Y_{1} Z_{1} \neq 0\right)$ gives operation counts:
- Doubling takes $3 M+4 S+1 D$.
- Addition takes $9 M+1 S+1 D$.
- This saves $1 M$ for each addition compared to standard Edwards coordinates.
- New speed leader: inverted Edwards coordinates.


## Different coordinate systems

For coordinate systems we could find, the group law, operation counts (and improvements) for the explicit formulas, MAGMA-based proofs (sorry, not SAGE) of their correctness, lots of entertainment visit the

## Explicit Formulas Database

http://www.hyperelliptic.org/EFD

## Non-zero denominators

$$
\left(x_{1}, y_{1}\right) \oplus\left(x_{2}, y_{2}\right)=\left(\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}}, \frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}\right)
$$

What if denominators are 0 ?

## Non-zero denominators

$$
\left(x_{1}, y_{1}\right) \oplus\left(x_{2}, y_{2}\right)=\left(\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}}, \frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}\right)
$$

What if denominators are 0 ?
Answer: They are never 0 if $d$ is not a square in $k$.

## Non-zero denominators

$$
\left(x_{1}, y_{1}\right) \oplus\left(x_{2}, y_{2}\right)=\left(\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}}, \frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}\right)
$$

What if denominators are 0 ?
Answer: They are never 0 if $d$ is not a square in $k$.
Intuitive explanation:
The points $(1: 0: 0)$ and $(0: 1: 0)$ are singular. They correspond to four points on the desingularization of the curve; but those four points are defined over $k(\sqrt{d})$.

## Non-zero denominators

$$
\left(x_{1}, y_{1}\right) \oplus\left(x_{2}, y_{2}\right)=\left(\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}}, \frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}\right)
$$

What if denominators are 0 ?
Answer: They are never 0 if $d$ is not a square in $k$.
Explicit proof: Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ be on curve, i.e., if $x_{i}^{2}+y_{i}^{2}=1+d x_{i}^{2} y_{i}^{2}$. Write $\epsilon=d x_{1} x_{2} y_{1} y_{2}$ and suppose
$\epsilon \in\{-1,1\}$. Then $x_{1}, x_{2}, y_{1}, y_{2} \neq 0$ and
$d x_{1}^{2} y_{1}^{2}\left(x_{2}^{2}+y_{2}^{2}\right)=d x_{1}^{2} y_{1}^{2}+d^{2} x_{1}^{2} y_{1}^{2} x_{2}^{2} y_{2}^{2}$

## Non-zero denominators

$$
\left(x_{1}, y_{1}\right) \oplus\left(x_{2}, y_{2}\right)=\left(\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}}, \frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}\right)
$$

What if denominators are 0 ?
Answer: They are never 0 if $d$ is not a square in $k$.
Explicit proof: Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ be on curve, i.e., if $x_{i}^{2}+y_{i}^{2}=1+d x_{i}^{2} y_{i}^{2}$. Write $\epsilon=d x_{1} x_{2} y_{1} y_{2}$ and suppose
$\epsilon \in\{-1,1\}$. Then $x_{1}, x_{2}, y_{1}, y_{2} \neq 0$ and
$d x_{1}^{2} y_{1}^{2}\left(x_{2}^{2}+y_{2}^{2}\right)=d x_{1}^{2} y_{1}^{2}+d^{2} x_{1}^{2} y_{1}^{2} x_{2}^{2} y_{2}^{2}$
$=d x_{1}^{2} y_{1}^{2}+\epsilon^{2}$

## Non-zero denominators

$$
\left(x_{1}, y_{1}\right) \oplus\left(x_{2}, y_{2}\right)=\left(\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}}, \frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}\right)
$$

What if denominators are 0 ?
Answer: They are never 0 if $d$ is not a square in $k$.
Explicit proof: $\operatorname{Let}\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ be on curve, i.e., if $x_{i}^{2}+y_{i}^{2}=1+d x_{i}^{2} y_{i}^{2}$. Write $\epsilon=d x_{1} x_{2} y_{1} y_{2}$ and suppose
$\epsilon \in\{-1,1\}$. Then $x_{1}, x_{2}, y_{1}, y_{2} \neq 0$ and

$$
\begin{aligned}
d x_{1}^{2} y_{1}^{2}\left(x_{2}^{2}+y_{2}^{2}\right) & =d x_{1}^{2} y_{1}^{2}+d^{2} x_{1}^{2} y_{1}^{2} x_{2}^{2} y_{2}^{2} \\
& =d x_{1}^{2} y_{1}^{2}+\epsilon^{2} \\
& =1+d x_{1}^{2} y_{1}^{2}=x_{1}^{2}+y_{1}^{2}
\end{aligned}
$$

## Non-zero denominators

$$
\left(x_{1}, y_{1}\right) \oplus\left(x_{2}, y_{2}\right)=\left(\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}}, \frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}\right)
$$

What if denominators are 0 ?
Answer: They are never 0 if $d$ is not a square in $k$.
Explicit proof: Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ be on curve, i.e., if $x_{i}^{2}+y_{i}^{2}=1+d x_{i}^{2} y_{i}^{2}$. Write $\epsilon=d x_{1} x_{2} y_{1} y_{2}$ and suppose
$\epsilon \in\{-1,1\}$. Then $x_{1}, x_{2}, y_{1}, y_{2} \neq 0$ and
$d x_{1}^{2} y_{1}^{2}\left(x_{2}^{2}+y_{2}^{2}\right)=x_{1}^{2}+y_{1}^{2}$, so

## Non-zero denominators

$$
\left(x_{1}, y_{1}\right) \oplus\left(x_{2}, y_{2}\right)=\left(\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}}, \frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}\right)
$$

What if denominators are 0 ?
Answer: They are never 0 if $d$ is not a square in $k$.
Explicit proof: $\operatorname{Let}\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ be on curve, i.e., if $x_{i}^{2}+y_{i}^{2}=1+d x_{i}^{2} y_{i}^{2}$. Write $\epsilon=d x_{1} x_{2} y_{1} y_{2}$ and suppose
$\epsilon \in\{-1,1\}$. Then $x_{1}, x_{2}, y_{1}, y_{2} \neq 0$ and $d x_{1}^{2} y_{1}^{2}\left(x_{2}^{2}+y_{2}^{2}\right)=x_{1}^{2}+y_{1}^{2}$, so
$\left(x_{1}+\epsilon y_{1}\right)^{2}=x_{1}^{2}+y_{1}^{2}+2 \epsilon x_{1} y_{1}=d x_{1}^{2} y_{1}^{2}\left(x_{2}^{2}+y_{2}^{2}\right)+2 x_{1} y_{1} d x_{1} x_{2} y_{1} y_{2}$ $=d x_{1}^{2} y_{1}^{2}\left(x_{2}^{2}+2 x_{2} y_{2}+y_{2}^{2}\right)=d x_{1}^{2} y_{1}^{2}\left(x_{2}+y_{2}\right)^{2}$.

## Non-zero denominators

$$
\left(x_{1}, y_{1}\right) \oplus\left(x_{2}, y_{2}\right)=\left(\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}}, \frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}\right)
$$

What if denominators are 0 ?
Answer: They are never 0 if $d$ is not a square in $k$.
Explicit proof: $\operatorname{Let}\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ be on curve, i.e., if $x_{i}^{2}+y_{i}^{2}=1+d x_{i}^{2} y_{i}^{2}$. Write $\epsilon=d x_{1} x_{2} y_{1} y_{2}$ and suppose $\epsilon \in\{-1,1\}$. Then $x_{1}, x_{2}, y_{1}, y_{2} \neq 0$ and $d x_{1}^{2} y_{1}^{2}\left(x_{2}^{2}+y_{2}^{2}\right)=x_{1}^{2}+y_{1}^{2}$, so
$\left(x_{1}+\epsilon y_{1}\right)^{2}=x_{1}^{2}+y_{1}^{2}+2 \epsilon x_{1} y_{1}=d x_{1}^{2} y_{1}^{2}\left(x_{2}^{2}+y_{2}^{2}\right)+2 x_{1} y_{1} d x_{1} x_{2} y_{1} y_{2}$ $=d x_{1}^{2} y_{1}^{2}\left(x_{2}^{2}+2 x_{2} y_{2}+y_{2}^{2}\right)=d x_{1}^{2} y_{1}^{2}\left(x_{2}+y_{2}\right)^{2}$.
$x_{2}+y_{2} \neq 0 \Rightarrow d=\left(\left(x_{1}+\epsilon y_{1}\right) / x_{1} y_{1}\left(x_{2}+y_{2}\right)\right)^{2} \Rightarrow d=\square$
$x_{2}-y_{2} \neq 0 \Rightarrow d=\left(\left(x_{1}-\epsilon y_{1}\right) / x_{1} y_{1}\left(x_{2}-y_{2}\right)\right)^{2} \Rightarrow d=\square$ If $x_{2}+y_{2}=0$ and $x_{2}-y_{2}=0$ then $x_{2}=y_{2}=0$, contradiction.

