
Some thoughts on security

after ten years of qmail 1.0

D. J. Bernstein

University of Illinois at Chicago

The bug-of-the-month club

“Every few months CERT

announces Yet Another Security

Hole In Sendmail—something

that lets local or even remote

users take complete control of

the machine. I’m sure there are

many more holes waiting to be

discovered; Sendmail’s design

means that any minor bug in

41000 lines of code is a major

security risk. Other popular

mailers, such as Smail, and even

mailing-list managers, such as

Majordomo, seem just as bad.”

Source: qmail docs, 1995.12.

Solution: Write a secure MTA!

1995.12.07 version of qmail:

14903 words of code.

1995.12.21: 36062 words.

1996.01.21, 0.70: 74745 words.

1996.08.01, 0.90: 105044 words.

1997.02.20, 1.00: 117685 words.

1998.06.15, 1.03: 124540 words.

netqmail 1.05: 124911 words.

Total known bugs in the

qmail 1.0 releases: 4.

Total known security holes: 0.

Compare to Sendmail:

1996.03, 8.7.5: 178375 words.

1997.01, 8.8.5: 209955 words.

1998.05, 8.9.0: 232188 words.

Hundreds of known bugs;

many security holes.

Different user-visible features!

Compare to Sendmail:

1996.03, 8.7.5: 178375 words.

1997.01, 8.8.5: 209955 words.

1998.05, 8.9.0: 232188 words.

Hundreds of known bugs;

many security holes.

Different user-visible features!

qmail: POP support!

Compare to Sendmail:

1996.03, 8.7.5: 178375 words.

1997.01, 8.8.5: 209955 words.

1998.05, 8.9.0: 232188 words.

Hundreds of known bugs;

many security holes.

Different user-visible features!

qmail: POP support!

Sendmail: UUCP support!

Compare to Sendmail:

1996.03, 8.7.5: 178375 words.

1997.01, 8.8.5: 209955 words.

1998.05, 8.9.0: 232188 words.

Hundreds of known bugs;

many security holes.

Different user-visible features!

qmail: POP support!

Sendmail: UUCP support!

qmail: User-controlled lists!

Compare to Sendmail:

1996.03, 8.7.5: 178375 words.

1997.01, 8.8.5: 209955 words.

1998.05, 8.9.0: 232188 words.

Hundreds of known bugs;

many security holes.

Different user-visible features!

qmail: POP support!

Sendmail: UUCP support!

qmail: User-controlled lists!

Sendmail: Remote root exploits!

Compare to Sendmail:

1996.03, 8.7.5: 178375 words.

1997.01, 8.8.5: 209955 words.

1998.05, 8.9.0: 232188 words.

Hundreds of known bugs;

many security holes.

Different user-visible features!

qmail: POP support!

Sendmail: UUCP support!

qmail: User-controlled lists!

Sendmail: Remote root exploits!

But, in each MTA, most code

focuses on core MTA features.

Why the complexity gap?

1997.03: $500 reward for

first qmail security hole.

Still unclaimed.

Four subsequent qmail books:

2000 Blum; 2002 Sill;

2004 Levine; 2007 Wheeler.

More than 1 million of

the Internet’s SMTP servers

run qmail today.

2007.11: $500 ! $1000;

qmail placed into public domain.

Mission: Invulnerable

Most “security” mechanisms

are breakable, and are broken

as soon as they become popular.

The conventional wisdom:

“We’ll never build a

serious software system

without security holes.”

Why not? “It’s impossible.”

Or: “Maybe it’s possible,

but it’s much too expensive.”

The conventional wisdom:

“We’ll never build a tunnel

from England to France.”

Why not? “It’s impossible.”

Or: “Maybe it’s possible,

but it’s much too expensive.”

Engineer’s reaction:

How expensive is it?

How big a tunnel can we build?

How can we reduce the costs?

Eliminating bugs

Estimate bug rate of

software-engineering processes

by carefully reviewing code.

(Estimate is reliable enough;

“all bugs are shallow.”)

Meta-engineer processes

that have lower bug rates.

Note: progress is quantified.

Well-known example:

Drastically reduce bug rate

of typical engineering process

by adding coverage tests.

Example where qmail did well:

“Don’t parse.”

Typical user interfaces

copy “normal” inputs and

quote “abnormal” inputs.

Inherently bug-prone:

simpler copying is wrong

but passes “normal” tests.

Example (1996 Bernstein):

format-string danger in logger.

qmail’s internal file structures

and program-level interfaces

don’t have exceptional cases.

Simplest code is correct code.

Example where qmail did badly:

integer arithmetic.

In C et al., a + b usually means

exactly what it says,

but occasionally doesn’t.

To detect these occasions,

need to check for overflows.

Extra work for programmer.

To guarantee sane semantics,

extending integer range and

failing only if out of memory,

need to use large-integer library.

Extra work for programmer.

The closest that qmail

has come to a security hole

(Guninski): potential overflow

of an unchecked counter.

Fortunately, counter growth

was limited by memory

and thus by configuration,

but this was pure luck.

Anti-bug meta-engineering:

Use language where a + b

means exactly what it says.

“Large-integer libraries are slow!”

That’s a silly objection.

We need invulnerable systems,

and we need them today,

even if they are 10� slower

than our current systems.

Tomorrow we’ll make them faster.

Most CPU time is consumed

by a very small portion

of all the system’s code.

Most large-integer overheads

are removed by smart compilers.

Occasional exceptions can be

handled manually at low cost.

Paper has more examples of

anti-bug meta-engineering:

automatic array extensions;

partitioning variables

to make data flow visible;

automatic updates of

“summary” variables;

abstraction for testability.

“Okay, we can achieve

much smaller bug rates.

But in a large system

we’ll still have many bugs,

including many security holes!”

Eliminating code

Measure code rate of

software-engineering processes.

Meta-engineer processes

that spend less code

to get the same job done.

Note: progress is quantified.

This is another classic topic

of software-engineering research.

Combines reasonably well

with reducing bug rate.

Example where qmail did well:

reusing access-control code.

A story from twenty years ago:

My .forward ran a program

creating a new file in /tmp.

Surprise: the program was

sometimes run under another uid!

How Sendmail handles .forward:

Check whether user can read it.

(Prohibit symlinks to secrets!)

Extract delivery instructions.

Keep track (often via queue file)

of instructions and user.

Many disastrous bugs here.

OS already tracks users.

OS already checks readability.

Why not reuse this code?

How qmail delivers to a user:

Start qmail-local

under the right uid.

When qmail-local reads

the user’s delivery instructions,

the OS checks readability.

When qmail-local runs a

program, the OS assigns

the same uid to that program.

No extra code required!

Example where qmail did badly:

exception handling.

qmail has thousands

of conditional branches.

About half are simply

checking for temporary errors.

Easy to get wrong: e.g.,

“if ipme init() returned -1,

qmail-remote would continue”

(fixed in qmail 0.92).

Easily fixed by better language.

Paper has more examples of

small-code meta-engineering:

identifying common functions;

reusing network tools;

reusing the filesystem.

“Okay, we can

build a system with less code,

and write code with fewer bugs.

But in a large system

we’ll still have bugs,

including security holes!”

Eliminating trusted code

Can architect computer systems

to place most of the code

into untrusted prisons.

Definition of “untrusted”:

no matter what the code does,

no matter how badly it behaves,

no matter how many bugs it has,

it cannot violate the

user’s security requirements.

Measure trusted code volume,

and meta-engineer processes

that reduce this volume.

Note: progress is quantified.

Warning: “Minimizing privilege”

rarely eliminates trusted code.

Every security mechanism,

no matter how pointless,

says it’s “minimizing privilege.”

This is not a useful concept.

qmail did very badly here.

Almost all qmail code is trusted.

I spent considerable effort

“minimizing privilege”; stupid!

This distracted me from

eliminating trusted code.

Example: jpegtopnm,

converting JPEG into bitmap.

Easy to run jpegtopnm

in an “extreme sandbox”

that allows nothing but

(1) reading the JPEG file,

(2) writing the bitmap, and

(3) allocating limited memory.

Then jpegtopnm is untrusted.

Oops: cache-timing attacks etc.

violate memory “protection.”

Solution: restrict CPU access,

for example with an interpreter.

Warning: Trusted code

is much more than the kernel.

(Orange Book screwed up:

defined TCB much too narrowly,

confusing many people.

Lampson/Abadi/Burrows/Wobber

give correct definition.)

Web-browser code is trusted.

But replace web browser’s

built-in JPEG decompression

by a sandboxed jpegtopnm

and then that code is untrusted.

Can replace many components.

Analogy:

Give someone an account.

Allow him to upload a JPEG,

log in, run jpegtopnm,

show you the final bitmap.

The upload and jpegtopnm

can’t touch your files!

Same for every transformation

that handles single-source data.

This is a huge amount of code.

We can make all of it untrusted.

What code remains trusted?

What types of code handle

data from multiple sources?

One common pattern:

merge data into “summary”;

then transform the summary.

Example: merge mail messages

into a list of subjects.

Transformations of list

are then trusted.

Usually can delay the merge,

transforming messages separately.

Transform is then single-source.

Always have some trusted code.

Have to identify data sources

(local users, URLs, etc.);

copy this identification

from inputs to outputs;

cryptographically protect

network connections; etc.

But I see no reason that

trusted code has to be

a large fraction of all code

on the computer system.

The future

Architect systems so that

most functions are untrusted.

Minimize volume of code

providing those functions.

Minimize bug rate in that code.

My prediction: We will have

invulnerable software systems,

with no bugs in trusted code.

We will be confident that

these systems enforce the

user’s security requirements.

