The EFD thing

Daniel J. Bernstein
University of Illinois at Chicago
Technische Universiteit Eindhoven
tanja@hyperelliptic.org

and Nigel for the title

Ever found too many coordinate systems?

Which elliptic curve coordinate system

- is the fastest for addition, doubling, ... ?

Ever found too many coordinate systems?

Which elliptic curve coordinate system

- is the fastest for addition, doubling, ... ?
- is the slowest for addition, doubling,... ?

Ever found too many coordinate systems?

Which elliptic curve coordinate system

- is the fastest for addition, doubling, ... ?
- is the fastest for re-addition?
- is the fastest for unified group operations?
- needs the fewest registers?
- is the best for single-scalar multiplication?
- is the best for multi-scalar multiplication?
- is the best for batch verification of signatures?
- etc.
... and which formulas are the best for a given system?

Projective Coordinates

$$
\begin{aligned}
& P=\left(X_{1}: Y_{1}: Z_{1}\right), Q=\left(X_{2}: Y_{2}: Z_{2}\right), P \oplus Q=\left(X_{3}: Y_{3}: Z_{3}\right) \\
& \text { on } E: Y^{2} Z=X^{3}+a_{4} X Z^{2}+a_{6} Z^{3} ;(x, y) \sim(X / Z, Y / Z)
\end{aligned}
$$

Addition: $P \neq \pm Q$
$A=Y_{2} Z_{1}-Y_{1} Z_{2}, B=X_{2} Z_{1}-X_{1} Z_{2}, \quad A=a_{4} Z_{1}^{2}+3 X_{1}^{2}, B=Y_{1} Z_{1}$,
$C=A^{2} Z_{1} Z_{2}-B^{3}-2 B^{2} X_{1} Z_{2} \quad C=X_{1} Y_{1} B, D=A^{2}-8 C$
$X_{3}=B C, Z_{3}=B^{3} Z_{1} Z_{2}$
$X_{3}=2 B D, Z_{3}=8 B^{3}$.
$Y_{3}=A\left(B^{2} X_{1} Z_{2}-C\right)-B^{3} Y_{1} Z_{2}$,

- No inversion is needed - good for most implementations
- General ADD: 12M+2S
- DBL: $7 \mathrm{M}+5 \mathrm{~S}$
- Fast . . . but very different performance of ADD and DBL

Jacobian Coordinates

$$
\begin{aligned}
& P=\left(X_{1}: Y_{1}: Z_{1}\right), Q=\left(X_{2}: Y_{2}: Z_{2}\right), P \oplus Q=\left(X_{3}: Y_{3}: Z_{3}\right) \\
& \text { on } Y^{2}=X^{3}+a_{4} X Z^{4}+a_{6} Z^{6} ;(x, y) \sim\left(X / Z^{2}, Y / Z^{3}\right)
\end{aligned}
$$

Addition: $P \neq \pm Q$
$A=X_{1} Z_{2}^{2}, B=X_{2} Z_{1}^{2}, C=Y_{1} Z_{2}^{3}$,
$D=Y_{2} Z_{1}^{3}, E=B-A, F=D-C \quad C=4 X_{1} A, D=3 X_{1}^{2}+a_{4} B^{2}$
$X_{3}=2\left(-E^{3}-2 A E^{2}+F^{2}\right)$
$X_{3}=-2 C+D^{2}$
$Z_{3}=E\left(Z_{1}+Z_{2}\right)^{2}-Z_{1}^{2}-Z_{2}^{2}$
$Z_{3}=\left(Y_{1}+Z_{1}\right)^{2}-A-B$
$Y_{3}=2\left(-C E^{3}+F\left(A E^{2}-X_{3}\right)\right)$,

- General ADD: $11 \mathrm{M}+5 \mathrm{~S}$
- mixed ADD $(\mathcal{J}+\mathcal{A}=\mathcal{J}): 8 \mathrm{M}+3 \mathrm{~S}$
- DBL: 3M+7S (one M by a_{4}); for $a_{4}=-3: 3 \mathrm{M}+5 \mathrm{~S}$

Chudnovsky Jacobian Coordinates

$$
\begin{aligned}
& P=\left(X_{1}: Y_{1}: Z_{1}: Z_{1}^{2}: Z_{1}^{3}\right), Q=\left(X_{2}: Y_{2}: Z_{2}: Z_{2}^{2}: Z_{2}^{3}\right), \\
& P \oplus Q=\left(X_{3}: Y_{3}: Z_{3}: Z_{3}^{2}: Z_{3}^{3}\right) \text { on } Y^{2}=X^{3}+a_{4} X Z^{4}+a_{6} Z^{6} \\
& (x, y) \sim\left(X / Z^{2}, Y / Z^{3}\right)
\end{aligned}
$$

Addition: $P \neq \pm Q$
$A=X_{1} Z_{2}^{2}, B=X_{2} Z_{1}^{2}, C=Y_{1} Z_{2}^{3}, \quad A=Y_{1}^{2}$,
$D=Y_{2} Z_{1}^{3}, E=B-A, F=D-C$
$X_{3}=2\left(-E^{3}-2 A E^{2}+F^{2}\right)$
$Z_{3}=E\left(Z_{1}+Z_{2}\right)^{2}-Z_{1}^{2}-Z_{2}^{2}$
$Y_{3}=2\left(-C E^{3}+F\left(A E^{2}-X_{3}\right)\right)$,
$C=4 X_{1} A, D=3 X_{1}^{2}+a_{4}\left(Z_{1}^{2}\right)^{2}$
$X_{3}=-2 C+D^{2}$
$Z_{3}=\left(Y_{1}+Z_{1}\right)^{2}-A-Z_{1}^{2}$
$Y_{3}=-8 A^{2}+D\left(C-X_{3}\right)$
Z_{3}^{2}, Z_{3}^{3},
Z_{3}^{2}, Z_{3}^{3}

- General ADD: $10 \mathrm{M}+4 \mathrm{~S}$
- mixed $\operatorname{ADD}(\mathcal{J}+\mathcal{A}=\mathcal{J}): 8 \mathrm{M}+3 \mathrm{~S}$

... and with extra feature:

SCA resistance ...

D. J. Bernstein \& T. Lange

Montgomery Form

Generalized to arbitrary multiples
$[n] P=\left(X_{n}: Y_{n}: Z_{n}\right),[m] P=\left(X_{m}: Y_{m}: Z_{m}\right)$ with known difference $[m-n] P$ on

$$
E_{M}: B y^{2}=x^{3}+A x^{2}+x
$$

Addition: $n \neq m$

$$
\begin{aligned}
X_{m+n} & =Z_{m-n}\left(\left(X_{m}-Z_{m}\right)\left(X_{n}+Z_{n}\right)+\left(X_{m}+Z_{m}\right)\left(X_{n}-Z_{n}\right)\right)^{2} \\
Z_{m+n} & =X_{m-n}\left(\left(X_{m}-Z_{m}\right)\left(X_{n}+Z_{n}\right)-\left(X_{m}+Z_{m}\right)\left(X_{n}-Z_{n}\right)\right)^{2}
\end{aligned}
$$

Doubling: $n=m$

$$
\begin{aligned}
4 X_{n} Z_{n} & =\left(X_{n}+Z_{n}\right)^{2}-\left(X_{n}-Z_{n}\right)^{2} \\
X_{2 n} & =\left(X_{n}+Z_{n}\right)^{2}\left(X_{n}-Z_{n}\right)^{2} \\
Z_{2 n} & =4 X_{n} Z_{n}\left(\left(X_{n}-Z_{n}\right)^{2}+((A+2) / 4)\left(4 X_{n} Z_{n}\right)\right)
\end{aligned}
$$

An addition takes 4 M and 2 S whereas a doubling needs only 3 M and 2 S . Order is divisible by 4.

Side-channel atomicity

- Chevallier-Mames, Ciet, Joye 2004 Idea: build group operation from identical blocks.
- Each block consists of:

1 multiplication, 1 addition, 1 negation, 1 addition; fill with cheap dummy additions and negations

ADD $(\mathcal{A}+\mathcal{J})$ needs 11 blocks
DBL ($2 \mathcal{J}$) needs 10 blocks

- Requires that M and S are indistinguishable from their traces.
- No protection against fault attacks.

Unified Projective coordinates

- Brier, Joye 2002 Idea: unify how the slope is computed.
- improved in Brier, Déchène, and Joye 2004
\bigcirc

$$
\begin{aligned}
\lambda & =\frac{\left(x_{1}+x_{2}\right)^{2}-x_{1} x_{2}+a_{4}+y_{1}-y_{2}}{y_{1}+y_{2}+x_{1}-x_{2}} \\
& = \begin{cases}\frac{y_{1}-y_{2}}{x_{1}-x_{2}} & \left(x_{1}, y_{1}\right) \neq \pm\left(x_{2}, y_{2}\right) \\
\frac{3 x_{1}^{2}+a_{4}}{2 y_{1}} & \left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right)\end{cases}
\end{aligned}
$$

Multiply numerator \& denominator by $x_{1}-x_{2}$ to see this.

- Proposed formulae can be generalized to projective coordinates.
- Some special cases may occur, but with very low probability, e.g. $x_{2}=y_{1}+y_{2}+x_{1}$. Alternative equation for this case.

Jacobi intersection and quartic

- Liardet and Smart CHES 2001: Jacobi intersection
- Billet and Joye AAECC 2003: Jacobi-Model

$$
\begin{gathered}
E_{J}: Y^{2}=\epsilon X^{4}-2 \delta X^{2} Z^{2}+Z^{4} . \\
X_{3}= \\
X_{1} Z_{1} Y_{2}+Y_{1} X_{2} Z_{2} \\
Z_{3}=\left(Z_{1} Z_{2}\right)^{2}-\epsilon\left(X_{1} X_{2}\right)^{2} \\
Y_{3}= \\
\left(Z_{3}+2 \epsilon\left(X_{1} X_{2}\right)^{2}\right)\left(Y_{1} Y_{2}-2 \delta X_{1} X_{2} Z_{1} Z_{2}\right)+ \\
\\
2 \epsilon X_{1} X_{2} Z_{1} Z_{2}\left(X_{1}^{2} Z_{2}^{2}+Z_{1}^{2} X_{2}^{2}\right) .
\end{gathered}
$$

- Unified formulas need $10 \mathrm{M}+3 \mathrm{~S}+\mathrm{D}+2 \mathrm{E}$
- Can have ϵ or δ small
- Needs point of order 2; for $\epsilon=1$ the group order is divisible by 4 .
D. J. Bernstein \& T. Lange

Hessian curves

$$
E_{H}: X^{3}+Y^{3}+Z^{3}=c X Y Z
$$

Addition: $P \neq \pm Q$
$X_{3}=X_{2} Y_{1}^{2} Z_{2}-X_{1} Y_{2}^{2} Z_{1} \quad X_{3}=Y_{1}\left(X_{1}^{3}-Z_{1}^{3}\right)$
$Y_{3}=X_{1}^{2} Y_{2} Z_{2}-X_{2}^{2} Y_{1} Z_{1} \quad Y_{3}=X_{1}\left(Z_{1}^{3}-Y_{1}^{3}\right)$
$Z_{3}=X_{2} Y_{2} Z_{1}^{2}-X_{1} Y_{1} Z_{2}^{2} \quad Z_{3}=Z_{1}\left(Y_{1}^{3}-X_{1}^{3}\right)$

- Curves were first suggested for speed
- Joye and Quisquater suggested Hessian Curves for unified group operations using

$$
[2]\left(X_{1}: Y_{1}: Z_{1}\right)=\left(Z_{1}: X_{1}: Y_{1}\right) \oplus\left(Y_{1}: Z_{1}: X_{1}\right)
$$

- Unified formulas need 12M.
- Needs point of order 3.

There is help!

D. J. Bernstein \& T. Lange

Explicit-Formulas Database www.hyperelliptic.org/EFD

D. J. Bernstein \& T. Lange

Explicit-Formulas Database

System
Projective
Projective if $a_{4}=-3$
Hessian
Jacobi quartic
Jacobian
Jacobian if $a_{4}=-3$
Jacobi intersection
Doche/lcart/Kohel

Cost of doubling
5M+6S+1D; EFD
7M+3S; EFD
6M+3S; see Joye/Quisquater '01
1M+9S+1D; see Billet/Joye '01
1M+8S+1D; EFD
3M+5S; see DJB '01
3M+4S; see Liardet/Smart '01
2M+5S+2D; see Doche/lcart/Kohel '06

- All formulas human readable and computer verifiable.
- Several speed-ups only in EFD!
- Correct formulas only in EFD!
- Will extend EFD to characteristic 2 soon.

Elliptic vs Hyperelliptic

More and more papers say: Genus-2 hyperelliptic curves are better than elliptic curves!

- Special families of genus-2 curves in characteristic 2 faster than ECC.
- Generalization of Montgomery in odd characteristic
- Gaudry: Genus-2 Montgomery-style formulas for $n P$ in large characteristic.
- Bernstein ECC 2006 "New Diffie-Hellman speed record" (with HECC)
- Gaudry, ECC 2007: "Important speed-up."
- Special base points for pairings.

Plan to include hyperelliptic curves in EFD.

But time has come ...

D. J. Bernstein \& T. Lange
http://hyperelliptic.org/EFD -p. 16

Edwards curves

k field of odd characteristic.

$$
x^{2}+y^{2}=1+d x^{2} y^{2}
$$

is an elliptic curve for $d \neq 0,1$.

- $P+Q=\left(\frac{x_{P} y_{Q}+y_{P} x_{Q}}{1+d x_{P} x_{Q} y_{P} y_{Q}}, \frac{y_{P} y_{Q}-x_{P} x_{Q}}{1-d x_{P} x_{Q} y_{P} y_{Q}}\right)$.
- Neutral element is $(0,1)$, this is an affine point!
- $-\left(x_{P}, y_{P}\right)=\left(-x_{P}, y_{P}\right)$.

Edwards curves

k field of odd characteristic.

$$
x^{2}+y^{2}=1+d x^{2} y^{2}
$$

is an elliptic curve for $d \neq 0,1$.

- $P+Q=\left(\frac{x_{P} y_{Q}+y_{P} x_{Q}}{1+d x_{P} x_{Q} y_{P} y_{Q}}, \frac{y_{P} y_{Q}-x_{P} x_{Q}}{1-d x_{P} x_{Q} y_{P} y_{Q}}\right)$.
- Neutral element is $(0,1)$, this is an affine point!
- $-\left(x_{P}, y_{P}\right)=\left(-x_{P}, y_{P}\right)$.
- $[2] P=\left(\frac{x_{P} y_{P}+y_{P} x_{P}}{1+d x_{P} x_{P} y_{P} y_{P}}, \frac{y_{P} y_{P}-x_{P} x_{P}}{1-d x_{P} x_{P} y_{P} y_{P}}\right)$.

Edwards curves

k field of odd characteristic.

$$
x^{2}+y^{2}=1+d x^{2} y^{2}
$$

is an elliptic curve for $d \neq 0,1$.

- $P+Q=\left(\frac{x_{P} y_{Q}+y_{P} x_{Q}}{1+d x_{P} x_{Q} y_{P} y_{Q}}, \frac{y_{P} y_{Q}-x_{P} x_{Q}}{1-d x_{P} x_{Q} y_{P} y_{Q}}\right)$.
- Neutral element is $(0,1)$, this is an affine point!
- $-\left(x_{P}, y_{P}\right)=\left(-x_{P}, y_{P}\right)$.
- $[2] P=\left(\frac{x_{P} y_{P}+y_{P} x_{P}}{1+d x_{P} x_{P} y_{P} y_{P}}, \frac{y_{P} y_{P}-x_{P} x_{P}}{1-d x_{P} x_{P} y_{P} y_{P}}\right)$.
- Unified group operations!

Edwards curves

k field of odd characteristic.

$$
x^{2}+y^{2}=1+d x^{2} y^{2}
$$

is an elliptic curve for $d \neq 0,1$.

$$
\begin{aligned}
P+Q & =\left(\frac{x_{P} y_{Q}+y_{P} x_{Q}}{1+d x_{P} x_{Q} y_{P} y_{Q}}, \frac{y_{P} y_{Q}-x_{P} x_{Q}}{1-d x_{P} x_{Q} y_{P} y_{Q}}\right) . \\
A & =Z_{P} \cdot Z_{Q} ; B=A^{2} ; C=X_{P} \cdot X_{Q} ; D=Y_{P} \cdot Y_{Q} ; \\
E & =d \cdot C \cdot D ; F=B-E ; G=B+E ; \\
X_{P+Q} & =A \cdot F \cdot\left(\left(X_{P}+Y_{P}\right) \cdot\left(X_{Q}+Y_{Q}\right)-C-D\right) ; \\
Y_{P+Q} & =A \cdot G \cdot(D-C) ; Z_{P+Q}=F \cdot G
\end{aligned}
$$

Edwards curves

k field of odd characteristic.

$$
x^{2}+y^{2}=1+d x^{2} y^{2}
$$

is an elliptic curve for $d \neq 0,1$.

$$
\begin{aligned}
P+Q & =\left(\frac{x_{P} y_{Q}+y_{P} x_{Q}}{1+d x_{P} x_{Q} y_{P} y_{Q}}, \frac{y_{P} y_{Q}-x_{P} x_{Q}}{1-d x_{P} x_{Q} y_{P} y_{Q}}\right) . \\
A & =Z_{P} \cdot Z_{Q} ; B=A^{2} ; C=X_{P} \cdot X_{Q} ; D=Y_{P} \cdot Y_{Q} ; \\
E & =d \cdot C \cdot D ; F=B-E ; G=B+E ; \\
X_{P+Q} & =A \cdot F \cdot\left(\left(X_{P}+Y_{P}\right) \cdot\left(X_{Q}+Y_{Q}\right)-C-D\right) ; \\
Y_{P+Q} & =A \cdot G \cdot(D-C) ; Z_{P+Q}=F \cdot G
\end{aligned}
$$

Needs $10 \mathrm{M}+1 \mathrm{~S}+1 \mathrm{D}+7 \mathrm{~A}$.

Fastest unified formulae

System	Cost of unified addition-or-doubling
Projective	$11 \mathrm{M}+6 \mathrm{~S}+1 \mathrm{D}$; see Brier/Joye '03
Projective if $a_{4}=-1$	$13 \mathrm{M}+3 \mathrm{~S}$; see Brier/Joye '02
Jacobi intersection	$13 \mathrm{M}+2 \mathrm{~S}+1 \mathrm{D}$; see Liardet/Smart '01
Jacobi quartic	$10 \mathrm{M}+3 \mathrm{~S}+1 \mathrm{D}$; see Billet/Joye '01
Hessian	12 M ; see Joye/Quisquater '01
Edwards $(c=1)$	$10 \mathrm{M}+1 \mathrm{~S}+1 \mathrm{D}$

- Exactly the same formulae for doubling (no re-arrangement like in Hessian; no if-else)
- No exceptional cases if d is not a square. Formulae correct for all affine inputs (incl. $(0, c), P+(-P)$); formulae are complete!

Very fast doubling formulae

System	Cost of doubling
Projective	$5 \mathrm{M}+6 \mathrm{~S}+1 \mathrm{D} ;$ EFD
Projective if $a_{4}=-3$	$7 \mathrm{M}+3 \mathrm{~S} ;$ EFD
Hessian	$6 \mathrm{M}+3 \mathrm{~S}$; see Joye/Quisquater '01
Jacobi quartic	$1 \mathrm{M}+9 \mathrm{~S}+1 \mathrm{D} ;$ see Billet/Joye '01
Jacobian	$1 \mathrm{M}+8 \mathrm{~S}+1 \mathrm{D} ;$ EFD
Jacobian if $a_{4}=-3$	$3 \mathrm{M}+5 \mathrm{~S}$; see DJB '01
Jacobi intersection	$3 \mathrm{M}+4 \mathrm{~S}$; see Liardet/Smart '01
Edwards $(c=1)$	$3 \mathrm{M}+4 \mathrm{~S} ;$
Doche/lcart/Kohel	$2 \mathrm{M}+5 \mathrm{~S}+2 \mathrm{D} ;$ see Doche/lcart/Kohel '06

- Edwards fastest for general curves, no D.

Fastest addition formulae

System	Cost of addition
Doche/Icart/Kohel	$12 \mathrm{M}+5 \mathrm{~S}+1 \mathrm{D} ;$ see Doche/Icart/Kohel '06
Jacobian	$11 \mathrm{M}+5 \mathrm{~S} ;$ EFD
Jacobi intersection	$13 \mathrm{M}+2 \mathrm{~S}+1 \mathrm{D}$; see Liardet/Smart '01
Projective	$12 \mathrm{M}+2 \mathrm{~S} ;$ HECC
Jacobi quartic	$10 \mathrm{M}+3 \mathrm{~S}+1 \mathrm{D} ;$ see Billet/Joye '03
Hessian	12 M ; see Joye/Quisquater '01
Edwards $(c=1)$	$10 \mathrm{M}+1 \mathrm{~S}+1 \mathrm{D}$

- Faster than Jacobian-3 etc. for single-scalar multiplication, multi-scalar multiplication, etc.
- Complete addition formulas: code-size advantage and SCA resistance.
- More at Asiacrypt 2007.

