
Better price-performance ratios

for generalized birthday attacks

D. J. Bernstein

University of Illinois at Chicago

Motivation

A hashing structure proposed by

Bellare/Micciancio, 1996:

Standardize functions f1; f2; : : :
from, e.g., 48 bytes to 64 bytes.

Compress message (m1;m2; : : :)
to f1(m1)� f2(m2)� � � �.
Bellare/Micciancio advertise

“incrementality” of this hash:

e.g., updating m9 to m0
9

adds f9(m0
9)� f9(m9) to hash.

Much faster than recomputation.

Another advantage of this hash:

extreme parallelizability.

Related stream-cipher anecdote:

Salsa20 is one of the world’s

fastest unbroken stream ciphers.

Many operations per block

but always 4 parallel operations.

Intel Core 2 Duo software for

8 rounds, 20 rounds of Salsa20

took 3:21, 7:15 cycles per byte

: : : until Wei Dai suggested

handling 4 blocks in parallel.

Now 1:88, 3:91 cycles per byte.

Design hashes for parallelism!

But is this structure secure?

Let’s focus on difficulty

of finding collisions in

f1(m1)� f2(m2)� � � �.
Bellare/Micciancio evaluation:

Easy for long inputs.

Say B blocks/input, B bits/block;

find linear dependency between

f1(1)� f1(0); : : : ; fB(1)� fB(0);

immediately write down collision.

Not so easy if � is replaced by

+, vector +, modular �, etc.

Much harder for shorter inputs.

van Oorschot/Wiener, 1999,

exploiting an idea of Rivest:

Parallel collision search against

generic B-bit hash function H.

Use 2
 parallel cells;
 � 1.

On cell i, generate hashes

H(i); H(H(i)); H(H(H(i))); : : :
until a “distinguished” hash h:

last B=2�
 bits of h are 0.

Sort the distinguished hashes.

Good chance to find H collision.

Total time 2B=2�
.
: : : assuming some limit on
;
no analysis; my guess:
 < B=3.

Wagner, 2002, “generalized

birthday attack”: impressively

fast collisions for �, +, vector +

for medium-length inputs.

Speed not so impressive

for short inputs.

Also, heavy memory use.

Open questions from Wagner:

Smaller memory use?

Parallelization “without enormous

communication complexity”?

Bernstein, 2007, this talk:

smaller A and much smaller T .

Generalized birthday attack

has many other applications.

Some examples from

Section 4 of Wagner’s paper:

LFSR-based stream ciphers

(via low-weight parity checks);

code-based encryption systems;

the GHR signature system;

blind-signature systems.

Understanding attack cost

is critical for choosing

cryptosystem parameters.

Review of Wagner’s attack

Example: f1(m1)� � � � � f4(m4).

Wagner says:

Choose 2B=4 values of m1

and 2B=4 values of m2.

Sort all pairs (f1(m1);m1)

into lexicographic order.

Sort all pairs (f2(m2);m2)

into lexicographic order.

Merge sorted lists to find

� 2B=4 pairs (m1;m2)

such that first B=4 bits

of f1(m1)� f2(m2) are 0.

Compute � 2B=4 vectors

(f1(m1)� f2(m2);m1;m2)

where first B=4 bits are 0.

Sort into lexicographic order.

Similarly f3(m3)� f4(m4).

Merge to find � 2B=4 vectors

(m1;m2;m3;m4) such that

first 2B=4 bits of f1(m1)�
f2(m2)� f3(m3)� f4(m4) are 0.

Sort to find � 1 collision

in all B bits of f1(m1)�
f2(m2)� f3(m3)� f4(m4).

Wagner says: “O(n logn) time”;

n = 2B=4; much better than 2B=2.
“A lot of memory”: gigantic

machine storing 2B=4 vectors.

van Oorschot/Wiener is better!

� Similar time, � 2B=4, using

� 2B=4 parallel search units.

� Similar machine cost.

� Much more flexibility:

easily use smaller machines.

� Normally want collisions in

truncation(scrambling(B bits)).

Truncation saves time for van

Oorschot/Wiener; not Wagner.

Improving Wagner’s attack

1. Allow a smaller machine,

only 2
 cells.

Generate 2
 values

of m1, m2, etc.;

find collision in 4
 bits of

f1(m1)� f2(m2)� � � �;
hope it works for all B bits.

Repeat 2B�4
 times.

2. Use parallel mesh sorting;

e.g., Schimmler’s algorithm.

Time only 2
=2 to sort 2
 values

on 2
 cells in 2-dimensional mesh.

3. Before sorting,

spend comparable time

searching for nice mi.
Each cell, in parallel,

generates 2
=2 values of fi(mi),
and chooses smallest.

Typically
=2 bits are 0.

Reduces number of repetitions

to 2B�4
�
=2.
4. Optimize parameters,

accounting for constant factors.

Not done in my paper;

new challenge for each

generalized-birthday application.

Summary of time scalability:

� 2B�4
+3
=2 with serial sorting,

non-pipelined memory access;

 � B=4.

� 2B�4
+2
=2 with serial sorting,

pipelined memory access;

 � B=4.

� 2B�4
+
=2 with parallel sorting;

 � B=4.

� 2B�4
 with parallel sorting and

initial searching;
 � 2B=9.

2B�4
 (new) is better than

2B=2�
 (van Oorschot/Wiener)

if
 > B=6. Breakeven point:

A = 2B=6, T = 22B=6.
Without constraints on
,
minimize price-performance ratio

at A = 22B=9, T = 2B=9.
Similar improvements for

f1(m1)� � � � � f8(m8)

etc.

Have vague idea for

combining this attack

with van Oorschot/Wiener.

If idea works as desired:

Time 2B=2�7
=4;
 � 2B=9.

No more breakeven point;

best attack for all
.
No change in best AT .

Without constraints on
,
minimize price-performance ratio

at A = 22B=9, T = 2B=9.

A cryptanalytic challenge

Rumba20(m1;m2;m3;m4) =

f1(m1)� f2(m2)�
f3(m3)� f4(m4).

Each fi is a tweaked Salsa20

mapping 48 bytes to 64 bytes.

Rumba20 cycles/compressed byte

� 2 � Salsa20 cycles/byte.

Generally faster than SHA-256.

Salsa20, fi, Rumba20

have 20 internal rounds;

can reduce rounds to save time.

How cheaply can we find

collisions in Rumba20?

Status: Best AT � 2171

with � 2114 parallel cells.

Better attack on 4-xor?

Better attack on Rumba20?

On the ChaCha20 variant?

On reduced-round variants?

Quickly generate leading 0’s?

I offer $1000 prize for

the public Rumba20 cryptanalysis

that I consider most interesting.

Awarded at the end of 2007.

Send URLs of your papers to

snuffle6@box.cr.yp.to.

