Better price-performance ratios for generalized birthday attacks

D. J. BernsteinUniversity of Illinois at Chicago

Motivation

A hashing structure proposed by Bellare/Micciancio, 1996:

Standardize functions f_1, f_2, \dots from, e.g., 48 bytes to 64 bytes.

Compress message $(m_1, m_2, ...)$ to $f_1(m_1) \oplus f_2(m_2) \oplus \cdots$

Bellare/Micciancio advertise "incrementality" of this hash: e.g., updating m_9 to m_9' adds $f_9(m_9') \oplus f_9(m_9)$ to hash. Much faster than recomputation.

Another advantage of this hash: extreme parallelizability.

Related stream-cipher anecdote: Salsa20 is one of the world's fastest unbroken stream ciphers. Many operations per block but always 4 parallel operations.

Intel Core 2 Duo software for 8 rounds, 20 rounds of Salsa20 took 3.21, 7.15 cycles per byte ... until Wei Dai suggested handling 4 *blocks* in parallel. Now 1.88, 3.91 cycles per byte.

Design hashes for parallelism!

But is this structure secure?

Let's focus on difficulty of finding collisions in $f_1(m_1) \oplus f_2(m_2) \oplus \cdots$

Bellare/Micciancio evaluation:

Easy for long inputs.

Say B blocks/input, B bits/block; find linear dependency between $f_1(1) \oplus f_1(0), \ldots, f_B(1) \oplus f_B(0)$; immediately write down collision.

Not so easy if \oplus is replaced by +, vector +, modular \cdot , etc.

Much harder for shorter inputs.

van Oorschot/Wiener, 1999, exploiting an idea of Rivest: Parallel collision search against generic *B*-bit hash function *H*.

Use 2^c parallel cells; $c \ge 1$. On cell i, generate hashes $H(i), H(H(i)), H(H(H(i)), H(H(i)), \dots$ until a "distinguished" hash h: last B/2 - c bits of h are 0.

Sort the distinguished hashes. Good chance to find *H* collision.

Total time $2^{B/2-c}$.

... assuming some limit on c; no analysis; my guess: c < B/3.

Wagner, 2002, "generalized birthday attack": impressively fast collisions for \oplus , +, vector + for medium-length inputs.

Speed not so impressive for short inputs.

Also, heavy memory use.

Open questions from Wagner: Smaller memory use? Parallelization "without enormous communication complexity"?

Bernstein, 2007, this talk: smaller and much smaller T.

Generalized birthday attack has many other applications.

Some examples from
Section 4 of Wagner's paper:
LFSR-based stream ciphers
(via low-weight parity checks);
code-based encryption systems;
the GHR signature system;
blind-signature systems.

Understanding attack cost is critical for choosing cryptosystem parameters.

Review of Wagner's attack

Example: $f_1(m_1) \oplus \cdots \oplus f_4(m_4)$.

Wagner says:

Choose $2^{B/4}$ values of m_1 and $2^{B/4}$ values of m_2 .

Sort all pairs $(f_1(m_1), m_1)$ into lexicographic order. Sort all pairs $(f_2(m_2), m_2)$ into lexicographic order.

Merge sorted lists to find $pprox 2^{B/4}$ pairs (m_1, m_2) such that first B/4 bits of $f_1(m_1) \oplus f_2(m_2)$ are 0.

Compute $\approx 2^{B/4}$ vectors $(f_1(m_1) \oplus f_2(m_2), m_1, m_2)$ where first B/4 bits are 0.

Sort into lexicographic order.

Similarly $f_3(m_3) \oplus f_4(m_4)$.

Merge to find $\approx 2^{B/4}$ vectors (m_1, m_2, m_3, m_4) such that first 2B/4 bits of $f_1(m_1) \oplus f_2(m_2) \oplus f_3(m_3) \oplus f_4(m_4)$ are 0.

Sort to find ≈ 1 collision in all B bits of $f_1(m_1) \oplus f_2(m_2) \oplus f_3(m_3) \oplus f_4(m_4)$.

Wagner says: " $O(n \log n)$ time"; $n = 2^{B/4}$; much better than $2^{B/2}$. "A lot of memory": gigantic machine storing $2^{B/4}$ vectors.

van Oorschot/Wiener is better!

- Similar time, $\approx 2^{B/4}$, using $\approx 2^{B/4}$ parallel search units.
- Similar machine cost.
- Much more flexibility: easily use smaller machines.
- Normally want collisions in truncation(scrambling(B bits)).
 Truncation saves time for van Oorschot/Wiener; not Wagner.

Improving Wagner's attack

1. Allow a smaller machine, only 2^c cells.

Generate 2^c values of m_1 , m_2 , etc.; find collision in 4c bits of $f_1(m_1) \oplus f_2(m_2) \oplus \cdots$; hope it works for all B bits. Repeat 2^{B-4c} times.

2. Use parallel mesh sorting; e.g., Schimmler's algorithm.

Time only $2^{c/2}$ to sort 2^c values on 2^c cells in 2-dimensional mesh.

3. Before sorting, spend comparable time searching for nice m_i .

Each cell, in parallel, generates $2^{c/2}$ values of $f_i(m_i)$, and chooses smallest. Typically c/2 bits are 0. Reduces number of repetitions to $2^{B-4c-c/2}$.

4. Optimize parameters, accounting for constant factors. Not done in my paper; new challenge for each generalized-birthday application.

Summary of time scalability:

- $2^{B-4c+3c/2}$ with serial sorting, non-pipelined memory access; $c \le B/4$.
- $2^{B-4c+2c/2}$ with serial sorting, pipelined memory access; $c \le B/4$.
- $2^{B-4c+c/2}$ with parallel sorting; $c \le B/4$.
- 2^{B-4c} with parallel sorting and initial searching; $c \le 2B/9$.

 2^{B-4c} (new) is better than $2^{B/2-c}$ (van Oorschot/Wiener) if c > B/6. Breakeven point: $= 2^{B/6}$, $T = 2^{2B/6}$.

Without constraints on c, minimize price-performance ratio at $= 2^{2B/9}$, $T = 2^{B/9}$.

Similar improvements for $f_1(m_1) \oplus \cdots \oplus f_8(m_8)$ etc.

Have vague idea for combining this attack with van Oorschot/Wiener.

If idea works as desired: Time $2^{B/2-7c/4}$; $c \le 2B/9$. No more breakeven point; best attack for all c.

No change in best T. Without constraints on c, minimize price-performance ratio at $= 2^{2B/9}$, $T = 2^{B/9}$.

A cryptanalytic challenge

Rumba20 $(m_1, m_2, m_3, m_4) = f_1(m_1) \oplus f_2(m_2) \oplus f_3(m_3) \oplus f_4(m_4)$. Each f_i is a tweaked Salsa20 mapping 48 bytes to 64 bytes.

Rumba20 cycles/compressed byte $\approx 2 \cdot \text{Salsa20}$ cycles/byte. Generally faster than SHA-256. Salsa20, f_i , Rumba20 have 20 internal rounds; can reduce rounds to save time.

How cheaply can we find collisions in Rumba20?

Status: Best $T \approx 2^{171}$ with $\approx 2^{114}$ parallel cells.

Better attack on 4-xor?
Better attack on Rumba20?
On the ChaCha20 variant?
On reduced-round variants?
Quickly generate leading 0's?

I offer \$1000 prize for the public Rumba20 cryptanalysis that I consider most interesting. Awarded at the end of 2007.

Send URLs of your papers to snuffle6@box.cr.yp.to.