Better price-performance ratios for generalized birthday attacks
D. J. Bernstein University of Illinois at Chicago

Motivation

A hashing structure proposed by Bellare/Micciancio, 1996:

Standardize functions f_{1}, f_{2}, \ldots from, e.g., 48 bytes to 64 bytes.

Compress message (m_{1}, m_{2}, \ldots) to $f_{1}\left(m_{1}\right) \oplus f_{2}\left(m_{2}\right) \oplus \cdots$.

Bellare/Micciancio advertise "incrementality" of this hash: e.g., updating m_{9} to m_{9}^{\prime} adds $f_{9}\left(m_{9}^{\prime}\right) \oplus f_{9}\left(m_{9}\right)$ to hash. Much faster than recomputation.

Another advantage of this hash: extreme parallelizability.

Related stream-cipher anecdote:
Salsa20 is one of the world's
fastest unbroken stream ciphers.
Many operations per block but always 4 parallel operations.

Intel Core 2 Duo software for 8 rounds, 20 rounds of Salsa20 took $3.21,7.15$ cycles per byte ... until Wei Dai suggested handling 4 blocks in parallel.
Now 1.88, 3.91 cycles per byte.
Design hashes for parallelism!

But is this structure secure?
Let's focus on difficulty of finding collisions in
$f_{1}\left(m_{1}\right) \oplus f_{2}\left(m_{2}\right) \oplus \cdots$.
Bellare/Micciancio evaluation:
Easy for long inputs.
Say B blocks/input, B bits/block;
find linear dependency between
$f_{1}(1) \oplus f_{1}(0), \ldots, f_{B}(1) \oplus f_{B}(0) ;$ immediately write down collision.

Not so easy if \oplus is replaced by + , vector + , modular •, etc.

Much harder for shorter inputs.
van Oorschot/Wiener, 1999, exploiting an idea of Rivest: Parallel collision search against generic B-bit hash function H.

Use 2^{c} parallel cells; $c \geq 1$.
On cell i, generate hashes
$H(i), H(H(i)), H(H(H(i))), \ldots$ until a "distinguished" hash h : last $B / 2-c$ bits of h are 0 .

Sort the distinguished hashes.
Good chance to find H collision.
Total time $2^{B / 2-c}$.
... assuming some limit on c;
no analysis; my guess: $c<B / 3$.

Wagner, 2002, "generalized birthday attack": impressively fast collisions for $\oplus,+$, vector + for medium-length inputs.

Speed not so impressive for short inputs.
Also, heavy memory use.
Open questions from Wagner: Smaller memory use? Parallelization "without enormous communication complexity"?

Bernstein, 2007, this talk: smaller A and much smaller T.

Generalized birthday attack has many other applications.

Some examples from
Section 4 of Wagner's paper:
LFSR-based stream ciphers
(via low-weight parity checks);
code-based encryption systems;
the GHR signature system; blind-signature systems.

Understanding attack cost is critical for choosing cryptosystem parameters.

Review of Wagner's attack

Example: $f_{1}\left(m_{1}\right) \oplus \cdots \oplus f_{4}\left(m_{4}\right)$.
Wagner says:
Choose $2^{B / 4}$ values of m_{1} and $2^{B / 4}$ values of m_{2}.

Sort all pairs $\left(f_{1}\left(m_{1}\right), m_{1}\right)$
into lexicographic order.
Sort all pairs $\left(f_{2}\left(m_{2}\right), m_{2}\right)$
into lexicographic order.
Merge sorted lists to find $\approx 2^{B / 4}$ pairs $\left(m_{1}, m_{2}\right)$ such that first $B / 4$ bits
of $f_{1}\left(m_{1}\right) \oplus f_{2}\left(m_{2}\right)$ are 0 .

Compute $\approx 2^{B / 4}$ vectors
$\left(f_{1}\left(m_{1}\right) \oplus f_{2}\left(m_{2}\right), m_{1}, m_{2}\right)$
where first $B / 4$ bits are 0 .
Sort into lexicographic order.
Similarly $f_{3}\left(m_{3}\right) \oplus f_{4}\left(m_{4}\right)$.
Merge to find $\approx 2^{B / 4}$ vectors
$\left(m_{1}, m_{2}, m_{3}, m_{4}\right)$ such that first $2 B / 4$ bits of $f_{1}\left(m_{1}\right) \oplus$ $f_{2}\left(m_{2}\right) \oplus f_{3}\left(m_{3}\right) \oplus f_{4}\left(m_{4}\right)$ are 0.

Sort to find ≈ 1 collision in all B bits of $f_{1}\left(m_{1}\right) \oplus$ $f_{2}\left(m_{2}\right) \oplus f_{3}\left(m_{3}\right) \oplus f_{4}\left(m_{4}\right)$.

Wagner says: " $O(n \log n)$ time"; $n=2^{B / 4}$; much better than $2^{B / 2}$. "A lot of memory": gigantic machine storing $2^{B / 4}$ vectors.
van Oorschot/Wiener is better!

- Similar time, $\approx 2^{B / 4}$, using $\approx 2^{B / 4}$ parallel search units.
- Similar machine cost.
- Much more flexibility:
easily use smaller machines.
- Normally want collisions in truncation(scrambling $(B$ bits)).
Truncation saves time for van
Oorschot/Wiener; not Wagner.

Improving Wagner's attack

1. Allow a smaller machine, only 2^{c} cells.

Generate 2^{c} values of m_{1}, m_{2}, etc.;
find collision in $4 c$ bits of
$f_{1}\left(m_{1}\right) \oplus f_{2}\left(m_{2}\right) \oplus \cdots ;$ hope it works for all B bits. Repeat $2^{B-4 c}$ times.
2. Use parallel mesh sorting; e.g., Schimmler's algorithm.

Time only $2^{c / 2}$ to sort 2^{c} values on 2^{c} cells in 2-dimensional mesh.
3. Before sorting,
spend comparable time
searching for nice m_{i}.
Each cell, in parallel,
generates $2^{c / 2}$ values of $f_{i}\left(m_{i}\right)$, and chooses smallest.
Typically $c / 2$ bits are 0 .
Reduces number of repetitions to $2^{B-4 c-c / 2}$.
4. Optimize parameters, accounting for constant factors.
Not done in my paper; new challenge for each generalized-birthday application.

Summary of time scalability:

- $2^{B-4 c+3 c / 2}$ with serial sorting, non-pipelined memory access; $c \leq B / 4$.
- $2^{B-4 c+2 c / 2}$ with serial sorting, pipelined memory access; $c \leq B / 4$.
- $2^{B-4 c+c / 2}$ with parallel sorting;
$c \leq B / 4$.
- $2^{B-4 c}$ with parallel sorting and initial searching; $c \leq 2 B / 9$.
$2^{B-4 c}$ (new) is better than $2^{B / 2-c}$ (van Oorschot/Wiener) if $c>B / 6$. Breakeven point:
$A=2^{B / 6}, T=2^{2 B / 6}$.
Without constraints on c, minimize price-performance ratio at $A=2^{2 B / 9}, T=2^{B / 9}$.

Similar improvements for $f_{1}\left(m_{1}\right) \oplus \cdots \oplus f_{8}\left(m_{8}\right)$ etc.

Have vague idea for combining this attack with van Oorschot/Wiener.

If idea works as desired:
Time $2^{B / 2-7 c / 4} ; c \leq 2 B / 9$.
No more breakeven point; best attack for all c.

No change in best $A T$.
Without constraints on c,
minimize price-performance ratio
at $A=2^{2 B / 9}, T=2^{B / 9}$.

A cryptanalytic challenge

$\operatorname{Rumba20}\left(m_{1}, m_{2}, m_{3}, m_{4}\right)=$
$f_{1}\left(m_{1}\right) \oplus f_{2}\left(m_{2}\right) \oplus$
$f_{3}\left(m_{3}\right) \oplus f_{4}\left(m_{4}\right)$.
Each f_{i} is a tweaked Salsa20 mapping 48 bytes to 64 bytes.

Rumba20 cycles/compressed byte ≈ 2. Salsa20 cycles/byte.
Generally faster than SHA-256.
Salsa20, f_{i}, Rumba20
have 20 internal rounds;
can reduce rounds to save time.
How cheaply can we find collisions in Rumba20?

Status: Best $A T \approx 2^{171}$ with $\approx 2^{114}$ parallel cells.

Better attack on 4-xor?
Better attack on Rumba20?
On the ChaCha20 variant?
On reduced-round variants?
Quickly generate leading 0's?
I offer $\$ 1000$ prize for
the public Rumba20 cryptanalysis that I consider most interesting. Awarded at the end of 2007.

Send URLs of your papers to snuffle6@box.cr.yp.to.

