From now on: non-binary field k; non-square $d \in k$.

$$egin{aligned} {E}(k) &= \{(x,y) \in k imes k : \ x^2 + y^2 &= 1 + dx^2y^2 \} \end{aligned}$$

is a commutative group with $(x_1, y_1) + (x_2, y_2) = (x_3, y_3)$ defined by Edwards addition law:

$$x_3=rac{x_1y_2+y_1x_2}{1+dx_1x_2y_1y_2}$$
,

$$y_3 = rac{y_1y_2 - x_1x_2}{1 - dx_1x_2y_1y_2}$$

Birationally equivalent to $(1/e)v^2 = u^3 + (4/e - 2)u^2 + u$ where e = 1 - d. Represent $(x, y) \in E(k)$ by $(X : Y : Z) \in \mathbf{P}^2(k)$; i.e., $(X, Y, Z) \in k^3$ with $Z \neq 0$ and $(X^2 + Y^2)Z^2 = Z^4 + dX^2Y^2$ represents $(X/Z, Y/Z) \in E(k)$.

10**M** (10 field mults) + 1**S** (1 field squaring) + 1**D** (1 field mult by d) + 7**add** (7 field additions) to obtain sum ($X_3 : Y_3 : Z_3$) of ($X_1 : Y_1 : Z_1$), ($X_2 : Y_2 : Z_2$).

Don't have to make distinctions for equal inputs, negatives, etc.

What if we *want* to make distinctions to gain speed? For example, speed up doubling? $2(x, y) = \left(\frac{xy + yx}{1 + dxxyy}, \frac{yy - xx}{1 - dxxyyy}\right)$

2(x, y) $= \left(rac{xy+yx}{1+dxxyy}, rac{yy-xx}{1-dxxyyy}
ight)$ $= \left(\frac{2xy}{1+dx^2y^2}, \frac{y^2-x^2}{1-dx^2y^2}\right) \text{ save mults!} \\= \left(\frac{2xy}{x^2+y^2}, \frac{y^2-x^2}{1-dx^2y^2}\right) \text{ low deg (Joye)}$

2(x, y) $= \left(rac{xy+yx}{1+dxxyy}, rac{yy-xx}{1-dxxyyy}
ight)$ $= \left(\frac{2xy}{1+dx^2y^2}, \frac{y^2-x^2}{1-dx^2y^2}\right) \text{ save mults!}$ $= \left(\frac{2xy}{x^2 + y^2}, \frac{y^2 - x^2}{1 - dx^2y^2}\right) \text{ low deg}$ $= \left(\frac{2xy}{x^2 + y^2}, \frac{y^2 - x^2}{2 - x^2 - y^2}\right) \text{ even}$

2(x, y) $= \left(rac{xy+yx}{1+dxxyy}, rac{yy-xx}{1-dxxyyy}
ight)$ $= \left(\frac{2xy}{1+dx^2y^2}, \frac{y^2-x^2}{1-dx^2y^2}\right) \text{ save mults!}$ $= \left(\frac{2xy}{x^2 + y^2}, \frac{y^2 - x^2}{1 - dx^2y^2}\right) \text{ low deg}$ (Joye) $=\left(rac{2xy}{x^2+y^2},rac{y^2-x^2}{2-x^2-y^2}
ight)$ even lower $= \left(\frac{(x+y)^2}{x^2+y^2} - 1, \frac{y^2 - x^2}{2 - x^2 - y^2}\right)$

3**M** (3 field mults) + 4**S** (4 field squarings) + 6**add** (6 field additions) to double $(X_1 : Y_1 : Z_1)$:

$$B = (X_1 + Y_1)^2,$$

$$C = X_1^2,$$

$$D = Y_1^2,$$

$$E = C + D,$$

$$H = Z_1^2,$$

$$J = E - 2H,$$

$$X_3 = (B - E)J,$$

$$Y_3 = E(C - D),$$

$$Z_3 = EJ.$$

Comparison of doubling costs if curve parameters are small:

System	Cost
Projective	5M + 6S
Projective if $a = -3$	7 M + 3 S
Hessian	$7\mathbf{M} + 1\mathbf{S}$
Doche/Icart/Kohel 3	2M + 7S
Jacobian	$1\mathbf{M} + 8\mathbf{S}$
Jacobian if $a = -3$	3 M + 5 S
Jacobi quartic	2M + 6S
Jacobi intersection	3 M + 4 S
Edwards	3 M + 4 S
Doche/Icart/Kohel 2	2M + 5S

EFD! EFD! EFD! EFD! EFD!

e.g. Doche/Icart/Kohel paper says 3**M**+4**S** for Doche/Icart/Kohel 2.

Jacobian a = -3 vs. Edwards:

Jac-3	Edwards
3 M +5 S	3 M +4 S
7 M +7 S	9 M +4 S
11M $+5$ S	10M + 1S + 1D
10 M +4 S	$10\mathbf{M}+1\mathbf{S}+1\mathbf{D}$
7 M +4 S	$9\mathbf{M}{+}1\mathbf{S}{+}1\mathbf{D}$
unclear	10M + 1S + 1D
	Jac-3 3 M +5 S 7 M +7 S 11 M +5 S 10 M +4 S 7 M +4 S unclear

Jac-3 speedup for readd: Chudnovsky/Chudnovsky 1986; "Chudnovsky coordinates" etc.

Edwards tripling: Bernstein/Birkner/Lange/Peters 2007; independently Hisil/Carter/Dawson 2007.

A sensible ElGamal-type system (van Duin, sci.crypt, 2006): Everyone knows standard point B, prime order q, on "Curve25519": $Z/(2^{255}-19); d = 1 - 1/121666.$ Signer has 32-byte secret key n. Everyone knows signer's 32-byte public key: compressed nB. To verify (m, compressed R, t): verify tB = H(R, m)R + nB. To sign m: generate a secret s; R = sB; $t = H(R, m)s + n \mod q$. Notes: 1. No inversions mod q. 2. Send R, not H(R, m).

Batch verification of many $t_i B - h_i R_i = S_i$: check $\sum_{i} v_i t_i B - \sum_{i} v_i h_i R_i - \sum_{i} v_i S_i$ = 0 for random 128-bit v_i . (Naccache et al., Eurocrypt 1994; Bellare et al., Eurocrypt 1998) Use subtractive multi-scalar multiplication algorithm: if $n_1 > n_2 > \cdots$ then $n_1P_1 + n_2P_2 + n_3P_3 + \cdots =$ $(n_1 - qn_2)P_1 + n_2(qP_1 + P_2) +$ $n_3P_3 + \cdots$ where $q = |n_1/n_2|$. (credited to Bos and Coster by de Rooij, Eurocrypt 1994; see also tweaks by Wei Dai, 2007) Verifying 100 signatures requires a 201-scalar mult with 101 256-bit scalars and 100 128-bit scalars.

Subtractive algorithm then uses \approx 24.4 \cdot 256 readds and \approx 0.8 \cdot 256 mixed adds.

S/M = 0.8, small parameters:
≈ 845M/signature with Jacobian;
≈ 695M/signature with Edwards.
Use Edwards coordinates!

Can similar speeds be achieved by genus-2 hyperelliptic curves? Current attempts seem very slow. We've counted mults (with various **S**/**M**, **D**/**M**) for Edwards, Jac-3, Hessian, et al. in NAF; width-4 sliding windows; JSF; accelerated ECDSA; batch verification, as above; fixed-point scalar mult; and several side-channel situations.

Edwards consistently wins! Should even beat Montgomery for big single-scalar mult.

Need to measure overheads too. Planning new Edwards software. Expect new speed records. Dimitrov/Imbert/Mishra 2005, Doche/Imbert 2006:

Mix doublings with triplings to gain speed for single-scalar mult.

Bernstein/Birkner/Lange/Peters 2007: Have analyzed

- Edwards, Jac-3, et al.
- with 5423 combinations of
- bit size, doubling/tripling ratio, windowing strategy.
- Planning more combinations.

Conclusions: Triplings *are* useful for Jac-3, 3DIK, et al. But Edwards wins solidly.

Importance of doubling/tripling ratio (200 bits, all shapes)

Importance of doubling/tripling ratio (200 bits, all shapes)

We're working on several items:

We're working on several items:

Edwards for precomputation!

We're working on several items:

Edwards for precomputation! Edwards for pairings!

We're working on several items:

Edwards for precomputation!

Edwards for pairings!

Edwards for president!

We're working on several items:

Edwards for precomputation!

- Edwards for pairings!
- Edwards for president!
- Edwards implementations!

We're working on several items:

Edwards for precomputation!

- Edwards for pairings!
- Edwards for president!
- Edwards implementations!
- Edwards standardization!

We're working on several items:

Edwards for precomputation!

- Edwards for pairings!
- Edwards for president!
- Edwards implementations!
- Edwards standardization!

And beyond ECC: Edwards for ECM!

We're working on several items:

Edwards for precomputation! Edwards for pairings! Edwards for president! Edwards implementations! Edwards standardization!

And beyond ECC: Edwards for ECM! Edwards for ECPP!

We're working on several items:

Edwards for precomputation! Edwards for pairings! Edwards for president! Edwards implementations! Edwards standardization!

And beyond ECC: Edwards for ECM! Edwards for ECPP! Edwards for ECXYZ!

We're working on several items:

Edwards for precomputation! Edwards for pairings! Edwards for president! Edwards implementations! Edwards standardization!

And beyond ECC: Edwards for ECM! Edwards for ECPP! Edwards for ECXYZ! Return of the Hyperelliptic!

