From now on: non-binary field k; non-square $d \in k$.
$E(k)=\{(x, y) \in k \times k:$

$$
\left.x^{2}+y^{2}=1+d x^{2} y^{2}\right\}
$$

is a commutative group with $\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{3}, y_{3}\right)$ defined by Edwards addition law:
$x_{3}=\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}}$,
$y_{3}=\frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}$.
Birationally equivalent to
$(1 / e) v^{2}=u^{3}+(4 / e-2) u^{2}+u$
where $e=1-d$.

Represent $(x, y) \in E(k)$
by $(X: Y: Z) \in \mathbf{P}^{2}(k)$;
ie., $(X, Y, Z) \in k^{3}$ with $Z \neq 0$ and $\left(X^{2}+Y^{2}\right) Z^{2}=Z^{4}+d X^{2} Y^{2}$ represents $(X / Z, Y / Z) \in E(k)$.

10M (10 field molts)
+1 (1 field squaring)
+1 (1 field mut by d)

+ Tad (7 field additions)
to obtain sum $\left(X_{3}: Y_{3}: Z_{3}\right)$
of $\left(X_{1}: Y_{1}: Z_{1}\right),\left(X_{2}: Y_{2}: Z_{2}\right)$.
Don't have to make distinctions for equal inputs, negatives, etc.

What if we want to make distinctions to gain speed? For example, speed up doubling?
$2(x, y)$
$=\left(\frac{x y+y x}{1+d x x y y}, \frac{y y-x x}{1-d x x y y y}\right)$

What if we want to make distinctions to gain speed? For example, speed up doubling?
$2(x, y)$
$=\left(\frac{x y+y x}{1+d x x y y}, \frac{y y-x x}{1-d x x y y y}\right)$
$=\left(\frac{2 x y}{1+d x^{2} y^{2}}, \frac{y^{2}-x^{2}}{1-d x^{2} y^{2}}\right)$ save $\begin{gathered}\text { cults }!\end{gathered}$

What if we want to make distinctions to gain speed? For example, speed up doubling?
$2(x, y)$
$=\left(\frac{x y+y x}{1+d x x y y}, \frac{y y-x x}{1-d x x y y y}\right)$
$=\left(\frac{2 x y}{1+d x^{2} y^{2}}, \frac{y^{2}-x^{2}}{1-d x^{2} y^{2}}\right) \begin{gathered}\text { save } \\ \text { mults }!\end{gathered}$
$=\left(\frac{2 x y}{x^{2}+y^{2}}, \frac{y^{2}-x^{2}}{1-d x^{2} y^{2}}\right) \begin{gathered}\text { low deg } \\ (\text { Jove })\end{gathered}$

What if we want to make distinctions to gain speed? For example, speed up doubling?
$2(x, y)$
$=\left(\frac{x y+y x}{1+d x x y y}, \frac{y y-x x}{1-d x x y y y}\right)$
$=\left(\frac{2 x y}{1+d x^{2} y^{2}}, \frac{y^{2}-x^{2}}{1-d x^{2} y^{2}}\right) \begin{gathered}\text { save } \\ \text { mults! }\end{gathered}$
$=\left(\frac{2 x y}{x^{2}+y^{2}}, \frac{y^{2}-x^{2}}{1-d x^{2} y^{2}}\right) \begin{gathered}\text { low deg } \\ (\text { Jove })\end{gathered}$
$=\left(\frac{2 x y}{x^{2}+y^{2}}, \frac{y^{2}-x^{2}}{2-x^{2}-y^{2}}\right)$ even $\begin{gathered}\text { lower }\end{gathered}$

What if we want to make distinctions to gain speed? For example, speed up doubling?
$2(x, y)$
$=\left(\frac{x y+y x}{1+d x x y y}, \frac{y y-x x}{1-d x x y y y}\right)$
$=\left(\frac{2 x y}{1+d x^{2} y^{2}}, \frac{y^{2}-x^{2}}{1-d x^{2} y^{2}}\right) \begin{gathered}\text { save } \\ \text { mults! }\end{gathered}$
$=\left(\frac{2 x y}{x^{2}+y^{2}}, \frac{y^{2}-x^{2}}{1-d x^{2} y^{2}}\right) \begin{gathered}\text { low deg } \\ (\text { Jove })\end{gathered}$
$=\left(\frac{2 x y}{x^{2}+y^{2}}, \frac{y^{2}-x^{2}}{2-x^{2}-y^{2}}\right)$ even
$=\left(\frac{(x+y)^{2}}{x^{2}+y^{2}}-1, \frac{y^{2}-x^{2}}{2-x^{2}-y^{2}}\right)$

3M (3 field mulls)
+4 S (4 field squaring)
+6 add (6 field additions)
to double $\left(X_{1}: Y_{1}: Z_{1}\right)$:
$B=\left(X_{1}+Y_{1}\right)^{2}$,
$C=X_{1}^{2}$,
$D=Y_{1}^{2}$,
$E=C+D$,
$H=Z_{1}^{2}$,
$J=E-2 H$,
$X_{3}=(B-E) J$,
$Y_{3}=E(C-D)$,
$Z_{3}=E J$.

Comparison of doubling costs if curve parameters are small:

System	Cost
Projective	$5 \mathrm{M}+6 \mathrm{~S}$
Projective if $a=-3$	$7 \mathrm{M}+3 \mathrm{~S}$
Hessian	7M + 1S
Doche/Icart/Kohel 3	$2 \mathrm{M}+7 \mathrm{~S}$
Jacobian	$1 \mathrm{M}+8 \mathrm{~S}$
Jacobian if $a=-3$	$3 \mathrm{M}+5 \mathrm{~S}$
Jacobi quartic	$2 M+6 S$
Jacobi intersection	$3 \mathrm{M}+4 \mathrm{~S}$
Edwards	$3 \mathrm{M}+4 \mathrm{~S}$
Doche/Icart/Kohel 2	$2 \mathrm{M}+5 \mathrm{~S}$

EFD! EFD! EFD! EFD! EFD!
e.g. Doche/Icart/Kohel paper says 3M+4S for Doche/Icart/Kohel 2.

Jacobian $a=-3$ vs. Edwards:

	Jac-3	Edwards
Double	$3 \mathrm{M}+5 \mathrm{~S}$	$3 \mathrm{M}+4 \mathrm{~S}$
Triple	$7 \mathrm{M}+7 \mathrm{~S}$	$9 \mathrm{M}+4 \mathrm{~S}$
Add	$11 \mathrm{M}+5 \mathrm{~S}$	$10 \mathrm{M}+1 \mathrm{~S}+1 \mathrm{D}$
Readd	$10 \mathrm{M}+4 \mathrm{~S}$	$10 \mathrm{M}+1 \mathrm{~S}+1 \mathrm{D}$
Mixed	$7 \mathrm{M}+4 \mathrm{~S}$	$9 \mathrm{M}+1 \mathrm{~S}+1 \mathrm{D}$
Unified	unclear	$10 \mathrm{M}+1 \mathrm{~S}+1 \mathrm{D}$

Jac-3 speedup for readd:
Chudnovsky/Chudnovsky 1986; "Chudnovsky coordinates" etc.

Edwards tripling:
Bernstein/Birkner/Lange/Peters 2007; independently
Hisil/Carter/Dawson 2007.

A sensible ElGamal-type system
(van Din, sci. crypt, 2006):
Everyone knows standard point B, prime order q, on "Curve25519": $\mathbf{Z} /\left(2^{255}-19\right) ; d=1-1 / 121666$.

Signer has 32-byte secret key n.
Everyone knows signer's 32-byte public key: compressed $n B$.

To verify (m, compressed R, t): verify $t B=H(R, m) R+n B$.

To sign m : generate a secret s;
$R=s B ; t=H(R, m) s+n \bmod q$.
Notes: 1. No inversions mod q. 2. Send R, not $H(R, m)$.

Batch verification of many
$t_{i} B-h_{i} R_{i}=S_{i}:$ check
$\sum_{i} v_{i} t_{i} B-\sum_{i} v_{i} h_{i} R_{i}-\sum_{i} v_{i} S_{i}$
$=0$ for random 128-bit v_{i}.
(Naccache et al., Eurocrypt 1994;
Bellare et al., Eurocrypt 1998)
Use subtractive multi-scalar multiplication algorithm:
if $n_{1} \geq n_{2} \geq \cdots$ then
$n_{1} P_{1}+n_{2} P_{2}+n_{3} P_{3}+\cdots=$
$\left(n_{1}-q n_{2}\right) P_{1}+n_{2}\left(q P_{1}+P_{2}\right)+$ $n_{3} P_{3}+\cdots$ where $q=\left\lfloor n_{1} / n_{2}\right\rfloor$. (credited to Dos and Coster by de Rooij, Eurocrypt 1994; see also tweaks by Wei Dai, 2007)

Verifying 100 signatures requires a 201-scalar mult with 101 256-bit scalars and 100 128-bit scalars.

Subtractive algorithm then uses $\approx 24.4 \cdot 256$ readds and $\approx 0.8 \cdot 256$ mixed adds.
$\mathbf{S} / \mathbf{M}=0.8$, small parameters: $\approx 845 \mathrm{M} /$ signature with Jacobian; $\approx 695 \mathrm{M} /$ signature with Edwards. Use Edwards coordinates!

Can similar speeds be achieved by genus-2 hyperelliptic curves?
Current attempts seem very slow.

We've counted mults
(with various $\mathbf{S} / \mathbf{M}, \mathbf{D} / \mathbf{M}$) for Edwards, Jac-3, Hessian, et al. in NAF; width-4 sliding windows; JSF; accelerated ECDSA; batch verification, as above; fixed-point scalar mult; and several side-channel situations.

Edwards consistently wins!
Should even beat Montgomery for big single-scalar mult.

Need to measure overheads too. Planning new Edwards software. Expect new speed records.

Dimitrov/Imbert/Mishra 2005, Doche/Imbert 2006:
Mix doublings with triplings to gain speed for single-scalar mult.

Bernstein/Birkner/Lange/Peters
2007: Have analyzed
Edwards, Jac-3, et al.
with 5423 combinations of bit size, doubling/tripling ratio, windowing strategy.
Planning more combinations.
Conclusions: Triplings are useful for Jac-3, 3DIK, et al.
But Edwards wins solidly.

Importance of doubling/tripling ratio (200 bits, all shapes)

Importance of doubling/tripling ratio (200 bits, all shapes)

New directions in ECC
We're working on several items:
cr.yp.to/newelliptic.html

New directions in ECC
We're working on several items:

Edwards for precomputation!

cr.yp.to/newelliptic.html

New directions in ECC
We're working on several items:
Edwards for precomputation! Edwards for pairings!
cr.yp.to/newelliptic.html

New directions in ECC
We're working on several items:
Edwards for precomputation!
Edwards for pairings!
Edwards for president!
cr.yp.to/newelliptic.html

New directions in ECC

We're working on several items:
Edwards for precomputation!
Edwards for pairings!
Edwards for president!
Edwards implementations!
cr.yp.to/newelliptic.html

New directions in ECC

We're working on several items:
Edwards for precomputation!
Edwards for pairings!
Edwards for president!
Edwards implementations!
Edwards standardization!
cr.yp.to/newelliptic.html

New directions in ECC

We're working on several items:
Edwards for precomputation!
Edwards for pairings!
Edwards for president!
Edwards implementations!
Edwards standardization!
And beyond ECC:
Edwards for ECM!
cr.yp.to/newelliptic.html

New directions in ECC

We're working on several items:
Edwards for precomputation!
Edwards for pairings!
Edwards for president!
Edwards implementations!
Edwards standardization!
And beyond ECC:
Edwards for ECM!
Edwards for ECPP!
cr.yp.to/newelliptic.html

New directions in ECC

We're working on several items:
Edwards for precomputation!
Edwards for pairings!
Edwards for president!
Edwards implementations!
Edwards standardization!
And beyond ECC:
Edwards for ECM!
Edwards for ECPP!
Edwards for ECXYZ!
cr.yp.to/newelliptic.html

New directions in ECC
We're working on several items:
Edwards for precomputation!
Edwards for pairings!
Edwards for president!
Edwards implementations!
Edwards standardization!
And beyond ECC:
Edwards for ECM!
Edwards for ECPP!
Edwards for ECXYZ!
Return of the Hyperelliptic!
cr.yp.to/newelliptic.html

