Generic attacks and index calculus

D. J. Bernstein University of Illinois at Chicago The discrete-logarithm problem

Define p = 1000003. Easy to prove: p is prime.

Can we find an integer $n \in \{1, 2, 3, \dots, p-1\}$

such that $5^n \mod p = 262682?$

Easy to prove: $n \mapsto 5^n \mod p$ permutes $\{1, 2, 3, \ldots, p-1\}$. So there *exists* an *n* such that $5^n \mod p = 262682$.

Could find n by brute force. Is there a faster way?

attacks

ex calculus

rnstein

ty of Illinois at Chicago

The discrete-logarithm problem

Define p = 1000003.

Easy to prove: *p* is prime.

Can we find an integer $n \in \{1, 2, 3, \dots, p-1\}$ such that $5^{n} \mod p = 262682?$

Easy to prove: $n \mapsto 5^n \mod p$ permutes $\{1, 2, 3, \ldots, p-1\}$. So there *exists* an *n* such that $5^n \mod p = 262682$.

Could find n by brute force. Is there a faster way?

Typical Imagine in the D User cho publishe Can atta the disci Given pı quickly f (Warnin to attac Maybe t

is at Chicago

The discrete-logarithm problem

Define p = 1000003. Easy to prove: p is prime.

Can we find an integer $n \in \{1, 2, 3, \dots, p-1\}$ such that $5^{n} \mod p = 262682?$ Easy to prove: $n \mapsto 5^n \mod p$ permutes $\{1, 2, 3, \ldots, p-1\}$. So there *exists* an *n* such that $5^n \mod p = 262682$. Could find n by brute force.

Is there a faster way?

Typical cryptanaly Imagine standard in the Diffie-Hellm User chooses secre publishes $5^n \mod$ Can attacker quicl the discrete-logarity Given public key 5 quickly find secret (Warning: This is to attack the prot Maybe there are b

The discrete-logarithm problem

Define p = 1000003. Easy to prove: *p* is prime.

Can we find an integer $n \in \{1, 2, 3, \dots, p-1\}$ such that $5^{n} \mod p = 262682?$ Easy to prove: $n \mapsto 5^n \mod p$ permutes $\{1, 2, 3, \ldots, p-1\}$. So there *exists* an *n* such that $5^n \mod p = 262682$.

Could find n by brute force. Is there a faster way?

Typical cryptanalytic applica

- Imagine standard p = 10000in the Diffie-Hellman protoc
- User chooses secret key n,
- publishes $5^n \mod p = 26268$
- Can attacker quickly solve the discrete-logarithm proble Given public key $5^n \mod p$,
- quickly find secret key n?
- (Warning: This is *one* way
- to attack the protocol.
- Maybe there are better ways

The discrete-logarithm problem

Define p = 1000003.

Easy to prove: p is prime.

Can we find an integer $n \in \{1, 2, 3, \ldots, p-1\}$ such that $5^n \mod p = 262682?$

Easy to prove: $n \mapsto 5^n \mod p$ permutes $\{1, 2, 3, \ldots, p-1\}$. So there *exists* an *n* such that $5^n \mod p = 262682$.

Could find n by brute force. Is there a faster way?

Typical cryptanalytic application:

Imagine standard p = 1000003in the Diffie-Hellman protocol.

User chooses secret key n, publishes $5^n \mod p = 262682$.

Can attacker quickly solve the discrete-logarithm problem? Given public key $5^n \mod p$, quickly find secret key n?

(Warning: This is one way to attack the protocol. Maybe there are better ways.)

rete-logarithm problem

- p = 1000003.
- prove: *p* is prime.
- find an integer $2, 3, \ldots, p-1\}$ it $5^n \mod p = 262682?$
- prove: $n \mapsto 5^n \mod p$ s $\{1, 2, 3, \ldots, p-1\}$.
- e exists an n
- it $5^n \mod p = 262682$.
- nd n by brute force. a faster way?

Typical cryptanalytic application: Imagine standard p = 1000003in the Diffie-Hellman protocol.

User chooses secret key n, publishes $5^n \mod p = 262682$.

Can attacker quickly solve the discrete-logarithm problem? Given public key $5^n \mod p$, quickly find secret key n?

(Warning: This is *one* way to attack the protocol.

Maybe there are better ways.)

Relation 1. Some to ellipti Use in e security 2. Some Use in e advanta compare 3. Trick extra ap See Tan on Weil

ithm problem

)3.

s prime.

teger -1} p = 262682? $\rightarrow 5^n \mod p$

..., $p-1\}$.

n

p = 262682.

rute force.

ay?

Typical cryptanalytic application: Imagine standard p = 1000003in the Diffie-Hellman protocol.

User chooses secret key n, publishes $5^n \mod p = 262682$.

Can attacker quickly solve the discrete-logarithm problem? Given public key $5^n \mod p$, quickly find secret key n?

(Warning: This is *one* way to attack the protocol. Maybe there are better ways.)

Relations to ECC:

1. Some DL techr

to elliptic-curve D Use in evaluating security of an ellip

Some technique
 Use in evaluating
 advantages of ellip
 compared to multiplication

3. Tricky: Some t

extra applications

See Tanja Lange's

on Weil descent et

em

32?

p}.

32.

Typical cryptanalytic application:

Imagine standard p = 1000003in the Diffie-Hellman protocol.

User chooses secret key n, publishes $5^n \mod p = 262682$.

Can attacker quickly solve the discrete-logarithm problem? Given public key $5^n \mod p$, quickly find secret key n?

(Warning: This is *one* way to attack the protocol. Maybe there are better ways.)

Relations to ECC:

- 1. Some DL techniques also to elliptic-curve DL problem Use in evaluating security of an elliptic curve.
- 2. Some techniques don't a Use in evaluating
- advantages of elliptic curves compared to multiplication.
- 3. Tricky: Some techniques
- extra applications to some c
- See Tanja Lange's talk
- on Weil descent etc.

Typical cryptanalytic application:

Imagine standard p = 1000003in the Diffie-Hellman protocol.

User chooses secret key n, publishes $5^n \mod p = 262682$.

Can attacker quickly solve the discrete-logarithm problem? Given public key $5^n \mod p$, quickly find secret key n?

(Warning: This is *one* way to attack the protocol. Maybe there are better ways.) Relations to ECC:

to elliptic-curve DL problems. Use in evaluating security of an elliptic curve.

2. Some techniques don't apply. Use in evaluating advantages of elliptic curves compared to multiplication.

3. Tricky: Some techniques have extra applications to some curves. See Tanja Lange's talk on Weil descent etc.

1. Some DL techniques also apply

cryptanalytic application:

standard p = 1000003iffie-Hellman protocol.

ooses secret key n, s $5^n \mod p = 262682$.

acker quickly solve rete-logarithm problem? ublic key $5^n \mod p$, Find secret key n?

g: This is *one* way

k the protocol.

here are better ways.)

Relations to ECC:

1. Some DL techniques also apply to elliptic-curve DL problems. Use in evaluating security of an elliptic curve.

2. Some techniques don't apply. Use in evaluating advantages of elliptic curves compared to multiplication.

3. Tricky: Some techniques have extra applications to some curves. See Tanja Lange's talk on Weil descent etc.

Understa

- Can con
- $5^1 \mod$
- $5^2 \mod 1$
- $5^3 \mod 3$
- $5^8 \mod 6$
- $5^9 \mod 6$ $5^{1000002}$
- At some with 5^n
- Maximu
- $\leq p-1$
- that doe

tic application:

p = 1000003an protocol.

et key n, p = 262682.

kly solve thm problem? ⁿ mod *p*, key *n*?

one way

ocol.

etter ways.)

Relations to ECC:

 Some DL techniques also apply to elliptic-curve DL problems.
 Use in evaluating security of an elliptic curve.

Some techniques don't apply.
 Use in evaluating
 advantages of elliptic curves
 compared to multiplication.

 Tricky: Some techniques have extra applications to some curves.
 See Tanja Lange's talk on Weil descent etc.

Understanding bru

At some point we' with $5^n \mod p = 2$

Maximum cost of

 $\leq p-1$ mults by

 $\leq p-1$ nanosecond that does 1 mult/

ntion:

03 ol.

32.

em?

5.)

Relations to ECC:

1. Some DL techniques also apply to elliptic-curve DL problems. Use in evaluating security of an elliptic curve.

2. Some techniques don't apply. Use in evaluating advantages of elliptic curves compared to multiplication.

3. Tricky: Some techniques have extra applications to some curves. See Tanja Lange's talk on Weil descent etc.

Understanding brute force

Can compute successively

- $5^1 \mod p = 5$,
- $5^2 \mod p = 25$,
- $5^3 \mod p = 125, \ldots,$
- $5^8 \mod p = 390625$,
- $5^9 \mod p = 953122, \ldots,$ $5^{1000002} \mod p = 1.$
- At some point we'll find n
- with $5^n \mod p = 262682$.
- Maximum cost of computat
- mults by 5 mod <math>p;
- nanoseconds on a (
- that does 1 mult/nanosecon

Relations to ECC:

1. Some DL techniques also apply to elliptic-curve DL problems. Use in evaluating security of an elliptic curve.

2. Some techniques don't apply. Use in evaluating advantages of elliptic curves compared to multiplication.

3. Tricky: Some techniques have extra applications to some curves. See Tanja Lange's talk on Weil descent etc.

Understanding brute force

Can compute successively $5^{\perp} \mod p = 5$, $5^2 \mod p = 25$, $5^3 \mod p = 125, \ldots,$ $5^8 \mod p = 390625$, $5^9 \mod p = 953122, \ldots,$ $5^{1000002} \mod p = 1.$

At some point we'll find nwith $5^n \mod p = 262682$.

Maximum cost of computation:

- mults by 5 mod p;
- nanoseconds on a CPUthat does 1 mult/nanosecond.

s to ECC:

- e DL techniques also apply c-curve DL problems.
- valuating
- of an elliptic curve.
- e techniques don't apply. valuating
- ges of elliptic curves
- d to multiplication.
- y: Some techniques have plications to some curves. ja Lange's talk
- descent etc.

Understanding brute force

Can compute successively $5^1 \mod p = 5$, $5^2 \mod p = 25$, $5^3 \mod p = 125, \ldots,$ $5^8 \mod p = 390625$, $5^9 \mod p = 953122, \ldots,$ $5^{1000002} \mod p = 1.$

At some point we'll find nwith $5^n \mod p = 262682$.

Maximum cost of computation: $\leq p-1$ mults by 5 mod p; nanoseconds on a CPUthat does 1 mult/nanosecond.

This is r for $p \approx 1$ But user standard making Attack c $pprox 2^{50}$ m $pprox 2^{100}$ r (Not exa cost of r But this

niques also apply L problems.

tic curve.

es don't apply.

ptic curves plication.

plication.

echniques have

to some curves.

talk

C.

Understanding brute force

Can compute successively $5^1 \mod p = 5$, $5^2 \mod p = 25$, $5^3 \mod p = 125$, ..., $5^8 \mod p = 390625$, $5^9 \mod p = 953122$, ..., $5^{1000002} \mod p = 1$.

At some point we'll find nwith $5^n \mod p = 262682$.

Maximum cost of computation: $\leq p - 1$ mults by 5 mod p; $\leq p - 1$ nanoseconds on a CPU that does 1 mult/nanosecond.

This is negligible v for $p \approx 2^{20}$.

But users can standardize a large making the attack

Attack cost scales $\approx 2^{50}$ mults for p $\approx 2^{100}$ mults for p

(Not exactly linear cost of mults grow But this is a mino

apply S.

pply.

have urves.

Understanding brute force

Can compute successively $5^{\perp} \mod p = 5$, $5^2 \mod p = 25$, $5^3 \mod p = 125, \ldots,$ $5^8 \mod p = 390625$, $5^9 \mod p = 953122, \ldots,$ $5^{1000002} \mod p = 1.$

At some point we'll find nwith $5^n \mod p = 262682$.

Maximum cost of computation: mults by 5 mod p;nanoseconds on a CPUthat does 1 mult/nanosecond.

for $p \approx 2^{20}$. But users can

This is negligible work

- standardize a larger p,
- making the attack slower.
- Attack cost scales linearly: $\approx 2^{50}$ mults for $p \approx 2^{50}$,
- $\approx 2^{100}$ mults for $p \approx 2^{100}$, ϵ
- (Not exactly linearly:
- cost of mults grows with p.
- But this is a minor effect.)

Understanding brute force

Can compute successively $5^{\perp} \mod p = 5$, $5^2 \mod p = 25$, $5^3 \mod p = 125, \ldots,$ $5^8 \mod p = 390625$, $5^9 \mod p = 953122, \ldots,$ $5^{1000002} \mod p = 1.$

At some point we'll find nwith $5^n \mod p = 262682$.

Maximum cost of computation: mults by 5 mod p;nanoseconds on a CPUthat does 1 mult/nanosecond.

This is negligible work for $p \approx 2^{20}$.

But users can standardize a larger p, making the attack slower.

Attack cost scales linearly: $\approx 2^{50}$ mults for $p \approx 2^{50}$, $\approx 2^{100}$ mults for $p \approx 2^{100}$, etc.

(Not exactly linearly: cost of mults grows with p. But this is a minor effect.)

anding brute force

npute successively

p = 5, p = 25, $p = 125, \ldots,$ p = 390625, $p = 953122, \ldots,$ mod p = 1.

point we'll find nmod p = 262682.

m cost of computation: mults by 5 mod p; nanoseconds on a CPU es 1 mult/nanosecond.

This is negligible work for $p \approx 2^{20}$.

But users can standardize a larger p, making the attack slower.

Attack cost scales linearly: $\approx 2^{50}$ mults for $p \approx 2^{50}$, $\approx 2^{100}$ mults for $p \approx 2^{100}$, etc.

(Not exactly linearly: cost of mults grows with p. But this is a minor effect.)

Comput of finish Chance 1/2 cha 1/10 ch"So usei That's p "random choose r compute compute (515040)compute subtract

ite force
essively
, 25, 22,, 1.
II find <i>n</i> 262682.
computation: 5 mod <i>p</i> ; nds on a CPU

nanosecond.

This is negligible work for $p \approx 2^{20}$.

But users can standardize a larger p, making the attack slower.

Attack cost scales linearly: $\approx 2^{50}$ mults for $p \approx 2^{50}$, $\approx 2^{100}$ mults for $p \approx 2^{100}$, etc.

(Not exactly linearly: cost of mults grows with p. But this is a minor effect.) Computation has a of finishing earlier. Chance scales line 1/2 chance of 1/2 1/10 chance of 1/

"So users should a

That's pointless.

"random self-redu

choose random r,

compute $5^r \mod p$

compute $5^r 5^n$ mo

 $(515040 \cdot (5^n \mod 5^n))$

compute discrete

subtract $r \mod p$

```
This is negligible work
for p \approx 2^{20}.
But users can
standardize a larger p,
making the attack slower.
Attack cost scales linearly:
\approx 2^{50} mults for p \approx 2^{50},
\approx 2^{100} mults for p \approx 2^{100}, etc.
(Not exactly linearly:
cost of mults grows with p.
But this is a minor effect.)
```

ion:

CPU d.

- Computation has a good char of finishing earlier.
- Chance scales linearly:
- 1/2 chance of 1/2 cost;
- 1/10 chance of 1/10 cost; e
- "So users should choose larg
- That's pointless. We can ap "random self-reduction":
- choose random r, say 72637
- compute $5^r \mod p = 515040$
- compute $5^r 5^n \mod p$ as
- $(515040 \cdot (5^n \mod p)) \mod p$
- compute discrete log;
- subtract $r \mod p 1$; obtain

This is negligible work for $p \approx 2^{20}$.

But users can standardize a larger p, making the attack slower.

Attack cost scales linearly: $\approx 2^{50}$ mults for $p \approx 2^{50}$, $\approx 2^{100}$ mults for $p \approx 2^{100}$, etc.

(Not exactly linearly: cost of mults grows with p. But this is a minor effect.)

Computation has a good chance of finishing earlier. Chance scales linearly: 1/2 chance of 1/2 cost; 1/10 chance of 1/10 cost; etc. "So users should choose large n." That's pointless. We can apply "random self-reduction": choose random r, say 726379; compute $5^r \mod p = 515040$; compute $5^r 5^n \mod p$ as $(515040 \cdot (5^n \mod p)) \mod p;$ compute discrete log; subtract $r \mod p - 1$; obtain n.

negligible work 2²⁰.

- rs can lize a larger p, the attack slower.
- cost scales linearly: ults for $ppprox 2^{50}$, nults for $ppprox 2^{100}$, etc.
- actly linearly:
- nults grows with p.
- is a minor effect.)

Computation has a good chance of finishing earlier. Chance scales linearly: 1/2 chance of 1/2 cost; 1/10 chance of 1/10 cost; etc. "So users should choose large n." That's pointless. We can apply "random self-reduction": choose random r, say 726379; compute $5^r \mod p = 515040$; compute $5^r 5^n \mod p$ as $(515040 \cdot (5^n \mod p)) \mod p;$ compute discrete log; subtract $r \mod p - 1$; obtain n.

Comput One low many pa Example 2^{10} core each 2^{30} Maybe; for detai Attacker many pa Example so 2³⁴ c so 2⁶⁴ m so 2⁸⁹ m

vork
er p, slower.
linearly: $\approx 2^{50}$, $p \approx 2^{100}$, etc.
rly: /s with <i>p</i> . r effect.)

Computation has a good chance of finishing earlier. Chance scales linearly: 1/2 chance of 1/2 cost; 1/10 chance of 1/10 cost; etc. "So users should choose large n." That's pointless. We can apply "random self-reduction": choose random *r*, say 726379; compute $5^r \mod p = 515040$; compute $5^r 5^n \mod p$ as $(515040 \cdot (5^n \mod p)) \mod p;$ compute discrete log; subtract $r \mod p - 1$; obtain n.

Computation can One low-cost chip many parallel sear Example, 2⁶ €: o 2^{10} cores on the c each 2^{30} mults/se Maybe; see SHAR for detailed cost a Attacker can run many parallel chip Example, 2³⁰ €: 2 so 2^{34} cores, so 2^{64} mults/seco so 2^{89} mults/year.

Computation has a good chance of finishing earlier. Chance scales linearly: 1/2 chance of 1/2 cost; 1/10 chance of 1/10 cost; etc. "So users should choose large n." That's pointless. We can apply "random self-reduction": choose random r, say 726379; compute $5^r \mod p = 515040$; compute $5^r 5^n \mod p$ as $(515040 \cdot (5^n \mod p)) \mod p;$ compute discrete log; subtract $r \mod p - 1$; obtain n.

so 2^{34} cores,

etc.

Computation can be parallel

- One low-cost chip can run
- many parallel searches.
- Example, $2^6 \in$: one chip,
- 2^{10} cores on the chip,
- each 2^{30} mults/second?
- Maybe; see SHARCS worksh
- for detailed cost analyses.
- Attacker can run
- many parallel chips.
- Example, $2^{30} \in :2^{24}$ chips,
- so 2^{64} mults/second,
- so 2^{89} mults/year.

Computation has a good chance of finishing earlier. Chance scales linearly: 1/2 chance of 1/2 cost; 1/10 chance of 1/10 cost; etc.

"So users should choose large n."

That's pointless. We can apply "random self-reduction": choose random r, say 726379; compute $5^r \mod p = 515040$; compute $5^r 5^n \mod p$ as $(515040 \cdot (5^n \mod p)) \mod p;$ compute discrete log; subtract $r \mod p - 1$; obtain n. Computation can be parallelized.

One low-cost chip can run many parallel searches. Example, $2^6 \in$: one chip, 2^{10} cores on the chip, each 2^{30} mults/second? Maybe; see SHARCS workshops for detailed cost analyses.

Attacker can run many parallel chips. Example, $2^{30} \in :2^{24}$ chips, so 2^{34} cores, so 2^{64} mults/second, so 2^{89} mults/year.

- ation has a good chance ing earlier.
- scales linearly:
- nce of 1/2 cost;
- ance of 1/10 cost; etc.
- 's should choose large n."
- ointless. We can apply n self-reduction":
- andom *r*, say 726379;
- $p = 5^r \mod p = 515040;$
- $p = 5^r 5^n \mod p$ as
- $(5^n \mod p) \mod p;$
- e discrete log;
- $r \mod p 1$; obtain n.

Computation can be parallelized.

One low-cost chip can run many parallel searches. Example, $2^6 \in$: one chip, 2^{10} cores on the chip, each 2^{30} mults/second? Maybe; see SHARCS workshops for detailed cost analyses.

Attacker can run many parallel chips. Example, $2^{30} \in :2^{24}$ chips, so 2^{34} cores, so 2^{64} mults/second, so 2^{89} mults/year.

Multiple

- Comput
- to many
- Given 10
- 5^{n_2} mod
- Can find
- with $\leq j$
- Simplest
- a sorted
- 5^{n_1} mod
- Then ch $5^1 \mod 1$

a good chance

- arly:
- cost;
- 10 cost; etc.
- choose large *n*."
- We can apply ction":
- say 726379;
- p = 515040;
- d p as
- $p) \mod p;$
- og;
- 1; obtain *n*.

Computation can be parallelized.

One low-cost chip can run many parallel searches. Example, 2⁶ €: one chip, 2¹⁰ cores on the chip, each 2³⁰ mults/second? Maybe; see SHARCS workshops for detailed cost analyses.

Attacker can run many parallel chips. Example, 2³⁰ €: 2²⁴ chips, so 2³⁴ cores, so 2⁶⁴ mults/second, so 2⁸⁹ mults/year.

Multiple targets a Computation can to many targets a Given 100 DL targ $5^{n_2} \mod p, \ldots, 5^{n_2}$ Can find all of n_1 with $\leq p-1$ mult Simplest approach a sorted table con $5^{n_1} \mod p, \ldots, 5^{n_2}$ Then check table $5^1 \mod p, 5^2 \mod p$

ance	Cc
	Or
	ma
	Ex
tC.	2^{10}
ge <i>n</i> ."	ea
nly	Ma
ргу	for
9;	At
);	ma
	Ex
0;	SO
	SO
ו <i>n</i> .	SO

omputation can be parallelized.

ne low-cost chip can run any parallel searches. cample, $2^6 \in$: one chip, ⁰ cores on the chip, ch 2^{30} mults/second? aybe; see SHARCS workshops r detailed cost analyses.

tacker can run any parallel chips. cample, $2^{30} \in 2^{24}$ chips, 2^{34} cores, 2^{64} mults/second, 2^{89} mults/year.

Multiple targets and giant s

- Computation can be applied to many targets at once.
- Given 100 DL targets 5^{n_1} m
- $5^{n_2} \mod p, \ldots, 5^{n_{100}} \mod p$
- Can find all of n_1, n_2, \ldots, n_n with mults mod p.
- Simplest approach: First bu
- a sorted table containing
- $5^{n_1} \mod p, \ldots, 5^{n_{100}} \mod p$
- Then check table for
- $5^1 \mod p$, $5^2 \mod p$, etc.

Computation can be parallelized.

One low-cost chip can run many parallel searches. Example, $2^6 \in$: one chip, 2^{10} cores on the chip, each 2^{30} mults/second? Maybe; see SHARCS workshops for detailed cost analyses.

Attacker can run many parallel chips. Example, $2^{30} \in :2^{24}$ chips, so 2^{34} cores, so 2^{64} mults/second, so 2^{89} mults/year.

Multiple targets and giant steps

Computation can be applied to many targets at once.

Given 100 DL targets $5^{n_1} \mod p$, $5^{n_2} \mod p, \ldots, 5^{n_{100}} \mod p$: Can find all of $n_1, n_2, \ldots, n_{100}$

with mults mod p.

Simplest approach: First build a sorted table containing $5^{n_1} \mod p, \ldots, 5^{n_{100}} \mod p.$ Then check table for $5^1 \mod p$, $5^2 \mod p$, etc.

ation can be parallelized.

-cost chip can run

rallel searches.

e, $2^6 \in$: one chip,

s on the chip,

' mults/second?

see SHARCS workshops

led cost analyses.

can run

rallel chips.

e, 2^{30} €: 2^{24} chips,

ores,

nults/second,

nults/year.

Multiple targets and giant steps

Computation can be applied to many targets at once.

Given 100 DL targets $5^{n_1} \mod p$, $5^{n_2} \mod p, \ldots, 5^{n_{100}} \mod p$: Can find all of $n_1, n_2, \ldots, n_{100}$ with $\leq p-1$ mults mod p.

Simplest approach: First build a sorted table containing $5^{n_1} \mod p, \ldots, 5^{n_{100}} \mod p.$ Then check table for $5^1 \mod p$, $5^2 \mod p$, etc.

Interesti Solving isn't mu solving of Interesti Solving out of 1 is much solving a When di find its a Typically

be parallelized.

can run

ches.

ne chip,

hip,

cond?

CS workshops

nalyses.

s. 2²⁴ chips,

nd,

Multiple targets and giant steps

Computation can be applied to many targets at once.

Given 100 DL targets $5^{n_1} \mod p$, $5^{n_2} \mod p$, ..., $5^{n_{100}} \mod p$: Can find *all* of $n_1, n_2, \ldots, n_{100}$ with $\leq p - 1$ mults mod p.

Simplest approach: First build a sorted table containing $5^{n_1} \mod p, \ldots, 5^{n_{100}} \mod p$. Then check table for $5^1 \mod p, 5^2 \mod p$, etc. Interesting conseq Solving all 100 DL isn't much harder solving one DL pro

Interesting conseq Solving *at least or* out of 100 DL pro

is much easier tha solving one DL pro

When did this confind its first n_i ? Typically $\approx (p-1)$

•				
	Ζ	e	d	-

lops

Multiple targets and giant steps

Computation can be applied to many targets at once.

Given 100 DL targets $5^{n_1} \mod p$, $5^{n_2} \mod p, \ldots, 5^{n_{100}} \mod p$: Can find *all* of $n_1, n_2, ..., n_{100}$ with mults mod p.

Simplest approach: First build a sorted table containing $5^{n_1} \mod p, \ldots, 5^{n_{100}} \mod p.$ Then check table for $5^1 \mod p$, $5^2 \mod p$, etc.

Interesting consequence #1:

- Solving all 100 DL problems
- isn't much harder than
- solving one DL problem.
- Interesting consequence #2:
- Solving at least one
- out of 100 DL problems
- is much easier than
- solving one DL problem.
- When did this computation
- find its *first* n_i ?
- Typically $\approx (p-1)/100$ mu

Multiple targets and giant steps

Computation can be applied to many targets at once.

Given 100 DL targets $5^{n_1} \mod p$, $5^{n_2} \mod p, \ldots, 5^{n_{100}} \mod p$: Can find all of $n_1, n_2, \ldots, n_{100}$ with mults mod <math>p.

Simplest approach: First build a sorted table containing $5^{n_1} \mod p, \ldots, 5^{n_{100}} \mod p.$ Then check table for $5^1 \mod p$, $5^2 \mod p$, etc.

Interesting consequence #1: Solving all 100 DL problems isn't much harder than solving one DL problem.

Interesting consequence #2: Solving at least one out of 100 DL problems is much easier than solving one DL problem.

When did this computation find its first n_i ? Typically $\approx (p-1)/100$ mults.

targets and giant steps

ation can be applied targets at once.

)0 DL targets $5^{n_1} \mod p$, $p_{1} p_{2} \dots p_{100} \mod p_{100}$ | all of $n_1, n_2, ..., n_{100}$ p-1 mults mod p.

approach: First build table containing $p_{1}, \ldots, 5^{n_{100}} \mod p_{100}$ eck table for $p, 5^2 \mod p$, etc.

Interesting consequence #1: Solving all 100 DL problems isn't much harder than solving one DL problem.

Interesting consequence #2: Solving at least one out of 100 DL problems is much easier than solving one DL problem.

When did this computation find its *first* n_i ? Typically $\approx (p-1)/100$ mults.

Can use to turn a into mul Given 5^{\prime} Choose Compute $5^{r_2}5^n$ m Solve th Typically to find a r_i+n n immedia

nd giant steps

be applied

t once.

gets $5^{n_1} \mod p$, $p_{100} \mod p$:

 n_2, \ldots, n_{100} is mod *p*.

: First build

taining

 $n_{100} \mod p$.

for

p, etc.

Interesting consequence #1: Solving all 100 DL problems isn't much harder than solving one DL problem.

Interesting consequence #2: Solving *at least one* out of 100 DL problems is much easier than solving one DL problem.

When did this computation find its first n_i ? Typically $\approx (p-1)/100$ mults.

Can use random s to turn a single ta into multiple targe Given $5^n \mod p$: Choose random r_1 Compute $5^{r_1}5^n$ m $5^{r_2}5^n \mod p$, etc. Solve these 100 D Typically $\approx (p-1)$ to find at least on $r_i + n \mod p - 1$, immediately revea

od p, 2: 100

ild

0.

Interesting consequence #1: Solving all 100 DL problems isn't much harder than solving one DL problem.

Interesting consequence #2: Solving at least one out of 100 DL problems is much easier than solving one DL problem.

When did this computation find its first n_i ? Typically $\approx (p-1)/100$ mults.

Can use random self-reducti to turn a single target into multiple targets. Given $5^n \mod p$: Choose random r_1, r_2, \ldots, r_n Compute $5^{r_1}5^n \mod p$, $5^{r_2}5^n \mod p$, etc. Solve these 100 DL problem Typically $\approx (p-1)/100$ mu to find at least one $r_i + n \mod p - 1$, immediately revealing n.
Interesting consequence #1: Solving all 100 DL problems isn't much harder than solving one DL problem.

Interesting consequence #2: Solving at least one out of 100 DL problems is much easier than solving one DL problem.

When did this computation find its first n_i ? Typically $\approx (p-1)/100$ mults.

Can use random self-reduction to turn a single target into multiple targets. Given $5^n \mod p$: Choose random $r_1, r_2, \ldots, r_{100}$. Compute $5^{r_1}5^n \mod p$, $5^{r_2}5^n \mod p$, etc. Solve these 100 DL problems. Typically $\approx (p-1)/100$ mults to find at least one $r_i + n \mod p - 1$, immediately revealing n.

ng consequence #1: all 100 DL problems ch harder than one DL problem.

ng consequence #2:

at least one

00 DL problems

easier than

one DL problem.

d this computation first n_i ?

 $p \approx (p-1)/100$ mults.

Can use random self-reduction to turn a single target into multiple targets.

Given $5^n \mod p$: Choose random $r_1, r_2, \ldots, r_{100}$. Compute $5^{r_1}5^n \mod p$, $5^{r_2}5^n \mod p$, etc.

Solve these 100 DL problems. Typically $\approx (p-1)/100$ mults to find at least one $r_i + n \mod p - 1$, immediately revealing n.

Also spe to comp $\approx \lg p$ m Faster: with r_1 : Compute $5^{r_1}5^n$ m $5^{2r_1}5^n$ r $5^{3r_1}5^n$ r Just 1 n pprox 100 +to find η

uence #1: . problems than oblem.

uence #2:

1e

blems

n

oblem.

nputation

)/100 mults.

Can use random self-reduction to turn a single target into multiple targets. Given $5^n \mod p$: Choose random $r_1, r_2, \ldots, r_{100}$. Compute $5^{r_1}5^n \mod p$, $5^{r_2}5^n \mod p$, etc.

Solve these 100 DL problems. Typically $\approx (p-1)/100$ mults to find *at least one* $r_i + n \mod p - 1$, immediately revealing *n*.

Also spent some n to compute each 5 $\approx \lg p$ mults for each \approx Faster: Choose r_i with $r_1 pprox (p-1)$ Compute 5^{r_1} mod $5^{r_1}5^n \mod p;$ $5^{2r_1}5^n \mod p;$ $5^{3r_1}5^n \mod p$; etc Just 1 mult for ea $\approx 100 + \lg p + (p)$ to find n given 5^n

Can use random self-reduction to turn a single target into multiple targets. Given $5^n \mod p$: Choose random $r_1, r_2, \ldots, r_{100}$. Compute $5^{r_1}5^n \mod p$, $5^{r_2}5^n \mod p$, etc.

Solve these 100 DL problems. Typically $\approx (p-1)/100$ mults to find at least one $r_i + n \mod p - 1$, immediately revealing n.

 $5^{r_1}5^n \mod p$; $5^{2r_1}5^n \mod p;$

lts.

Also spent some mults to compute each $5^{r_i} \mod p$: $\approx \lg p$ mults for each *i*.

- Faster: Choose $r_i = ir_1$ with $r_1 \approx (p-1)/100$.
- Compute $5^{r_1} \mod p$;
- $5^{3r_1}5^n \mod p$; etc.
- Just 1 mult for each new i.
- $pprox 100 + \lg p + (p-1)/100$
- to find *n* given $5^n \mod p$.

Can use random self-reduction to turn a single target into multiple targets.

Given $5^n \mod p$: Choose random $r_1, r_2, \ldots, r_{100}$. Compute $5^{r_1}5^n \mod p$, $5^{r_2}5^n \mod p$, etc.

Solve these 100 DL problems. Typically $\approx (p-1)/100$ mults to find at least one $r_i + n \mod p - 1$, immediately revealing n.

Also spent some mults to compute each $5^{r_i} \mod p$: $\approx \lg p$ mults for each *i*. Faster: Choose $r_i = ir_1$ with $r_1 \approx (p-1)/100$. Compute $5^{r_1} \mod p$; $5^{r_1}5^n \mod p$; $5^{2r_1}5^n \mod p;$ $5^{3r_1}5^n \mod p$; etc. Just 1 mult for each new i. $\approx 100 + \lg p + (p - 1)/100$ mults to find n given $5^n \mod p$.

random self-reduction a single target tiple targets.

 $n \mod p$: random $r_1, r_2, ..., r_{100}$. $5^{r_1}5^n \mod p$, od p, etc.

ese 100 DL problems. $p \approx (p-1)/100$ mults at least one nod p-1,

tely revealing n.

Also spent some mults to compute each $5^{r_i} \mod p$: $\approx \lg p$ mults for each *i*. Faster: Choose $r_i = ir_1$ with $r_1 \approx (p-1)/100$. Compute $5^{r_1} \mod p$; $5^{r_1}5^n \mod p;$ $5^{2r_1}5^n \mod p;$ $5^{3r_1}5^n \mod p$; etc. Just 1 mult for each new i. $\approx 100 + \lg p + (p - 1)/100$ mults to find *n* given $5^n \mod p$.

Faster: Only \approx to solve "Shanks discrete-Example $5^n \mod$ Compute Then co $5^{1024}5^n$ $5^{2 \cdot 1024} 5^{2}$ $5^{3\cdot 1024}5^{3}$

 $5^{1000 \cdot 102}$

elf-reduction rget ets.

 $r_2, \ldots, r_{100}.$ od p,

L problems. .)/100 mults e

ling n.

Also spent some mults to compute each $5^{r_i} \mod p$: $\approx \lg p$ mults for each *i*. Faster: Choose $r_i = ir_1$ with $r_1 \approx (p-1)/100$. Compute $5^{r_1} \mod p$; $5^{r_1}5^n \mod p;$ $5^{2r_1}5^n \mod p;$ $5^{3r_1}5^n \mod p$; etc. Just 1 mult for each new i. $\approx 100 + \lg p + (p - 1)/100$ mults to find n given $5^n \mod p$.

Faster: Increase 1 Only $\approx 2\sqrt{p}$ mult to solve one DL p "Shanks baby-step discrete-logarithm Example: p = 100 $5^n \mod p = 26268$ Compute 5^{1024} mo Then compute 100 $5^{1024}5^n \mod p = 2$ $5^{2 \cdot 1024} 5^n \mod p =$ $5^{3 \cdot 1024} 5^n \mod p =$ $5^{1000 \cdot 1024} 5^n \mod n$ on

100.

s. Its

Also spent some mults to compute each $5^{r_i} \mod p$: $\approx \lg p$ mults for each *i*. Faster: Choose $r_i = ir_1$ with $r_1 \approx (p-1)/100$. Compute $5^{r_1} \mod p$; $5^{r_1}5^n \mod p;$ $5^{2r_1}5^n \mod p;$ $5^{3r_1}5^n \mod p$; etc. Just 1 mult for each new i. $\approx 100 + \lg p + (p - 1)/100$ mults to find *n* given $5^n \mod p$.

Faster: Increase 100 to $\approx \sqrt{2}$ Only $\approx 2\sqrt{p}$ mults

- to solve one DL problem!
- "Shanks baby-step-giant-ste discrete-logarithm algorithm
- Example: p = 1000003,
- $5^n \mod p = 262682.$
- Compute $5^{1024} \mod p = 585$
- Then compute 1000 targets:
- $5^{1024}5^n \mod p = 966849$,
- $5^{2 \cdot 1024} 5^n \mod p = 579277$,
- $5^{3 \cdot 1024} 5^n \mod p = 579062$,
- $5^{1000 \cdot 1024} 5^n \mod p = 32170$

Also spent some mults to compute each $5^{r_i} \mod p$: $\approx \lg p$ mults for each *i*.

Faster: Choose $r_i = ir_1$ with $r_1 \approx (p-1)/100$. Compute $5^{r_1} \mod p$; $5^{r_1}5^n \mod p$; $5^{2r_1}5^n \mod p;$ $5^{3r_1}5^n \mod p$; etc. Just 1 mult for each new i.

 $\approx 100 + \lg p + (p - 1)/100$ mults to find n given $5^n \mod p$.

Faster: Increase 100 to $\approx \sqrt{p}$. Only $\approx 2\sqrt{p}$ mults to solve one DL problem! "Shanks baby-step-giant-step discrete-logarithm algorithm." Example: p = 1000003, $5^n \mod p = 262682.$ Compute $5^{1024} \mod p = 58588$. Then compute 1000 targets: $5^{1024}5^n \mod p = 966849$, $5^{2 \cdot 1024} 5^n \mod p = 579277$, $5^{3 \cdot 1024} 5^n \mod p = 579062, \ldots,$ $5^{1000 \cdot 1024} 5^n \mod p = 321705.$

nt some mults ute each $5^{r_i} \mod p$: ults for each *i*.

Choose $r_i = ir_1$ pprox (p-1)/100. $p = 5^{r_1} \mod p;$ od p;

- nod p;
- nod p; etc.
- nult for each new i.

 $\log p + (p - 1)/100$ mults i given $5^n \mod p$.

Faster: Increase 100 to $\approx \sqrt{p}$. Only $\approx 2\sqrt{p}$ mults to solve one DL problem!

"Shanks baby-step-giant-step discrete-logarithm algorithm."

Example: p = 1000003, $5^n \mod p = 262682.$

Compute $5^{1024} \mod p = 58588$. Then compute 1000 targets: $5^{1024}5^n \mod p = 966849$, $5^{2 \cdot 1024} 5^n \mod p = 579277$, $5^{3 \cdot 1024} 5^n \mod p = 579062, \ldots,$ $5^{1000 \cdot 1024} 5^n \mod p = 321705.$

Build a s 2573 = 1003371 = 10003593 = 10004960 =5218 = 100999675 : Look up $5^3 \mod \frac{1}{2}$ 5^{755} mo 966603 : in the ta so 755 = deduce 7

nults $\overline{p}^{r_i} \mod p$: ach *i*. $= ir_1$ /100. p;ch new *i*.

- 1)/100 mults mod *p*.

Faster: Increase 100 to $\approx \sqrt{p}$. Only $\approx 2\sqrt{p}$ mults to solve one DL problem! "Shanks baby-step-giant-step discrete-logarithm algorithm." Example: p = 1000003, $5^n \mod p = 262682.$ Compute $5^{1024} \mod p = 58588$. Then compute 1000 targets: $5^{1024}5^n \mod p = 966849$, $5^{2 \cdot 1024} 5^n \mod p = 579277$, $5^{3 \cdot 1024} 5^n \mod p = 579062, \ldots,$ $5^{1000 \cdot 1024} 5^n \mod p = 321705.$

Build a sorted tab $2573 = 5^{430 \cdot 1024} 5^{7}$ $3371 = 5^{192 \cdot 1024} 5^{7}$

- $3593 = 5^{626 \cdot 1024} 5^7$
- $4960 = 5^{663 \cdot 1024} 5^{7}$
- $5218 = 5^{376 \cdot 1024} 5^{7}$
- $999675 = 5^{344 \cdot 1024}$
- Look up $5^1 \mod p$ $5^3 \mod p$, etc. in t
- $5^{755} \mod p = 966$ $966603 = 5^{332 \cdot 1024}$
- in the table of targ
- so $755 = 332 \cdot 102$
- deduce n = 66078

Faster: Increase 100 to $\approx \sqrt{p}$. Only $\approx 2\sqrt{p}$ mults to solve one DL problem! "Shanks baby-step-giant-step" discrete-logarithm algorithm." Example: p = 1000003, $5^n \mod p = 262682.$ Compute $5^{1024} \mod p = 58588$. Then compute 1000 targets: $5^{1024}5^n \mod p = 966849$, $5^{2 \cdot 1024} 5^n \mod p = 579277$, $5^{3 \cdot 1024} 5^n \mod p = 579062, \ldots,$ $5^{1000 \cdot 1024} 5^n \mod p = 321705.$

mults

Build a sorted table of targe $2573 = 5^{430 \cdot 1024} 5^n \mod p$,

- $3371 = 5^{192 \cdot 1024} 5^n \mod p$,
- $3593 = 5^{626 \cdot 1024} 5^n \mod p$,
- $4960 = 5^{663 \cdot 1024} 5^n \mod p,$
- $5218 = 5^{376 \cdot 1024} 5^n \mod p$, .
- $999675 = 5^{344 \cdot 1024} 5^n \mod p$
- Look up $5^1 \mod p$, $5^2 \mod p$
- $5^3 \mod p$, etc. in this table.
- $5^{755} \mod p = 966603$; find
- $966603 = 5^{332 \cdot 1024} 5^n \mod p$
- in the table of targets;
- so $755 = 332 \cdot 1024 + n \mod n$
- deduce n = 660789.

Faster: Increase 100 to $\approx \sqrt{p}$. Only $\approx 2\sqrt{p}$ mults to solve one DL problem!

"Shanks baby-step-giant-step" discrete-logarithm algorithm."

Example: p = 1000003, $5^n \mod p = 262682.$

Compute $5^{1024} \mod p = 58588$. Then compute 1000 targets: $5^{1024}5^n \mod p = 966849$, $5^{2 \cdot 1024} 5^n \mod p = 579277$, $5^{3 \cdot 1024} 5^n \mod p = 579062, \ldots,$ $5^{1000 \cdot 1024} 5^n \mod p = 321705.$

Build a sorted table of targets: $2573 = 5^{430 \cdot 1024} 5^n \mod p$, $3371 = 5^{192 \cdot 1024} 5^n \mod p$, $3593 = 5^{626 \cdot 1024} 5^n \mod p$, $4960 = 5^{663 \cdot 1024} 5^n \mod p$, $5218 = 5^{376 \cdot 1024} 5^n \mod p, \ldots,$ $999675 = 5^{344 \cdot 1024} 5^n \mod p$. Look up $5^1 \mod p$, $5^2 \mod p$, $5^3 \mod p$, etc. in this table. $5^{755} \mod p = 966603$; find $966603 = 5^{332 \cdot 1024} 5^n \mod p$ in the table of targets; deduce n = 660789.

so $755 = 332 \cdot 1024 + n \mod p - 1$;

Increase 100 to $\approx \sqrt{p}$. $2\sqrt{p}$ mults one DL problem!

baby-step-giant-step logarithm algorithm."

e: p = 1000003, p = 262682.

e $5^{1024} \mod p = 58588$. mpute 1000 targets: mod p = 966849, $^{n} \mod p = 579277,$ $p \mod p = 579062, \ldots,$ $^{4}5^{n} \mod p = 321705.$

Build a sorted table of targets: $2573 = 5^{430 \cdot 1024} 5^n \mod p$, $3371 = 5^{192 \cdot 1024} 5^n \mod p$, $3593 = 5^{626 \cdot 1024} 5^n \mod p$, $4960 = 5^{663 \cdot 1024} 5^n \mod p$, $5218 = 5^{376 \cdot 1024} 5^n \mod p, \ldots,$ $999675 = 5^{344 \cdot 1024} 5^n \mod p$. Look up 5¹ mod p, 5² mod p, $5^3 \mod p$, etc. in this table. $5^{755} \mod p = 966603$; find $966603 = 5^{332 \cdot 1024} 5^n \mod p$ in the table of targets; so $755 = 332 \cdot 1024 + n \mod p - 1$; deduce n = 660789.

Eliminat

Improve

- $x_{i+1} = 1$
- $x_{i+1} = x_{i+1}$
- $x_{i+1} = 1$
- Then x_i where (a $(a_{i+1}$, b_i (a_{i+1},b_i) (a_{i+1},b_i)
- Search f
- $x_1 = x_2$
- $x_4 = x_8$
- Deduce

00 to $\approx \sqrt{p}$. s roblem!

o-giant-step algorithm."

0003,

32.

pd p = 58588.

00 targets:

966849,

= 579277,

= 579062, ...,

v = 321705.

Build a sorted table of targets: $2573 = 5^{430 \cdot 1024} 5^n \mod p$ $3371 = 5^{192 \cdot 1024} 5^n \mod p$, $3593 = 5^{626 \cdot 1024} 5^n \mod p$, $4960 = 5^{663 \cdot 1024} 5^n \mod p$, $5218 = 5^{376 \cdot 1024} 5^n \mod p, \ldots,$ $999675 = 5^{344 \cdot 1024} 5^n \mod p$. Look up 5¹ mod p, 5² mod p, $5^3 \mod p$, etc. in this table. $5^{\prime 55} \mod p = 966603$; find $966603 = 5^{332 \cdot 1024} 5^n \mod p$ in the table of targets; so $755 = 332 \cdot 1024 + n \mod p - 1$; deduce n = 660789.

Eliminating storag

- Improved method: $x_{i+1} = 5x_i \mod p$ $x_{i+1} = x_i^2 \mod p$
- $x_{i+1} = 5^n x_i \mod 1$
- Then $x_i = 5^{a_i n + b_i}$ where $(a_0, b_0) = (a_i)$ $(a_{i+1}, b_{i+1}) = (a_i)$ $(a_{i+1}, b_{i+1}) = (2a_i)$ $(a_{i+1}, b_{i+1}) = (a_i)$
- Search for a collisi
- $x_1 = x_2? \ x_2 = x_4$
- $x_4 = x_8? \ x_5 = x_1$
- Deduce linear equa

 \overline{p} .

р 77

588.

5.

Build a sorted table of targets: $2573 = 5^{430 \cdot 1024} 5^n \mod p$, $3371 = 5^{192 \cdot 1024} 5^n \mod p$, $3593 = 5^{626 \cdot 1024} 5^n \mod p$, $4960 = 5^{663 \cdot 1024} 5^n \mod p$, $5218 = 5^{376 \cdot 1024} 5^n \mod p, \ldots,$ $999675 = 5^{344 \cdot 1024} 5^n \mod p$. Look up 5¹ mod p, 5² mod p, $5^3 \mod p$, etc. in this table. $5^{\prime 55} \mod p = 966603$; find $966603 = 5^{332 \cdot 1024} 5^n \mod p$ in the table of targets; so $755 = 332 \cdot 1024 + n \mod p - 1$; deduce n = 660789.

Improved method: Define x $x_{i+1} = 5x_i \mod p$ if $x_i \in 3Z$ $x_{i+1} = x_i^2 mod p \ {
m if} \ x_i \in 2
onumber \$ $x_{i+1} = 5^n x_i \mod p$ otherwise

Then $x_i = 5^{a_i n + b_i} \mod p$ where $(a_0, b_0) = (0, 0)$ and $(a_{i+1}, b_{i+1}) = (a_i, b_i + 1), o$ $(a_{i+1}, b_{i+1}) = (2a_i, 2b_i)$, or $(a_{i+1}, b_{i+1}) = (a_i + 1, b_i).$ Search for a collision in x_i :

 $x_1 = x_2?$ $x_2 = x_4?$ $x_3 = x_6$

 $x_4 = x_8$? $x_5 = x_{10}$? etc.

Eliminating storage

Deduce linear equation for r

Build a sorted table of targets: $2573 = 5^{430 \cdot 1024} 5^n \mod p$ $3371 = 5^{192 \cdot 1024} 5^n \mod p$, $3593 = 5^{626 \cdot 1024} 5^n \mod p$, $4960 = 5^{663 \cdot 1024} 5^n \mod p$ $5218 = 5^{376 \cdot 1024} 5^n \mod p, \ldots,$ $999675 = 5^{344 \cdot 1024} 5^n \mod p$. Look up 5¹ mod p, 5² mod p, $5^3 \mod p$, etc. in this table. $5^{\prime 55} \mod p = 966603$; find $966603 = 5^{332 \cdot 1024} 5^n \mod p$ in the table of targets; so $755 = 332 \cdot 1024 + n \mod p - 1$; deduce n = 660789.

Eliminating storage

Improved method: Define $x_0 = 1$; $x_{i+1} = 5x_i \mod p$ if $x_i \in 3\mathbf{Z}$; $x_{i+1} = x_i^2 \mod p \text{ if } x_i \in 2 + 3\mathbf{Z};$ $x_{i+1} = 5^n x_i \mod p$ otherwise. Then $x_i = 5^{a_i n + b_i} \mod p$ where $(a_0, b_0) = (0, 0)$ and $(a_{i+1}, b_{i+1}) = (a_i, b_i + 1)$, or $(a_{i+1}, b_{i+1}) = (2a_i, 2b_i)$, or $(a_{i+1}, b_{i+1}) = (a_i + 1, b_i).$ Search for a collision in x_i :

 $x_4 = x_8? \ x_5 = x_{10}?$ etc. Deduce linear equation for n.

 $x_1 = x_2?$ $x_2 = x_4?$ $x_3 = x_6?$

sorted table of targets: $5^{430 \cdot 1024} 5^n \mod p$, $5^{192 \cdot 1024} 5^n \mod p$, $5^{626 \cdot 1024} 5^n \mod p$, $5^{663 \cdot 1024} 5^n \mod p$, $5^{376 \cdot 1024} 5^n \mod p, \ldots,$ $= 5^{344 \cdot 1024} 5^n \mod p$. $5^1 \mod p$, $5^2 \mod p$, p, etc. in this table. d p = 966603; find $=5^{332\cdot 1024}5^n \mod p$ ble of targets;

 $= 332 \cdot 1024 + n \mod p - 1;$ n = 660789.

Eliminating storage

Improved method: Define $x_0 = 1$; $x_{i+1} = 5x_i \mod p$ if $x_i \in 3\mathbf{Z}$; $x_{i+1} = x_i^2 \mod p$ if $x_i \in 2 + 3\mathbb{Z}$; $x_{i+1} = 5^n x_i \mod p$ otherwise.

Then $x_i = 5^{a_i n + b_i} \mod p$ where $(a_0, b_0) = (0, 0)$ and $(a_{i+1}, b_{i+1}) = (a_i, b_i + 1)$, or $(a_{i+1}, b_{i+1}) = (2a_i, 2b_i)$, or $(a_{i+1}, b_{i+1}) = (a_i + 1, b_i).$

Search for a collision in x_i : $x_1 = x_2? \ x_2 = x_4? \ x_3 = x_6?$ $x_4 = x_8? \ x_5 = x_{10}?$ etc. Deduce linear equation for n.

The x_i 's typically Example Modulo $x_1 = 5^n$ $x_2 = 5^{2i}$ $x_3 = 5^{27}$ $x_4 = 5^{27}$ $x_{5} = 5^{2i}$ $x_{6} = 5^{27}$ $x_7 = 5^{47}$ $x_8 = 5^{47}$ etc.

le of targets: $n \mod p$, $n \mod p$, $n \mod p$, $n \mod p$, $n \mod p, \ldots,$ $^{4}5^{n} \mod p$. , 5² mod p, this table. 603; find $^{4}5^{n} \mod p$ gets; $4 + n \mod p - 1;$

9.

Eliminating storage

Improved method: Define $x_0 = 1$; $x_{i+1} = 5x_i \mod p$ if $x_i \in 3\mathbf{Z}$; $x_{i+1} = x_i^2 \mod p$ if $x_i \in 2 + 3\mathbf{Z}$; $x_{i+1} = 5^n x_i \mod p$ otherwise. Then $x_i = 5^{a_i n + b_i} \mod p$ where $(a_0, b_0) = (0, 0)$ and $(a_{i+1}, b_{i+1}) = (a_i, b_i + 1)$, or $(a_{i+1}, b_{i+1}) = (2a_i, 2b_i)$, or $(a_{i+1}, b_{i+1}) = (a_i + 1, b_i).$ Search for a collision in x_i : $x_1 = x_2$? $x_2 = x_4$? $x_3 = x_6$? $x_4 = x_8? \ x_5 = x_{10}?$ etc. Deduce linear equation for n.

The x_i 's enter a c typically within pproxExample: 1000003 Modulo 100003: $x_1 = 5^n = 262682$ $x_2 = 5^{2n} = 26268$ $x_3 = 5^{2n+1} = 5 \cdot 62$ $x_4 = 5^{2n+2} = 5 \cdot 13$ $x_5 = 5^{2n+3} = 5 \cdot 6$ $x_6 = 5^{2n+4} = 5 \cdot 2^{6}$ $x_7 = 5^{4n+8} = 324$ $x_8 = 5^{4n+9} = 5.73$ etc.

ts:

D,

p - 1;

Eliminating storage

Improved method: Define $x_0 = 1$; $x_{i+1} = 5x_i \mod p$ if $x_i \in 3\mathbf{Z}$; $x_{i+1} = x_i^2 \mod p$ if $x_i \in 2 + 3\mathbf{Z}$; $x_{i+1} = 5^n x_i \mod p$ otherwise.

Then
$$x_i = 5^{a_i n + b_i} \mod p$$

where $(a_0, b_0) = (0, 0)$ and
 $(a_{i+1}, b_{i+1}) = (a_i, b_i + 1)$, or
 $(a_{i+1}, b_{i+1}) = (2a_i, 2b_i)$, or
 $(a_{i+1}, b_{i+1}) = (a_i + 1, b_i)$.

Search for a collision in x_i : $x_1 = x_2$? $x_2 = x_4$? $x_3 = x_6$? $x_4 = x_8$? $x_5 = x_{10}$? etc. Deduce linear equation for n. etc.

The x_i 's enter a cycle, typically within $\approx \sqrt{p}$ steps.

- Example: 1000003, 262682.
- Modulo 100003:
- $x_1 = 5^n = 262682.$
- $x_2 = 5^{2n} = 262682^2 = 6261$
- $x_3 = 5^{2n+1} = 5 \cdot 626121 = 1$
- $x_4 = 5^{2n+2} = 5 \cdot 130596 = 6$
- $x_5 = 5^{2n+3} = 5.652980 = 2$
- $x_6 = 5^{2n+4} = 5 \cdot 264891 = 3$
- $x_7 = 5^{4n+8} = 324452^2 = 78$
- $x_8 = 5^{4n+9} = 5.784500 = 9$

Eliminating storage

Improved method: Define $x_0 = 1$; $x_{i+1} = 5x_i \mod p$ if $x_i \in 3\mathbf{Z}$; $x_{i+1} = x_i^2 \mod p$ if $x_i \in 2 + 3\mathbb{Z}$; $x_{i+1} = 5^n x_i \mod p$ otherwise.

Then
$$x_i = 5^{a_i n + b_i} \mod p$$

where $(a_0, b_0) = (0, 0)$ and
 $(a_{i+1}, b_{i+1}) = (a_i, b_i + 1)$, or
 $(a_{i+1}, b_{i+1}) = (2a_i, 2b_i)$, or
 $(a_{i+1}, b_{i+1}) = (a_i + 1, b_i)$.

Search for a collision in x_i : $x_1 = x_2$? $x_2 = x_4$? $x_3 = x_6$? $x_4 = x_8? \ x_5 = x_{10}?$ etc. Deduce linear equation for n.

The x_i 's enter a cycle, typically within $\approx \sqrt{p}$ steps. Example: 1000003, 262682. Modulo 100003: $x_1 = 5^n = 262682.$ $x_2 = 5^{2n} = 262682^2 = 626121.$ $x_3 = 5^{2n+1} = 5.626121 = 130596.$ $x_4 = 5^{2n+2} = 5 \cdot 130596 = 652980.$ $x_5 = 5^{2n+3} = 5.652980 = 264891.$ $x_6 = 5^{2n+4} = 5 \cdot 264891 = 324452.$ $x_7 = 5^{4n+8} = 324452^2 = 784500.$ $x_8 = 5^{4n+9} = 5.784500 = 922491.$ etc.

ing storage

d method: Define $x_0 = 1$; $5x_i \mod p$ if $x_i \in 3\mathbf{Z}$; $x_i^2 \mod p$ if $x_i \in 2 + 3\mathbf{Z}$; $\bar{p}^n x_i \mod p$ otherwise.

$$egin{aligned} &=5^{a_in+b_i} egin{aligned} & ext{mod} \ p \ a_0, b_0) &= (0, 0) \ ext{and} \ a_{+1}) &= (a_i, b_i+1), \ ext{or} \ a_{+1}) &= (2a_i, 2b_i), \ ext{or} \ a_{+1}) &= (a_i+1, b_i). \end{aligned}$$

or a collision in x_i : ? $x_2 = x_4$? $x_3 = x_6$? ? $x_5 = x_{10}$? etc. linear equation for n.

The x_i 's enter a cycle, typically within $\approx \sqrt{p}$ steps. Example: 1000003, 262682. Modulo 100003: $x_1 = 5^n = 262682.$ $x_2 = 5^{2n} = 262682^2 = 626121.$ $x_3 = 5^{2n+1} = 5.626121 = 130596.$ $x_4 = 5^{2n+2} = 5 \cdot 130596 = 652980.$ $x_5 = 5^{2n+3} = 5.652980 = 264891.$ $x_6 = 5^{2n+4} = 5 \cdot 264891 = 324452.$ $x_7 = 5^{4n+8} = 324452^2 = 784500.$ $x_8 = 5^{4n+9} = 5.784500 = 922491.$ etc.

 $x_{1785} =$ $x_{3570} =$ (Cycle le Conclud 249847r388795*r* so $n \equiv 1$ Only 6 p Try each Find that for n =for n = <u>e</u>

Define $x_0 = 1$; if $x_i \in 3\mathbf{Z}$; if $x_i \in 2 + 3\mathbf{Z}$; p otherwise.

 $i \mod p$ 0, 0) and , $b_i + 1$), or b_i , $2b_i$), or + 1, b_i).

on in x_i : ? $x_3 = x_6$? 0? etc. ation for n.

The x_i 's enter a cycle, typically within $\approx \sqrt{p}$ steps. Example: 1000003, 262682. Modulo 100003: $x_1 = 5^n = 262682.$ $x_2 = 5^{2n} = 262682^2 = 626121.$ $x_3 = 5^{2n+1} = 5.626121 = 130596.$ $x_4 = 5^{2n+2} = 5 \cdot 130596 = 652980.$ $x_5 = 5^{2n+3} = 5.652980 = 264891.$ $x_6 = 5^{2n+4} = 5 \cdot 264891 = 324452.$ $x_7 = 5^{4n+8} = 324452^2 = 784500.$ $x_8 = 5^{4n+9} = 5.784500 = 922491.$ etc.

 $x_{1785} = 5^{249847n+}$ $x_{3570} = 5^{388795n+}$ (Cycle length is 35 Conclude that 249847n + 759123388795n + 632783so $n \equiv 160788$ (Only 6 possible n'Try each of them. Find that $5^n \mod$ for n = 160788 +for n = 660789.

se.

Dr

₅?

ι.

The x_i 's enter a cycle, typically within $\approx \sqrt{p}$ steps. Example: 1000003, 262682. Modulo 100003: $x_1 = 5^n = 262682.$ $x_2 = 5^{2n} = 262682^2 = 626121.$ $x_3 = 5^{2n+1} = 5.626121 = 130596.$ $x_4 = 5^{2n+2} = 5 \cdot 130596 = 652980.$ $x_5 = 5^{2n+3} = 5.652980 = 264891.$ $x_6 = 5^{2n+4} = 5 \cdot 264891 = 324452.$ $x_7 = 5^{4n+8} = 324452^2 = 784500.$ $x_8 = 5^{4n+9} = 5.784500 = 922491.$ etc.

 $m{x}_{1785} = 5^{249847n+759123} = 5$ $m{x}_{3570} = 5^{388795n+632781} = 5$

- (Cycle length is 357.)
- Conclude that
- $249847n + 759123 \equiv$
- $388795n + 632781 \pmod{p}$ so $n \equiv 160788 \pmod{p-1}$
- Only 6 possible n's.
- Try each of them.
- Find that $5^n \mod p = 26268$
- for n = 160788 + 3(p 1)/
- for n = 660789.

The x_i 's enter a cycle, typically within $\approx \sqrt{p}$ steps.

Example: 1000003, 262682.

Modulo 100003:

 $x_1 = 5^n = 262682.$ $x_2 = 5^{2n} = 262682^2 = 626121.$ $x_3 = 5^{2n+1} = 5.626121 = 130596.$ $x_4 = 5^{2n+2} = 5 \cdot 130596 = 652980.$ $x_5 = 5^{2n+3} = 5.652980 = 264891.$ $x_6 = 5^{2n+4} = 5 \cdot 264891 = 324452.$ $x_7 = 5^{4n+8} = 324452^2 = 784500.$ $x_8 = 5^{4n+9} = 5.784500 = 922491.$ etc.

(Cycle length is 357.) Conclude that $249847n + 759123 \equiv$ $388795n + 632781 \pmod{p-1}$, so $n \equiv 160788 \pmod{(p-1)/6}$. Only 6 possible n's. Try each of them. Find that $5^n \mod p = 262682$ for n = 160788 + 3(p - 1)/6, i.e., for n = 660789.

- $x_{1785} = 5^{249847n + 759123} = 555013.$ $x_{3570} = 5^{388795n + 632781} = 555013.$

- s enter a cycle, within $\approx \sqrt{p}$ steps.
- e: 1000003, 262682.
- 1000003:
- = 262682.

 $n = 262682^2 = 626121.$ $n^{n+1} = 5.626121 = 130596.$ $n^{n+2} = 5 \cdot 130596 = 652980.$ $n^{n+3} = 5.652980 = 264891.$ $n^{n+4} = 5.264891 = 324452.$ $n^{n+8} = 324452^2 = 784500.$

 $n^{n+9} = 5.784500 = 922491.$

 $x_{1785} = 5^{249847n + 759123} = 555013.$ $x_{3570} = 5^{388795n + 632781} = 555013.$ (Cycle length is 357.) Conclude that $249847n + 759123 \equiv$ $388795n + 632781 \pmod{p-1}$, so $n \equiv 160788 \pmod{(p-1)/6}$.

Only 6 possible n's. Try each of them. Find that $5^n \mod p = 262682$ for n = 160788 + 3(p-1)/6, i.e., for n = 660789.

This is ' Optimiz Another "Pollard Can para "van Oc DL using Bottom distribut have cha of findin With 2^{90} have cha Negligib

ycle,

 \sqrt{p} steps.

8, 262682.

 $2^{2} = 626121.$ 26121 = 130596.30596 = 652980.

52980 = 264891.

64891 = 324452.

 $452^2 = 784500.$

84500 = 922491.

 $x_{1785} = 5^{249847n + 759123} = 555013.$ $x_{3570} = 5^{388795n + 632781} = 555013.$ (Cycle length is 357.) Conclude that $249847n + 759123 \equiv$ $388795n + 632781 \pmod{p-1}$, so $n \equiv 160788 \pmod{(p-1)/6}$. Only 6 possible n's. Try each of them. Find that $5^n \mod p = 262682$ for n = 160788 + 3(p - 1)/6, i.e., for n = 660789.

This is "Pollard's Optimized: $\approx \sqrt{p}$ Another method, s "Pollard's kangaro Can parallelize bot "van Oorschot/W DL using distingui Bottom line: With distributed across have chance $\approx c^2$ of finding *n* from With 2^{90} mults (a have chance $\approx 2^{18}$ Negligible if, e.g.,

 $x_{1785} = 5^{249847n + 759123} = 555013.$ $x_{3570} = 5^{388795n + 632781} = 555013.$ (Cycle length is 357.) Conclude that $249847n + 759123 \equiv$ $388795n + 632781 \pmod{p-1}$, so $n \equiv 160788 \pmod{(p-1)/6}$. Only 6 possible n's. 64891. Try each of them. Find that $5^n \mod p = 262682$ for n = 160788 + 3(p - 1)/6, i.e., 22491. for n = 660789.

21.

30596.

52980.

24452.

34500.

This is "Pollard's rho metho Optimized: $\approx \sqrt{p}$ mults. Another method, similar spe "Pollard's kangaroo method Can parallelize both method "van Oorschot/Wiener para DL using distinguished point Bottom line: With *c* mults, distributed across many core have chance $\approx c^2/p$ of finding *n* from $5^n \mod p$. With 2⁹⁰ mults (a few years have chance $\approx 2^{180}/p$.

Negligible if, e.g., $p \approx 2^{256}$.

 $x_{1785} = 5^{249847n + 759123} = 555013.$ $x_{3570} = 5^{388795n + 632781} = 555013.$

(Cycle length is 357.)

Conclude that $249847n + 759123 \equiv$ $388795n + 632781 \pmod{p-1}$, so $n \equiv 160788 \pmod{(p-1)/6}$.

Only 6 possible n's. Try each of them. Find that $5^n \mod p = 262682$ for n = 160788 + 3(p-1)/6, i.e., for n = 660789.

This is "Pollard's rho method." Optimized: $\approx \sqrt{p}$ mults. Another method, similar speed: "Pollard's kangaroo method." Can parallelize both methods. "van Oorschot/Wiener parallel DL using distinguished points." Bottom line: With c mults, distributed across many cores, have chance $\approx c^2/p$ of finding n from $5^n \mod p$. With 2⁹⁰ mults (a few years?), have chance $\approx 2^{180}/p$. Negligible if, e.g., $p \approx 2^{256}$.

 $5^{249847n + 759123} = 555013.$ $5^{388795n+632781} = 555013.$

ength is 357.)

e that

 $n + 759123 \equiv$

 $p + 632781 \pmod{p-1}$ 160788 (mod (p-1)/6).

possible n's.

of them.

t $5^n \mod p = 262682$ 160788 + 3(p-1)/6, i.e., 660789.

This is "Pollard's rho method." Optimized: $\approx \sqrt{p}$ mults. Another method, similar speed: "Pollard's kangaroo method."

Can parallelize both methods. "van Oorschot/Wiener parallel DL using distinguished points."

Bottom line: With *c* mults, distributed across many cores, have chance $\approx c^2/p$ of finding *n* from $5^n \mod p$. With 2^{90} mults (a few years?), have chance $\approx 2^{180}/p$. Negligible if, e.g., $p \approx 2^{256}$.

Factors

Assume

Given x,

 5^a has c

 x^a is a p

Compute

 5^b has o $x/5^\ell$ is a

Compute

Then \boldsymbol{x}

759123 = 555013.632781 = 555013.

57.)

 $B \equiv$ L (mod p-1), mod (p-1)/6).

S.

p = 2626823(p-1)/6, i.e., This is "Pollard's rho method." Optimized: $\approx \sqrt{p}$ mults. Another method, similar speed: "Pollard's kangaroo method."

Can parallelize both methods. "van Oorschot/Wiener parallel DL using distinguished points."

Bottom line: With *c* mults, distributed across many cores, have chance $\approx c^2/p$ of finding *n* from 5^{*n*} mod *p*. With 2⁹⁰ mults (a few years?),

have chance $\approx 2^{180}/p$. Negligible if, e.g., $p \approx 2^{256}$.

Factors of the gro Assume 5 has orde Given \boldsymbol{x} , a power of 5^a has order b, an x^a is a power of 5 Compute $\ell = \log_5 \ell$ 5^{b} has order a, an $x/5^{\ell}$ is a power of Compute $m = \log$ Then $x = 5^{\ell + mb}$.

55013. 55013.

```
(n-1),
1)/6).
```

```
32
6, i.e.,
```

This is "Pollard's rho method." Optimized: $\approx \sqrt{p}$ mults. Another method, similar speed: "Pollard's kangaroo method."

Can parallelize both methods. "van Oorschot/Wiener parallel DL using distinguished points."

Bottom line: With *c* mults, distributed across many cores, have chance $\approx c^2/p$ of finding *n* from $5^n \mod p$. With 2^{90} mults (a few years?), have chance $\approx 2^{180}/p$.

Negligible if, e.g., $p \approx 2^{256}$.

Factors of the group order

Assume 5 has order *ab*.

Given x, a power of 5:

5^a has order b, and

 x^a is a power of 5^a .

Compute $\ell = \log_{5^a} x^a$.

5^{b} has order a, and

 $x/5^{\ell}$ is a power of 5^{b} .

Compute $m = \log_{5^b}(x/5^{\ell})$.

Then $x = 5^{\ell + mb}$.

This is "Pollard's rho method." Optimized: $\approx \sqrt{p}$ mults. Another method, similar speed: "Pollard's kangaroo method."

Can parallelize both methods. "van Oorschot/Wiener parallel DL using distinguished points."

Bottom line: With c mults, distributed across many cores, have chance $\approx c^2/p$ of finding n from $5^n \mod p$.

With 2⁹⁰ mults (a few years?), have chance $\approx 2^{180}/p$. Negligible if, e.g., $p \approx 2^{256}$.

Factors of the group order Assume 5 has order *ab*. Given x, a power of 5: 5^a has order b, and x^a is a power of 5^a . Compute $\ell = \log_{5^a} x^a$. 5^{b} has order a, and $x/5^{\ell}$ is a power of 5^{b} . Compute $m = \log_{5^b}(x/5^{\ell})$. Then $x = 5^{\ell + mb}$.

'Pollard's rho method." ed: ≈ √p mults. method, similar speed: 's kangaroo method."

allelize both methods. orschot/Wiener parallel g distinguished points."

line: With *c* mults,

ed across many cores, ance $\approx c^2/p$ g *n* from 5^{*n*} mod *p*.

The mults (a few years?), ance $\approx 2^{180}/p$. le if, e.g., $p \approx 2^{256}$.

Factors of the group order

Assume 5 has order *ab*.

Given x, a power of 5:

 5^a has order *b*, and x^a is a power of 5^a . Compute $\ell = \log_{5^a} x^a$.

 5^{b} has order a, and $x/5^{\ell}$ is a power of 5^{b} . Compute $m = \log_{5^{b}}(x/5^{\ell})$.

Then $x = 5^{\ell + mb}$.

This "Pe converts an order and a fe e.g. *p* = p - 1 =Compute Compute Compute Then \boldsymbol{x} Use rho: Better if apply Po

rho method."

mults.

similar speed:

o method."

th methods. iener parallel

shed points."

n c mults,

many cores,

```
p'
```

 $5^n \mod p$.

```
few years?),
{}^{30}/p.
p \approx 2^{256}.
```

Factors of the group order Assume 5 has order *ab*. Given x, a power of 5: 5^a has order b, and x^a is a power of 5^a . Compute $\ell = \log_{5^a} x^a$. 5^{b} has order a, and $x/5^{\ell}$ is a power of 5^{b} . Compute $m = \log_{5^b}(x/5^{\ell})$. Then $x = 5^{\ell + mb}$.

This "Pohlig-Hellr converts an orderan order-*a* DL, an and a few exponer

- e.g. p = 1000003,
- p-1=6b where
- Compute $\log_{5^6}(x^6)$ Compute $x/5^{16078}$
- Compute $\log_{5^b} 100$ Then $x = 5^{160788-1}$

Use rho: $\approx \sqrt{a} + Better$ if *ab* factor apply Pohlig-Hellm

d."

ed: ,, -

S. le ts."

es,

?),

Factors of the group order Assume 5 has order *ab*. Given x, a power of 5: 5^a has order b, and x^a is a power of 5^a . Compute $\ell = \log_{5^a} x^a$. 5^{b} has order a, and $x/5^{\ell}$ is a power of 5^{b} . Compute $m = \log_{5^b}(x/5^{\ell})$. Then $x = 5^{\ell + mb}$.

This "Pohlig-Hellman method converts an order-ab DL interval an order-a DL, an order-b D and a few exponentiations. e.g. p = 1000003, x = 2626p - 1 = 6b where b = 16666Compute $\log_{56}(x^6) = 16078$ Compute $x/5^{160788} = 10000$ Compute $\log_{5^b} 1000002 = 3$ Then $x = 5^{160788 + 3b} = 5^{660}$ Use rho: $\approx \sqrt{a} + \sqrt{b}$ mults. Better if *ab* factors further: apply Pohlig-Hellman recurs
Factors of the group order Assume 5 has order *ab*. Given x, a power of 5: 5^a has order b, and x^a is a power of 5^a . Compute $\ell = \log_{5^a} x^a$. 5^{b} has order a, and $x/5^{\ell}$ is a power of 5^{b} . Compute $m = \log_{5^b}(x/5^{\ell})$.

Then $x = 5^{\ell + mb}$.

This "Pohlig-Hellman method" converts an order-*ab* DL into an order-*a* DL, an order-*b* DL, and a few exponentiations.

e.g. p = 1000003, x = 262682: p - 1 = 6b where b = 166667.

Compute $x/5^{160788} = 1000002$. Compute $\log_{5^b} 1000002 = 3$.

Then $x = 5^{160788+3b} = 5^{660789}$.

Use rho: $\approx \sqrt{a} + \sqrt{b}$ mults. Better if *ab* factors further: apply Pohlig-Hellman recursively.

- Compute $\log_{56}(x^6) = 160788$.

of the group order

- 5 has order *ab*.
- a power of 5:
- order b, and
- power of 5^a .
- $e \ \boldsymbol{\ell} = \log_{5^a} x^a.$
- rder *a*, and a power of 5^b . e $m = \log_{5^b}(x/5^\ell)$.

 $=5^{\ell+mb}$.

This "Pohlig-Hellman method" converts an order-*ab* DL into an order-a DL, an order-b DL, and a few exponentiations.

e.g. p = 1000003, x = 262682: p - 1 = 6b where b = 166667. Compute $\log_{5^6}(x^6) = 160788$. Compute $x/5^{160788} = 1000002$. Compute $\log_{5^b} 1000002 = 3$. Then $x = 5^{160788+3b} = 5^{660789}$.

Use rho: $\approx \sqrt{a} + \sqrt{b}$ mults. Better if *ab* factors further: apply Pohlig-Hellman recursively.

All of th apply to An ellipt has $\approx q$ so can c $pprox \sqrt{q}$ el Need qu If largest of numb is much then Pol compute Need lar or chang

<u>up order</u>

er ab.

of 5:

d

а.

 $a x^a$.

d 55^b . $5_{5^b}(x/5^\ell)$.

This "Pohlig-Hellman method" converts an order-*ab* DL into an order-*a* DL, an order-*b* DL, and a few exponentiations.

e.g. p = 1000003, x = 262682: p - 1 = 6b where b = 166667. Compute $\log_{5^6}(x^6) = 160788$. Compute $x/5^{160788} = 1000002$. Compute $\log_{5^b} 1000002 = 3$. Then $x = 5^{160788+3b} = 5^{660789}$.

Use rho: $\approx \sqrt{a} + \sqrt{b}$ mults. Better if *ab* factors further: apply Pohlig-Hellman recursively. All of the technique apply to elliptic cu An elliptic curve o has $\approx q+1$ points so can compute E $\approx \sqrt{q}$ elliptic-curv Need quite large q If largest prime div of number of poin is much smaller th then Pohlig-Hellm computes ECDL n Need larger q; or change choice of This "Pohlig-Hellman method" converts an order-*ab* DL into an order-*a* DL, an order-*b* DL, and a few exponentiations.

e.g. p = 1000003, x = 262682: p - 1 = 6b where b = 166667. Compute $\log_{5^6}(x^6) = 160788$. Compute $x/5^{160788} = 1000002$. Compute $\log_{5^b} 1000002 = 3$. Then $x = 5^{160788 + 3b} = 5^{660789}$.

Use rho: $\approx \sqrt{a} + \sqrt{b}$ mults. Better if *ab* factors further: apply Pohlig-Hellman recursively. Need larger q; or change choice of curve.

- All of the techniques so far apply to elliptic curves.
- An elliptic curve over \mathbf{F}_q
- has $\approx q + 1$ points
- so can compute ECDL using
- $\approx \sqrt{q}$ elliptic-curve adds.
- Need quite large q.
- If largest prime divisor
- of number of points
- is much smaller than q
- computes ECDL more quick

- then Pohlig-Hellman method

This "Pohlig-Hellman method" converts an order-*ab* DL into an order-a DL, an order-b DL, and a few exponentiations.

e.g. p = 1000003, x = 262682: p - 1 = 6b where b = 166667. Compute $\log_{56}(x^6) = 160788$. Compute $x/5^{160788} = 1000002$. Compute $\log_{5^b} 1000002 = 3$. Then $x = 5^{160788+3b} = 5^{660789}$.

Use rho: $\approx \sqrt{a} + \sqrt{b}$ mults. Better if *ab* factors further: apply Pohlig-Hellman recursively. All of the techniques so far apply to elliptic curves.

An elliptic curve over \mathbf{F}_q has $\approx q + 1$ points so can compute ECDL using $\approx \sqrt{q}$ elliptic-curve adds. Need quite large q.

If largest prime divisor of number of points is much smaller than qthen Pohlig-Hellman method computes ECDL more quickly. Need larger q; or change choice of curve.

ohlig-Hellman method" an order-*ab* DL into -a DL, an order-b DL, w exponentiations.

x = 1000003, x = 262682: 6b where b = 166667. $\log_{5^6}(x^6) = 160788.$ $x/5^{160788} = 1000002.$ $\log_{5^b} 1000002 = 3.$ $=5^{160788+3b}=5^{660789}$

 $\approx \sqrt{a} + \sqrt{b}$ mults.

ab factors further: ohlig-Hellman recursively. All of the techniques so far apply to elliptic curves.

An elliptic curve over \mathbf{F}_q has $\approx q + 1$ points so can compute ECDL using $\approx \sqrt{q}$ elliptic-curve adds. Need quite large q.

If largest prime divisor of number of points is much smaller than qthen Pohlig-Hellman method computes ECDL more quickly. Need larger q; or change choice of curve.

Index ca

Have ge group el Deduced from rar

Index ca discrete-

in a diffe

Example

Can con

-3/(p so -3^1 =

so $\log_5($ $6\log_5 2$ nan method" *ab* DL into order-*b* DL, ntiations.

x = 262682: b = 166667.) = 160788. $b^8 = 1000002.$ $b^{0002} = 3.$ $b^{-3b} = 5^{660789}.$

 \sqrt{b} mults. s further: nan recursively. All of the techniques so far apply to elliptic curves.

An elliptic curve over \mathbf{F}_q has $\approx q + 1$ points so can compute ECDL using $\approx \sqrt{q}$ elliptic-curve adds. Need quite large q.

If largest prime divisor of number of points is much smaller than *q* then Pohlig-Hellman method computes ECDL more quickly. Need larger *q*; or change choice of curve.

Index calculus

Have generated m group elements 5^a Deduced equations from random collis

Index calculus obt discrete-logarithm in a different way.

Example for p = 1Can completely factors -3/(p-3) as -3so $-3^1 \equiv 2^6 5^6$ (so $\log_5(-1) + \log_5(-1)$) od" С

L,

682: 57.

8.

)02.

789

ively.

All of the techniques so far apply to elliptic curves. An elliptic curve over \mathbf{F}_q has $\approx q + 1$ points so can compute ECDL using $\approx \sqrt{q}$ elliptic-curve adds. Need quite large q. If largest prime divisor of number of points is much smaller than qthen Pohlig-Hellman method computes ECDL more quickly. Need larger q; or change choice of curve.

Index calculus

- Have generated many
- group elements $5^{an+b} \mod p$
- Deduced equations for n
- from random collisions.
- Index calculus obtains discrete-logarithm equations in a different way.
- Example for p = 1000003: Can completely factor
- -3/(p-3) as $-3^1/2^65^6$ in so $-3^1 \equiv 2^6 5^6 \pmod{p}$
- so $\log_5(-1) + \log_5 3 \equiv$ $6 \log_5 2 + 6 \log_5 5 \pmod{p}$

All of the techniques so far apply to elliptic curves.

An elliptic curve over \mathbf{F}_{q} has $\approx q + 1$ points so can compute ECDL using $\approx \sqrt{q}$ elliptic-curve adds. Need quite large q.

If largest prime divisor of number of points is much smaller than qthen Pohlig-Hellman method computes ECDL more quickly. Need larger q; or change choice of curve.

Index calculus

Have generated many group elements $5^{an+b} \mod p$. Deduced equations for nfrom random collisions.

Index calculus obtains discrete-logarithm equations in a different way.

Example for p = 1000003: Can completely factor -3/(p-3) as $-3^1/2^65^6$ in **Q** so $-3^1 \equiv 2^6 5^6 \pmod{p}$ so $\log_5(-1) + \log_5 3 \equiv$ $6 \log_5 2 + 6 \log_5 5 \pmod{p-1}$.

- e techniques so far elliptic curves.
- tic curve over \mathbf{F}_{q}
- +1 points
- ompute ECDL using
- liptic-curve adds.
- ite large q.
- t prime divisor
- er of points
- smaller than q
- hlig-Hellman method
- es ECDL more quickly.
- ger q;
- ge choice of curve.

Index calculus

Have generated many group elements $5^{an+b} \mod p$. Deduced equations for nfrom random collisions.

Index calculus obtains discrete-logarithm equations in a different way.

Example for p = 1000003: Can completely factor -3/(p-3) as $-3^1/2^65^6$ in **Q** so $-3^1 \equiv 2^6 5^6 \pmod{p}$ so $\log_5(-1) + \log_5 3 \equiv$ $6 \log_5 2 + 6 \log_5 5 \pmod{p-1}$.

Can con as $2^1 3 1^1$ so $\log_5 2$ $\log_5 3 +$ log₅ 19 -Try to c 1/(p+1)Find fac as produ 2, 3, 5, 7 for each -5100,-403, -62, 957,

ies so far irves.

ver \mathbf{F}_q

5

CDL using

e adds.

•

/isor

ts

an q

an method

nore quickly.

of curve.

Index calculus

Have generated many group elements $5^{an+b} \mod p$. Deduced equations for nfrom random collisions.

Index calculus obtains discrete-logarithm equations in a different way.

Example for p = 1000003: Can completely factor -3/(p-3) as $-3^1/2^65^6$ in **Q** so $-3^1 \equiv 2^65^6 \pmod{p}$ so $\log_5(-1) + \log_5 3 \equiv$ $6\log_5 2 + 6\log_5 5 \pmod{p-1}$.

Can completely factors $2^{1}31^{1}/3^{1}5^{1}11^{2}$ so $\log_{5} 2 + \log_{5} 31$ $\log_{5} 3 + \log_{5} 5 + 2$ $\log_{5} 19 + \log_{5} 29$

Index calculus

ly.

Have generated many group elements $5^{an+b} \mod p$. Deduced equations for nfrom random collisions.

Index calculus obtains discrete-logarithm equations in a different way.

Example for p = 1000003: Can completely factor -3/(p-3) as $-3^1/2^65^6$ in **Q** so $-3^1 \equiv 2^65^6 \pmod{p}$ so $\log_5(-1) + \log_5 3 \equiv$ $6\log_5 2 + 6\log_5 5 \pmod{p-1}$.

Can completely factor 62/(ras $2^{1}31^{1}/3^{1}5^{1}11^{2}19^{1}29^{1}$ so $\log_5 2 + \log_5 31 \equiv$ $\log_{5} 3 + \log_{5} 5 + 2 \log_{5} 11 + 2 \log_{5} 1$ $\log_5 19 + \log_5 29 \pmod{p}$ Try to completely factor 1/(p+1), 2/(p+2), etc. Find factorization of a/(p + p)as product of powers of -1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 for each of the following a's -5100, -4675, -3128, -403, -368, -147, -3,62, 957, 2912, 3857, 6877.

Index calculus

Have generated many group elements $5^{an+b} \mod p$. Deduced equations for nfrom random collisions.

Index calculus obtains discrete-logarithm equations in a different way.

Example for p = 1000003: Can completely factor -3/(p-3) as $-3^1/2^65^6$ in **Q** so $-3^1 \equiv 2^6 5^6 \pmod{p}$ so $\log_5(-1) + \log_5 3 \equiv$ $6 \log_5 2 + 6 \log_5 5 \pmod{p-1}$. as $2^{1}31^{1}/3^{1}5^{1}11^{2}19^{1}29^{1}$ so $\log_5 2 + \log_5 31 \equiv$ $\log_{5} 3 + \log_{5} 5 + 2 \log_{5} 11 + 2 \log_{5} 1$ $\log_5 19 + \log_5 29 \pmod{p-1}$. Try to completely factor 1/(p+1), 2/(p+2), etc. Find factorization of a/(p+a)as product of powers of -1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31 for each of the following a's: -5100, -4675, -3128,-403. -368. -147. -3.62, 957, 2912, 3857, 6877.

- Can completely factor 62/(p+62)

lculus

- nerated many ements 5^{an+b} mod p. I equations for n
- ndom collisions.
- Iculus obtains Iogarithm equations erent way.

e for p = 1000003: pletely factor - 3) as $-3^1/2^65^6$ in **Q** $\equiv 2^65^6 \pmod{p}$ -1) $+ \log_5 3 \equiv$ + $6 \log_5 5 \pmod{p-1}$. Can completely factor 62/(p+62)as $2^{1}31^{1}/3^{1}5^{1}11^{2}19^{1}29^{1}$ so $\log_{5} 2 + \log_{5} 31 \equiv$ $\log_{5} 3 + \log_{5} 5 + 2\log_{5} 11 +$ $\log_{5} 19 + \log_{5} 29 \pmod{p-1}$.

Try to completely factor 1/(p+1), 2/(p+2), etc. Find factorization of a/(p+a) as product of powers of -1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31 for each of the following *a*'s: -5100, -4675, -3128, -403, -368, -147, -3, 62, 957, 2912, 3857, 6877.

Each co produces Now have for log₅ Free equ $\log_{5}(-1)$ By linea $\log_5 2$, lo (If this h could ha By simil discrete

```
any
^{n+b} mod p.
s for n
sions.
```

ains equations

000003:

ctor ¹/2⁶5⁶ in **Q** mod *p*)

$$5^3 \equiv (\mod p - 1).$$

Can completely factor 62/(p+62)as $2^{1}31^{1}/3^{1}5^{1}11^{2}19^{1}29^{1}$ so $\log_5 2 + \log_5 31 \equiv$ $\log_{5} 3 + \log_{5} 5 + 2 \log_{5} 11 + 2 \log_{5} 1$ $\log_5 19 + \log_5 29 \pmod{p-1}$. Try to completely factor 1/(p+1), 2/(p+2), etc. Find factorization of a/(p+a)as product of powers of -1,

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31 for each of the following *a*'s:

-5100, -4675, -3128,

-403, -368, -147, -3, 62, 957, 2912, 3857, 6877.

Each complete fac produces a log equ Now have 12 linea for $\log_5 2$, $\log_5 3$, . Free equations: lo $\log_5(-1) = (p-1)$ By linear algebra of $\log_5 2$, $\log_5 3$, . . . , $\log_5 3$ (If this hadn't bee could have searche By similar techniq discrete log of any

Can completely factor 62/(p+62)as $2^{1}31^{1}/3^{1}5^{1}11^{2}19^{1}29^{1}$ so $\log_5 2 + \log_5 31 \equiv$ $\log_{5} 3 + \log_{5} 5 + 2 \log_{5} 11 + 2 \log_{5} 1$ $\log_5 19 + \log_5 29 \pmod{p-1}$. Try to completely factor 1/(p+1), 2/(p+2), etc. Find factorization of a/(p+a)as product of powers of -1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31 for each of the following a's: -5100, -4675, -3128,-403, -368, -147, -3,62, 957, 2912, 3857, 6877.

0.

Q

- 1).

Each complete factorization produces a log equation. Now have 12 linear equation for $\log_5 2$, $\log_5 3$, ..., $\log_5 31$ Free equations: $\log_5 5 = 1$, $\log_5(-1) = (p-1)/2.$ By linear algebra compute $\log_{5} 2$, $\log_{5} 3$, . . . , $\log_{5} 31$. (If this hadn't been enough, could have searched more *a* By similar technique obtain discrete log of any target.

Can completely factor 62/(p+62)as $2^{1}31^{1}/3^{1}5^{1}11^{2}19^{1}29^{1}$ so $\log_5 2 + \log_5 31 \equiv$ $\log_{5} 3 + \log_{5} 5 + 2 \log_{5} 11 + 2 \log_{5} 1$ $\log_5 19 + \log_5 29 \pmod{p-1}$.

Try to completely factor 1/(p+1), 2/(p+2), etc. Find factorization of a/(p+a)as product of powers of -1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31 for each of the following a's: -5100, -4675, -3128,-403, -368, -147, -3,62, 957, 2912, 3857, 6877.

Each complete factorization produces a log equation. Now have 12 linear equations for $\log_5 2$, $\log_5 3$, . . . , $\log_5 31$. Free equations: $\log_5 5 = 1$, $\log_5(-1) = (p-1)/2.$ By linear algebra compute $\log_{5} 2$, $\log_{5} 3$, . . . , $\log_{5} 31$. (If this hadn't been enough, could have searched more a's.) By similar technique obtain discrete log of any target.

pletely factor 62/(p+62) $-/3^{1}5^{1}11^{2}19^{1}29^{1}$ $2 + \log_5 31 \equiv$ $\log_5 5 + 2\log_5 11 +$ $+\log_5 29 \pmod{p-1}$.

ompletely factor 1), 2/(p+2), etc. torization of a/(p+a)ict of powers of -1, , 11, 13, 17, 19, 23, 29, 31 of the following a's: -4675, -3128,-368, -147, -3,

2912, 3857, 6877.

Each complete factorization produces a log equation.

Now have 12 linear equations for $\log_5 2$, $\log_5 3$, . . . , $\log_5 31$. Free equations: $\log_5 5 = 1$, $\log_5(-1) = (p-1)/2.$

By linear algebra compute $\log_{5} 2$, $\log_{5} 3$, ..., $\log_{5} 31$.

(If this hadn't been enough, could have searched more a's.)

By similar technique obtain discrete log of any target.

For $p \rightarrow$ scales su $\cot p^{\epsilon}$ Compare Specifica $a \in \{1, 2\}$ $\lg y \in O$ finds y o into prin and com (Assumi Have ex

ctor 62/(p+62) 19^129^1

- $\equiv \log_5 11 + (\mod p 1).$
- factor
- 2), etc.
- of a/(p+a)
- ers of -1,
- 7, 19, 23, 29, 31
- lowing *a*'s:
- 3128,
- 7, -3,
- 57, 6877.

Each complete factorization produces a log equation.

Now have 12 linear equations for $\log_5 2$, $\log_5 3$, ..., $\log_5 31$. Free equations: $\log_5 5 = 1$, $\log_5(-1) = (p-1)/2$.

By linear algebra compute $\log_5 2$, $\log_5 3$, ..., $\log_5 31$.

(If this hadn't been enough, could have searched more *a*'s.)

By similar technique obtain discrete log of any target.

For $p \to \infty$, index scales surprisingly cost p^{ϵ} where $\epsilon \rightarrow$ Compare to rho: *c* Specifically: searc $a \in \left\{1, 2, \ldots, y^2\right\}$ $\lg y \in O(\sqrt{\lg p \lg \lg})$ finds y complete f into primes $\leq y$, and computes disc (Assuming standar Have extensive evi

```
(+62)
```

Each complete factorization produces a log equation.

Now have 12 linear equations for $\log_5 2$, $\log_5 3$, . . . , $\log_5 31$. Free equations: $\log_5 5 = 1$, $\log_5(-1) = (p-1)/2.$

By linear algebra compute $\log_5 2$, $\log_5 3$, ..., $\log_5 31$.

(If this hadn't been enough, could have searched more a's.)

By similar technique obtain discrete log of any target.

For $p \to \infty$, index calculus scales surprisingly well: cost p^{ϵ} where $\epsilon \to 0$. Compare to rho: $\approx p^{1/2}$. Specifically: searching $a \in \{1, 2, ..., y^2\}$, with $\lg y \in O(\sqrt{\lg p \lg \lg p}),$ finds y complete factorization into primes < y, and computes discrete logs. (Assuming standard conject Have extensive evidence.)

a)

- 1).

9, 31

Each complete factorization produces a log equation.

Now have 12 linear equations for $\log_5 2$, $\log_5 3$, ..., $\log_5 31$. Free equations: $\log_5 5 = 1$, $\log_5(-1) = (p-1)/2.$

By linear algebra compute $\log_5 2$, $\log_5 3$, . . . , $\log_5 31$.

(If this hadn't been enough, could have searched more a's.)

By similar technique obtain discrete log of any target.

For $p \to \infty$, index calculus scales surprisingly well: cost p^{ϵ} where $\epsilon \to 0$. Compare to rho: $\approx p^{1/2}$. Specifically: searching $a \in \{1, 2, ..., y^2\}$, with $\lg y \in O(\sqrt{\lg p \lg \lg p}),$ finds y complete factorizations into primes < y, and computes discrete logs.

(Assuming standard conjectures. Have extensive evidence.)

mplete factorization s a log equation.

ve 12 linear equations $2, \log_5 3, \ldots, \log_5 31.$ lations: $\log_5 5 = 1$,) = (p-1)/2.

r algebra compute $\log_5 3, \ldots, \log_5 31.$

nadn't been enough, ve searched more a's.)

ar technique obtain log of any target.

For $p \to \infty$, index calculus scales surprisingly well: cost p^{ϵ} where $\epsilon \to 0$. Compare to rho: $\approx p^{1/2}$. Specifically: searching $a \in \{1, 2, ..., y^2\}$, with $\lg y \in O(\sqrt{\lg p \lg \lg p}),$ finds y complete factorizations into primes $\leq y$, and computes discrete logs. (Assuming standard conjectures. Have extensive evidence.)

Latest ir use the and the To comp $\lg \text{cost} \in$ $O((\lg q))$ For secu $q \approx 2^{256}$ $a \approx 2^{204}$ We don' index-ca ... exce

torization Jation.

r equations

.., $\log_5 31$. g₅ 5 = 1, .)/2.

compute

og₅ 31.

n enough,

ed more a's.)

ue obtain

' target.

For $p \to \infty$, index calculus scales surprisingly well: cost p^{ϵ} where $\epsilon \to 0$. Compare to rho: $\approx p^{1/2}$. Specifically: searching $a \in \{1, 2, ..., y^2\}$, with $\lg y \in O(\sqrt{\lg p \lg \lg p}),$ finds y complete factorizations into primes $\leq y$, and computes discrete logs.

(Assuming standard conjectures. Have extensive evidence.)

Latest index-calcu use the "number-f and the "function-To compute discre lg cost ∈ $O((\lg q)^{1/3}(\lg \lg q))$ For security: $q \approx 2^{256}$ to stop r $q \approx 2^{2048}$ to stop We don't know an index-calculus met ... except for som

For $p \to \infty$, index calculus scales surprisingly well: cost p^{ϵ} where $\epsilon \to 0$. Compare to rho: $\approx p^{1/2}$. $\lg \text{cost} \in$ Specifically: searching $a \in \{1, 2, ..., y^2\}$, with $\lg y \in O(\sqrt{\lg p \lg \lg p}),$ For security: finds y complete factorizations into primes $\leq y$, and computes discrete logs. (Assuming standard conjectures. Have extensive evidence.)

- Latest index-calculus variant
- use the "number-field sieve"
- and the "function-field sieve
- To compute discrete logs in
- $O((\lg q)^{1/3}(\lg \lg q)^{2/3}).$
- $q \approx 2^{256}$ to stop rho;
- $q \approx 2^{2048}$ to stop NFS.
- We don't know any
- index-calculus methods for E ... except for some curves.

For $p \to \infty$, index calculus scales surprisingly well: cost p^{ϵ} where $\epsilon \to 0$.

Compare to rho: $\approx p^{1/2}$.

Specifically: searching $a \in \{1, 2, ..., y^2\}$, with $\lg y \in O(\sqrt{\lg p \lg \lg p}),$ finds y complete factorizations into primes < y, and computes discrete logs.

(Assuming standard conjectures. Have extensive evidence.)

Latest index-calculus variants use the "number-field sieve" and the "function-field sieve." To compute discrete logs in \mathbf{F}_q : lg cost ∈ $O((\lg q)^{1/3}(\lg \lg q)^{2/3}).$ For security: $q \approx 2^{256}$ to stop rho; $q \approx 2^{2048}$ to stop NFS. We don't know any index-calculus methods for ECDL! ... except for some curves.