Generic attacks and index calculus
D. J. Bernstein

University of Illinois at Chicago

The discrete-logarithm problem
Define $p=1000003$.
Easy to prove: p is prime.
Can we find an integer
$n \in\{1,2,3, \ldots, p-1\}$
such that $5^{n} \bmod p=262682$?
Easy to prove: $n \mapsto 5^{n} \bmod p$ permutes $\{1,2,3, \ldots, p-1\}$. So there exists an n such that $5^{n} \bmod p=262682$.

Could find n by brute force. Is there a faster way?

attacks

x calculus
rnstein
ty of Illinois at Chicago

The discrete-logarithm problem
Define $p=1000003$.
Easy to prove: p is prime.
Can we find an integer
$n \in\{1,2,3, \ldots, p-1\}$
such that $5^{n} \bmod p=262682$?
Easy to prove: $n \mapsto 5^{n} \bmod p$ permutes $\{1,2,3, \ldots, p-1\}$.
So there exists an n
such that $5^{n} \bmod p=262682$.
Could find n by brute force. Is there a faster way?

Typical
Imagine in the D

User chc publishe

Can atta the discl
Given pı quickly
(Warnin to attac Maybe t

The discrete-logarithm problem
Define $p=1000003$.
Easy to prove: p is prime.
Can we find an integer
$n \in\{1,2,3, \ldots, p-1\}$
such that $5^{n} \bmod p=262682$?
Easy to prove: $n \mapsto 5^{n} \bmod p$ permutes $\{1,2,3, \ldots, p-1\}$.
So there exists an n
such that $5^{n} \bmod p=262682$.
Could find n by brute force.
Is there a faster way?

Typical cryptanaly Imagine standard in the Diffie-Hellm

User chooses secre publishes $5^{n} \bmod$

Can attacker quicl the discrete-logari Given public key 5 quickly find secret
(Warning: This is to attack the prot Maybe there are b

The discrete-logarithm problem
Define $p=1000003$.
Easy to prove: p is prime.
Can we find an integer
$n \in\{1,2,3, \ldots, p-1\}$
such that $5^{n} \bmod p=262682$?
Easy to prove: $n \mapsto 5^{n} \bmod p$ permutes $\{1,2,3, \ldots, p-1\}$.
So there exists an n
such that $5^{n} \bmod p=262682$.
Could find n by brute force.
Is there a faster way?

Typical cryptanalytic applica Imagine standard $p=10000$ in the Diffie-Hellman protoc

User chooses secret key n, publishes $5^{n} \bmod p=2626 \varepsilon$

Can attacker quickly solve the discrete-logarithm proble Given public key $5^{n} \bmod p$, quickly find secret key n ?
(Warning: This is one way to attack the protocol.
Maybe there are better ways

The discrete-logarithm problem

Define $p=1000003$.
Easy to prove: p is prime.
Can we find an integer
$n \in\{1,2,3, \ldots, p-1\}$
such that $5^{n} \bmod p=262682$?
Easy to prove: $n \mapsto 5^{n} \bmod p$ permutes $\{1,2,3, \ldots, p-1\}$.
So there exists an n such that $5^{n} \bmod p=262682$.

Could find n by brute force. Is there a faster way?

Typical cryptanalytic application:
Imagine standard $p=1000003$
in the Diffie-Hellman protocol.
User chooses secret key n, publishes $5^{n} \bmod p=262682$.

Can attacker quickly solve the discrete-logarithm problem?
Given public key $5^{n} \bmod p$, quickly find secret key n ?
(Warning: This is one way to attack the protocol.
Maybe there are better ways.)
rete-logarithm problem $=1000003$.
prove: p is prime.
find an integer
$2,3, \ldots, p-1\}$
t $5^{n} \bmod p=262682$?
prove: $n \mapsto 5^{n} \bmod p$
s $\{1,2,3, \ldots, p-1\}$. exists an n
t $5^{n} \bmod p=262682$.
nd n by brute force.
a faster way?

Typical cryptanalytic application:
Imagine standard $p=1000003$
in the Diffie-Hellman protocol.
User chooses secret key n, publishes $5^{n} \bmod p=262682$.

Can attacker quickly solve the discrete-logarithm problem?
Given public key $5^{n} \bmod p$, quickly find secret key n ?
(Warning: This is one way to attack the protocol. Maybe there are better ways.)

Relation

1. Some
to ellipti Use in e security
2. Some Use in e advanta compare
3. Trick extra ap See Tan on Weil

ithm problem

3.

s prime.
eger
$-1\}$
$p=262682$?
$\rightarrow 5^{n} \bmod p$
$p-1\}$.
n
$p=262682$.
ute force.
ay?

Typical cryptanalytic application:
Imagine standard $p=1000003$
in the Diffie-Hellman protocol.
User chooses secret key n, publishes $5^{n} \bmod p=262682$.

Can attacker quickly solve the discrete-logarithm problem?
Given public key $5^{n} \bmod p$, quickly find secret key n ?
(Warning: This is one way to attack the protocol.
Maybe there are better ways.)

Relations to ECC:

1. Some DL techr to elliptic-curve D Use in evaluating security of an ellip
2. Some techniqu Use in evaluating advantages of ellip compared to multi
3. Tricky: Some t extra applications See Tanja Lange's on Weil descent et

Typical cryptanalytic application:
Imagine standard $p=1000003$
in the Diffie-Hellman protocol.
User chooses secret key n, publishes $5^{n} \bmod p=262682$.

Can attacker quickly solve the discrete-logarithm problem?
Given public key $5^{n} \bmod p$, quickly find secret key n ?
(Warning: This is one way to attack the protocol.
Maybe there are better ways.)

Relations to ECC:

1. Some DL techniques also to elliptic-curve DL problem Use in evaluating security of an elliptic curve.
2. Some techniques don't a Use in evaluating advantages of elliptic curves compared to multiplication.
3. Tricky: Some techniques extra applications to some c See Tanja Lange's talk on Weil descent etc.

Typical cryptanalytic application:
Imagine standard $p=1000003$
in the Diffie-Hellman protocol.
User chooses secret key n, publishes $5^{n} \bmod p=262682$.

Can attacker quickly solve the discrete-logarithm problem?
Given public key $5^{n} \bmod p$, quickly find secret key n ?
(Warning: This is one way to attack the protocol.
Maybe there are better ways.)

Relations to ECC:

1. Some DL techniques also apply to elliptic-curve DL problems.
Use in evaluating
security of an elliptic curve.
2. Some techniques don't apply. Use in evaluating advantages of elliptic curves compared to multiplication.
3. Tricky: Some techniques have extra applications to some curves. See Tanja Lange's talk on Weil descent etc.
cryptanalytic application:
standard $p=1000003$
iffie-Hellman protocol.
oses secret key n,
$\mathrm{s} 5^{n} \bmod p=262682$.
acker quickly solve
ete-logarithm problem?
ablic key $5^{n} \bmod p$, ind secret key n ?
g : This is one way
k the protocol.
here are better ways.)

Relations to ECC:

1. Some DL techniques also apply to elliptic-curve DL problems. Use in evaluating security of an elliptic curve.
2. Some techniques don't apply. Use in evaluating advantages of elliptic curves compared to multiplication.
3. Tricky: Some techniques have extra applications to some curves. See Tanja Lange's talk on Weil descent etc.

Underst

Can con $5^{1} \mathrm{mod}$ $5^{2} \bmod$ $5^{3} \mathrm{mod}$ $5^{8} \mathrm{mod}$ $5^{9} \mathrm{mod}$ $5^{1000002}$

At some with 5^{n}

Maximu
$\leq p-1$
$\leq p-1$
that doe
tic application:
$p=1000003$
an protocol.
t key n,
$p=262682$.
kly solve thm problem?
${ }^{n} \bmod p$, key n ?
one way
ocol.
etter ways.)

Relations to ECC:

1. Some DL techniques also apply to elliptic-curve DL problems.
Use in evaluating
security of an elliptic curve.
2. Some techniques don't apply.

Use in evaluating advantages of elliptic curves compared to multiplication.
3. Tricky: Some techniques have extra applications to some curves. See Tanja Lange's talk on Weil descent etc.

Understanding bru
Can compute succ
$5^{1} \bmod p=5$,
$5^{2} \bmod p=25$,
$5^{3} \bmod p=125$,
$5^{8} \bmod p=39062$
$5^{9} \bmod p=95312$
$5^{1000002} \bmod p=$
At some point we' with $5^{n} \bmod p=$ Maximum cost of $\leq p-1$ mults by $\leq p-1$ nanoseco that does 1 mult/
tion:

Understanding brute force
Can compute successively
$5^{1} \bmod p=5$,
$5^{2} \bmod p=25$,
$5^{3} \bmod p=125, \ldots$,
$5^{8} \bmod p=390625$,
$5^{9} \bmod p=953122, \ldots$,
$5^{1000002} \bmod p=1$.
At some point we'll find n with $5^{n} \bmod p=262682$.

Maximum cost of computat
$\leq p-1$ mults by $5 \bmod p$;
$\leq p-1$ nanoseconds on a that does 1 mult/nanosecon

Relations to ECC:

1. Some DL techniques also apply to elliptic-curve DL problems.
Use in evaluating
security of an elliptic curve.
2. Some techniques don't apply.

Use in evaluating advantages of elliptic curves compared to multiplication.
3. Tricky: Some techniques have extra applications to some curves. See Tanja Lange's talk on Weil descent etc.

Understanding brute force

Can compute successively $5^{1} \bmod p=5$,
$5^{2} \bmod p=25$,
$5^{3} \bmod p=125, \ldots$,
$5^{8} \bmod p=390625$,
$5^{9} \bmod p=953122, \ldots$,
$5^{1000002} \bmod p=1$.
At some point we'll find n with $5^{n} \bmod p=262682$.

Maximum cost of computation:
$\leq p-1$ mults by $5 \bmod p$;
$\leq p-1$ nanoseconds on a CPU
that does 1 mult/nanosecond.
s to ECC:
DL techniques also apply c-curve DL problems.
valuating
of an elliptic curve.
techniques don't apply.
valuating
ges of elliptic curves
d to multiplication.
y : Some techniques have plications to some curves.
ja Lange's talk descent etc.

Understanding brute force

Can compute successively
$5^{1} \bmod p=5$,
$5^{2} \bmod p=25$,
$5^{3} \bmod p=125, \ldots$,
$5^{8} \bmod p=390625$,
$5^{9} \bmod p=953122, \ldots$,
$5^{1000002} \bmod p=1$.
At some point we'll find n with $5^{n} \bmod p=262682$.

Maximum cost of computation:
$\leq p-1$ mults by $5 \bmod p$;
$\leq p-1$ nanoseconds on a CPU
that does $1 \mathrm{mult} /$ nanosecond.

This is r for $p \approx$

But user standaro making

Attack
$\approx 2^{50} \mathrm{~m}$
$\approx 2^{100}$
(Not exa cost of r But this

Understanding brute force

Can compute successively
$5^{1} \bmod p=5$,
$5^{2} \bmod p=25$,
$5^{3} \bmod p=125, \ldots$,
$5^{8} \bmod p=390625$,
$5^{9} \bmod p=953122, \ldots$,
$5^{1000002} \bmod p=1$.
At some point we'll find n with $5^{n} \bmod p=262682$.

Maximum cost of computation:
$\leq p-1$ mults by $5 \bmod p$;
$\leq p-1$ nanoseconds on a CPU
that does 1 mult/nanosecond.

This is negligible for $p \approx 2^{20}$.

But users can standardize a larg making the attack

Attack cost scales $\approx 2^{50}$ mults for p $\approx 2^{100}$ mults for γ
(Not exactly linea cost of mults gron But this is a mino

Understanding brute force

$\leq p-1$ mults by $5 \bmod p$;
$\leq p-1$ nanoseconds on a CPU that does 1 mult/nanosecond.

This is negligible work for $p \approx 2^{20}$.

But users can
standardize a larger p, making the attack slower.

Attack cost scales linearly: $\approx 2^{50}$ mults for $p \approx 2^{50}$,
$\approx 2^{100}$ mults for $p \approx 2^{100}$,
(Not exactly linearly:
cost of mults grows with p. But this is a minor effect.)

Understanding brute force

Can compute successively
$5^{1} \bmod p=5$,
$5^{2} \bmod p=25$,
$5^{3} \bmod p=125, \ldots$,
$5^{8} \bmod p=390625$,
$5^{9} \bmod p=953122, \ldots$,
$5^{1000002} \bmod p=1$.
At some point we'll find n with $5^{n} \bmod p=262682$.

Maximum cost of computation:
$\leq p-1$ mults by $5 \bmod p$;
$\leq p-1$ nanoseconds on a CPU that does 1 mult/nanosecond.

This is negligible work for $p \approx 2^{20}$.

But users can
standardize a larger p, making the attack slower.

Attack cost scales linearly:
$\approx 2^{50}$ mults for $p \approx 2^{50}$,
$\approx 2^{100}$ mults for $p \approx 2^{100}$, etc.
(Not exactly linearly:
cost of mults grows with p.
But this is a minor effect.)

anding brute force

pute successively
$p=5$,
$p=25$,
$p=125, \ldots$,
$p=390625$,
$p=953122, \ldots$,
$\bmod p=1$.
point we'll find n
$\bmod p=262682$.
m cost of computation:
mults by $5 \bmod p$;
nanoseconds on a CPU
s 1 mult/nanosecond.

This is negligible work for $p \approx 2^{20}$.

But users can
standardize a larger p, making the attack slower.

Attack cost scales linearly:
$\approx 2^{50}$ mults for $p \approx 2^{50}$,
$\approx 2^{100}$ mults for $p \approx 2^{100}$, etc.
(Not exactly linearly:
cost of mults grows with p.
But this is a minor effect.)

Comput of finish
Chance $1 / 2$ cha $1 / 10 \mathrm{ch}$
"So use
That's p
"randon
choose comput comput (515040
comput
subtract
te force
essively

II find n 262682.
computation:
$5 \bmod p ;$
ads on a CPU
nanosecond.

This is negligible work for $p \approx 2^{20}$.

But users can
standardize a larger p,
making the attack slower.
Attack cost scales linearly:
$\approx 2^{50}$ mults for $p \approx 2^{50}$,
$\approx 2^{100}$ mults for $p \approx 2^{100}$, etc.
(Not exactly linearly:
cost of mults grows with p.
But this is a minor effect.)

Computation has of finishing earlier Chance scales line $1 / 2$ chance of $1 / 2$ $1 / 10$ chance of 1 /
"So users should
That's pointless. "random self-redu choose random r, compute $5^{r} \bmod r$ compute $5^{r} 5^{n}$ mo (515040 $\cdot\left(5^{n} \mathrm{mod}\right.$ compute discrete subtract $r \bmod p$.

This is negligible work
for $p \approx 2^{20}$.
But users can
standardize a larger p,
making the attack slower.
Attack cost scales linearly:
$\approx 2^{50}$ mults for $p \approx 2^{50}$,
$\approx 2^{100}$ mults for $p \approx 2^{100}$, etc.
(Not exactly linearly:
cost of mults grows with p.
But this is a minor effect.)

Computation has a good ch of finishing earlier.
Chance scales linearly: $1 / 2$ chance of $1 / 2$ cost; $1 / 10$ chance of $1 / 10$ cost; e
"So users should choose lar§
That's pointless. We can ap "random self-reduction": choose random r, say 72637 compute $5^{r} \bmod p=51504$ compute $5^{r} 5^{n} \bmod p$ as $\left(515040 \cdot\left(5^{n} \bmod p\right)\right) \bmod$ compute discrete log; subtract $r \bmod p-1$; obtai

This is negligible work for $p \approx 2^{20}$.

But users can

standardize a larger p, making the attack slower.

Attack cost scales linearly: $\approx 2^{50}$ mults for $p \approx 2^{50}$,
$\approx 2^{100}$ mults for $p \approx 2^{100}$, etc.
(Not exactly linearly: cost of mults grows with p. But this is a minor effect.)

Computation has a good chance of finishing earlier.
Chance scales linearly:
$1 / 2$ chance of $1 / 2$ cost;
$1 / 10$ chance of $1 / 10$ cost; etc.
"So users should choose large n."
That's pointless. We can apply "random self-reduction": choose random r, say 726379 ; compute $5^{r} \bmod p=515040$; compute $5^{r} 5^{n} \bmod p$ as $\left(515040 \cdot\left(5^{n} \bmod p\right)\right) \bmod p$; compute discrete log;
subtract $r \bmod p-1$; obtain n.
egligible work
20
s can
lize a larger p,
the attack slower.
ost scales linearly:
ults for $p \approx 2^{50}$,
nults for $p \approx 2^{100}$, etc.
actly linearly:
nults grows with p.
is a minor effect.)

Computation has a good chance of finishing earlier.
Chance scales linearly:
$1 / 2$ chance of $1 / 2$ cost;
$1 / 10$ chance of $1 / 10$ cost; etc.
"So users should choose large n."
That's pointless. We can apply "random self-reduction": choose random r, say 726379; compute $5^{r} \bmod p=515040$;
compute $5^{r} 5^{n} \bmod p$ as
$\left(515040 \cdot\left(5^{n} \bmod p\right)\right) \bmod p$;
compute discrete log;
subtract $r \bmod p-1$; obtain n.

Comput
One low many pa
Example 2^{10} core each 2^{30} Maybe; for detai

Attacker many pa
Example so $2^{34} \mathrm{c}$
so 2^{64}
so 2^{89}

vork

er p,
slower.
linearly:
$\approx 2^{50}$,
$\approx 2^{100}$, etc.
ly:
s with p.
reffect.)

Computation has a good chance of finishing earlier.
Chance scales linearly:
$1 / 2$ chance of $1 / 2$ cost;
$1 / 10$ chance of $1 / 10$ cost; etc.
"So users should choose large n."
That's pointless. We can apply "random self-reduction":
choose random r, say 726379;
compute $5^{r} \bmod p=515040$;
compute $5^{r} 5^{n} \bmod p$ as
$\left(515040 \cdot\left(5^{n} \bmod p\right)\right) \bmod p$;
compute discrete log;
subtract $r \bmod p-1$; obtain n.

Computation can
One low-cost chip many parallel sear Example, 2^{6} €: o 2^{10} cores on the c each 2^{30} mults/se Maybe; see SHAR for detailed cost a

Attacker can run many parallel chip Example, $2^{30} €$: so 2^{34} cores,
so 2^{64} mults/seco
so 2^{89} mults/year.

Computation has a good chance of finishing earlier.
Chance scales linearly: $1 / 2$ chance of $1 / 2$ cost; $1 / 10$ chance of $1 / 10$ cost; etc.
"So users should choose large n."
That's pointless. We can apply "random self-reduction": choose random r, say 726379 ; compute $5^{r} \bmod p=515040$; compute $5^{r} 5^{n} \bmod p$ as $\left(515040 \cdot\left(5^{n} \bmod p\right)\right) \bmod p$; compute discrete log; subtract $r \bmod p-1$; obtain n.

Computation can be parallel
One low-cost chip can run many parallel searches.
Example, $2^{6} €$: one chip, 2^{10} cores on the chip, each 2^{30} mults/second?
Maybe; see SHARCS worksł for detailed cost analyses.

Attacker can run many parallel chips.
Example, $2^{30} €: 2^{24}$ chips, so 2^{34} cores,
so $2^{64} \mathrm{mults} /$ second, so $2^{89} \mathrm{mults} /$ year .

Computation has a good chance of finishing earlier.
Chance scales linearly:
$1 / 2$ chance of $1 / 2$ cost;
$1 / 10$ chance of $1 / 10$ cost; etc.
"So users should choose large n."
That's pointless. We can apply
"random self-reduction":
choose random r, say 726379 ;
compute $5^{r} \bmod p=515040$;
compute $5^{r} 5^{n} \bmod p$ as
$\left(515040 \cdot\left(5^{n} \bmod p\right)\right) \bmod p$;
compute discrete log;
subtract $r \bmod p-1$; obtain n.

Computation can be parallelized.
One low-cost chip can run many parallel searches.
Example, $2^{6} €$: one chip,
2^{10} cores on the chip, each 2^{30} mults/second?
Maybe; see SHARCS workshops for detailed cost analyses.

Attacker can run many parallel chips.
Example, $2^{30} €: 2^{24}$ chips, so 2^{34} cores,
so 2^{64} mults/second,
so 2^{89} mults/year.
ation has a good chance ing earlier.
scales linearly:
ace of $1 / 2$ cost;
ance of $1 / 10$ cost; etc.
s should choose large n."
ointless. We can apply self-reduction":
andom r, say 726379 ;
$5^{r} \bmod p=515040 ;$
$5^{r} 5^{n} \bmod p$ as $\left.\left(5^{n} \bmod p\right)\right) \bmod p ;$
discrete log;
$r \bmod p-1$; obtain n.

Computation can be parallelized.
One low-cost chip can run many parallel searches.
Example, $2^{6} €$: one chip, 2^{10} cores on the chip, each 2^{30} mults/second?
Maybe; see SHARCS workshops for detailed cost analyses.

Attacker can run
many parallel chips.
Example, $2^{30} €: 2^{24}$ chips, so 2^{34} cores,
so 2^{64} mults/second, so $2^{89} \mathrm{mults} /$ year .

Multiple
Comput to many

Given 10 $5^{n_{2}} \mathrm{moc}$
Can find with ≤ 1

Simplest
a sorted
$5^{n_{1}} \mathrm{moc}$
Then ch $5^{1} \mathrm{mod}$
a good chance
arly:
cost;
10 cost; etc.
hoose large n."
We can apply ction":
say 726379 ;
= 515040;
d p as
$p)) \bmod p ;$
og;

- 1; obtain n.

Computation can be parallelized.
One low-cost chip can run many parallel searches.
Example, $2^{6} €$: one chip, 2^{10} cores on the chip, each 2^{30} mults/second?
Maybe; see SHARCS workshops for detailed cost analyses.

Attacker can run
many parallel chips.
Example, $2^{30} €: 2^{24}$ chips, so 2^{34} cores,
so $2^{64} \mathrm{mults} /$ second,
so $2^{89} \mathrm{mults} /$ year .

Multiple targets a
Computation can to many targets a

Given 100 DL tare $5^{n_{2}} \bmod p, \ldots, 5$ Can find all of n_{1} with $\leq p-1$ mult

Simplest approach a sorted table con $5^{n_{1}} \bmod p, \ldots, 5$ Then check table $5^{1} \bmod p, 5^{2} \bmod$

Computation can be parallelized.
One low-cost chip can run many parallel searches.
Example, $2^{6} €$: one chip, 2^{10} cores on the chip, each 2^{30} mults/second? Maybe; see SHARCS workshops for detailed cost analyses.

Attacker can run many parallel chips.
Example, $2^{30} €: 2^{24}$ chips, so 2^{34} cores,
so $2^{64} \mathrm{mults} /$ second, so $2^{89} \mathrm{mults} /$ year .

Multiple targets and giant s
Computation can be applied to many targets at once.

Given 100 DL targets $5^{n_{1}} \mathrm{~m}$ $5^{n_{2}} \bmod p, \ldots, 5^{n_{100}} \bmod p$ Can find all of n_{1}, n_{2}, \ldots, n with $\leq p-1 \operatorname{mults} \bmod p$.

Simplest approach: First bu a sorted table containing $5^{n_{1}} \bmod p, \ldots, 5^{n_{100}} \bmod$ Then check table for $5^{1} \bmod p, 5^{2} \bmod p$, etc.

Computation can be parallelized.
One low-cost chip can run many parallel searches.
Example, $2^{6} €$: one chip,
2^{10} cores on the chip, each 2^{30} mults/second?
Maybe; see SHARCS workshops for detailed cost analyses.

Attacker can run many parallel chips.
Example, $2^{30} €: 2^{24}$ chips, so 2^{34} cores,
so 2^{64} mults/second,
so $2^{89} \mathrm{mults} /$ year .

Multiple targets and giant steps

Computation can be applied to many targets at once.

Given 100 DL targets $5^{n_{1}} \bmod p$, $5^{n_{2}} \bmod p, \ldots, 5^{n_{100}} \bmod p:$
Can find all of $n_{1}, n_{2}, \ldots, n_{100}$ with $\leq p-1$ mults $\bmod p$.

Simplest approach: First build a sorted table containing $5^{n_{1}} \bmod p, \ldots, 5^{n_{100}} \bmod p$.
Then check table for $5^{1} \bmod p, 5^{2} \bmod p$, etc.
ation can be parallelized.
-cost chip can run
rallel searches.
, $2^{6} €$: one chip,
s on the chip,
mults/second?
see SHARCS workshops
led cost analyses.
can run
rallel chips.
$2^{30} €: 2^{24}$ chips, ores,
ults/second, uults/year.

Multiple targets and giant steps

Computation can be applied to many targets at once.

Given 100 DL targets $5^{n_{1}} \bmod p$, $5^{n_{2}} \bmod p, \ldots, 5^{n_{100}} \bmod p$:
Can find all of $n_{1}, n_{2}, \ldots, n_{100}$ with $\leq p-1$ mults $\bmod p$.

Simplest approach: First build
a sorted table containing
$5^{n_{1}} \bmod p, \ldots, 5^{n_{100}} \bmod p$.
Then check table for
$5^{1} \bmod p, 5^{2} \bmod p$, etc.

Interesti
Solving isn't mu solving

Interesti
Solving out of 1 is much solving

When di find its
Typicall
be parallelized.

can run

 ches.ne chip,
hip,
cond?
CS workshops nalyses.
2^{24} chips, nd,

Multiple targets and giant steps

Computation can be applied to many targets at once.

Given 100 DL targets $5^{n_{1}} \bmod p$, $5^{n_{2}} \bmod p, \ldots, 5^{n_{100}} \bmod p$:
Can find all of $n_{1}, n_{2}, \ldots, n_{100}$ with $\leq p-1$ mults $\bmod p$.

Simplest approach: First build a sorted table containing $5^{n_{1}} \bmod p, \ldots, 5^{n_{100}} \bmod p$.
Then check table for $5^{1} \bmod p, 5^{2} \bmod p$, etc.

Interesting conseq Solving all 100 DL isn't much harder solving one DL pr

Interesting conseq Solving at least or out of 100 DL pro is much easier tha solving one DL pr

When did this con find its first n_{i} ?
Typically $\approx(p-1$

ized.
 Multiple targets and giant steps

ops
Computation can be applied to many targets at once.

Given 100 DL targets $5^{n_{1}} \bmod p$, $5^{n_{2}} \bmod p, \ldots, 5^{n_{100}} \bmod p$:
Can find all of $n_{1}, n_{2}, \ldots, n_{100}$ with $\leq p-1$ mults $\bmod p$.

Simplest approach: First build
a sorted table containing $5^{n_{1}} \bmod p, \ldots, 5^{n_{100}} \bmod p$.
Then check table for
$5^{1} \bmod p, 5^{2} \bmod p$, etc.

Interesting consequence \#1 Solving all 100 DL problems isn't much harder than solving one DL problem.

Interesting consequence \#2 Solving at least one out of 100 DL problems is much easier than solving one DL problem.

When did this computation find its first n_{i} ?
Typically $\approx(p-1) / 100 \mathrm{mu}$

Multiple targets and giant steps

Computation can be applied to many targets at once.

Given 100 DL targets $5^{n_{1}} \bmod p$, $5^{n_{2}} \bmod p, \ldots, 5^{n_{100}} \bmod p$:
Can find all of $n_{1}, n_{2}, \ldots, n_{100}$ with $\leq p-1$ mults $\bmod p$.

Simplest approach: First build a sorted table containing $5^{n_{1}} \bmod p, \ldots, 5^{n_{100}} \bmod p$.
Then check table for $5^{1} \bmod p, 5^{2} \bmod p$, etc.

Interesting consequence $\# 1$:
Solving all 100 DL problems isn't much harder than solving one DL problem.

Interesting consequence \#2:
Solving at least one out of 100 DL problems is much easier than solving one DL problem.

When did this computation find its first n_{i} ?
Typically $\approx(p-1) / 100$ mults.

targets and giant steps

ation can be applied targets at once.

0 DL targets $5^{n_{1}} \bmod p$
$p, \ldots, 5^{n_{100}} \bmod p:$
all of $n_{1}, n_{2}, \ldots, n_{100}$
$p-1$ mults $\bmod p$.
: approach: First build table containing
$p, \ldots, 5^{n_{100}} \bmod p$
eck table for
$p, 5^{2} \bmod p$, etc.

Interesting consequence $\# 1$:
Solving all 100 DL problems
isn't much harder than
solving one DL problem.
Interesting consequence \#2:
Solving at least one
out of 100 DL problems
is much easier than
solving one DL problem.
When did this computation
find its first n_{i} ?
Typically $\approx(p-1) / 100$ mults.

Can use to turn into mul

Given 5^{7}
Choose
Comput
$5^{r_{2}} 5^{n} \mathrm{~m}$
Solve th
Typicall to find
$r_{i}+n \mathrm{n}$ immedia

nd giant steps

be applied once.
ets $5^{n_{1}} \bmod p$,
$n_{100} \bmod p$:
n_{2}, \ldots, n_{100}
$s \bmod p$.
First build taining
$n_{100} \bmod p$.
for
p, etc.

Interesting consequence $\# 1$:
Solving all 100 DL problems
isn't much harder than
solving one DL problem.
Interesting consequence \#2:
Solving at least one
out of 100 DL problems
is much easier than
solving one DL problem.
When did this computation
find its first n_{i} ?
Typically $\approx(p-1) / 100$ mults.

Can use random s to turn a single ta into multiple targe

Given $5^{n} \bmod p$: Choose random r_{1} Compute $5^{r_{1}} 5^{n} \mathrm{~m}$ $5^{r_{2}} 5^{n} \bmod p$, etc.

Solve these 100 D Typically $\approx(p-1$ to find at least on $r_{i}+n \bmod p-1$, immediately revea
find its first n_{i} ?
Typically $\approx(p-1) / 100$ mults.
Interesting consequence $\# 1$: Solving all 100 DL problems
isn't much harder than
solving one DL problem.
Interesting consequence \#2:
Solving at least one
out of 100 DL problems
is much easier than
solving one DL problem.
When did this computation

Can use random self-reducti to turn a single target into multiple targets.

Given $5^{n} \bmod p$:
Choose random r_{1}, r_{2}, \ldots, r
Compute $5^{r_{1}} 5^{n} \bmod p$, $5^{r_{2}} 5^{n} \bmod p$, etc.

Solve these 100 DL problem
Typically $\approx(p-1) / 100 \mathrm{mu}$ to find at least one
$r_{i}+n \bmod p-1$, immediately revealing n.

Interesting consequence $\# 1$:
Solving all 100 DL problems
isn't much harder than solving one DL problem.

Interesting consequence \#2:
Solving at least one
out of 100 DL problems
is much easier than
solving one DL problem.
When did this computation find its first n_{i} ?
Typically $\approx(p-1) / 100$ mults.

Can use random self-reduction to turn a single target into multiple targets.

Given $5^{n} \bmod p$:
Choose random $r_{1}, r_{2}, \ldots, r_{100}$.
Compute $5^{r_{1}} 5^{n} \bmod p$, $5^{r_{2}} 5^{n} \bmod p$, etc.

Solve these 100 DL problems.
Typically $\approx(p-1) / 100$ mults to find at least one
$r_{i}+n \bmod p-1$,
immediately revealing n.
ng consequence $\# 1$:
all 100 DL problems
ch harder than
one DL problem.
ng consequence \#2:
at least one
00 DL problems
easier than
one DL problem.
d this computation first n_{i} ?
$\approx(p-1) / 100$ mults.

Can use random self-reduction
to turn a single target
into multiple targets.
Given $5^{n} \bmod p$:
Choose random $r_{1}, r_{2}, \ldots, r_{100}$.
Compute $5^{r_{1}} 5^{n} \bmod p$, $5^{r_{2}} 5^{n} \bmod p$, etc.

Solve these 100 DL problems.
Typically $\approx(p-1) / 100$ mults to find at least one
$r_{i}+n \bmod p-1$,
immediately revealing n.

Also spe to comp $\approx \lg p \mathrm{~m}$

Faster:
with r_{1}
Comput
$5^{r_{1}} 5^{n} \mathrm{~m}$
$5^{2 r_{1}} 5^{n}$
$5^{3 r_{1}} 5^{n}$
Just 1 n
≈ 100
to find r
uence \#1:
problems
than
oblem.
uence $\# 2$:
лe
blems
oblem.
nputation
)/100 mults.

Can use random self-reduction to turn a single target into multiple targets.

Given $5^{n} \bmod p$:
Choose random $r_{1}, r_{2}, \ldots, r_{100}$.
Compute $5^{r_{1}} 5^{n} \bmod p$, $5^{r_{2}} 5^{n} \bmod p$, etc.

Solve these 100 DL problems.
Typically $\approx(p-1) / 100$ mults to find at least one $r_{i}+n \bmod p-1$, immediately revealing n.

Also spent some n to compute each $\approx \lg p$ mults for

Faster: Choose r_{i} with $r_{1} \approx(p-1)$ Compute $5^{r_{1}} \bmod$ $5^{r_{1}} 5^{n} \bmod p$;
$5^{2 r_{1}} 5^{n} \bmod p$;
$5^{3 r_{1}} 5^{n} \bmod p$; etc Just 1 mult for ea
$\approx 100+\lg p+(p$
to find n given 5^{n}

Can use random self-reduction to turn a single target into multiple targets.

Given $5^{n} \bmod p$:
Choose random $r_{1}, r_{2}, \ldots, r_{100}$.
Compute $5^{r_{1}} 5^{n} \bmod p$, $5^{r_{2}} 5^{n} \bmod p$, etc.

Solve these 100 DL problems.
Typically $\approx(p-1) / 100$ mults
to find at least one
$r_{i}+n \bmod p-1$,
immediately revealing n.

Also spent some mults to compute each $5^{r_{i}} \bmod p$: $\approx \lg p$ mults for each i.

Faster: Choose $r_{i}=i r_{1}$
with $r_{1} \approx(p-1) / 100$.
Compute $5^{r_{1}} \bmod p$;
$5^{r_{1}} 5^{n} \bmod p$;
$5^{2 r_{1}} 5^{n} \bmod p$;
$5^{3 r_{1}} 5^{n} \bmod p$; etc.
Just 1 mult for each new i.
$\approx 100+\lg p+(p-1) / 100$
to find n given $5^{n} \bmod p$.

Can use random self-reduction to turn a single target into multiple targets.

Given $5^{n} \bmod p$:
Choose random $r_{1}, r_{2}, \ldots, r_{100}$.
Compute $5^{r_{1}} 5^{n} \bmod p$, $5^{r_{2}} 5^{n} \bmod p$, etc.

Solve these 100 DL problems.
Typically $\approx(p-1) / 100$ mults to find at least one $r_{i}+n \bmod p-1$, immediately revealing n.

Also spent some mults to compute each $5^{r_{i}} \bmod p$:
$\approx \lg p$ mults for each i.
Faster: Choose $r_{i}=i r_{1}$
with $r_{1} \approx(p-1) / 100$.
Compute $5^{r_{1}} \bmod p$; $5^{r_{1}} 5^{n} \bmod p$;
$5^{2 r_{1}} 5^{n} \bmod p$;
$5^{3 r_{1}} 5^{n} \bmod p$; etc.
Just 1 mult for each new i.
$\approx 100+\lg p+(p-1) / 100$ mults
to find n given $5^{n} \bmod p$.
random self-reduction a single target tiple targets.

${ }^{2} \bmod p:$

random $r_{1}, r_{2}, \ldots, r_{100}$.
$5^{r_{1}} 5^{n} \bmod p$,
od p, etc.
ese 100 DL problems.
$\approx(p-1) / 100$ mults
t least one
$\operatorname{ood} p-1$,
tely revealing n.

Also spent some mults
to compute each $5^{r_{i}} \bmod p$:
$\approx \lg p$ mults for each i.
Faster: Choose $r_{i}=i r_{1}$
with $r_{1} \approx(p-1) / 100$.
Compute $5^{r_{1}} \bmod p$;
$5^{r_{1}} 5^{n} \bmod p$;
$5^{2 r_{1}} 5^{n} \bmod p$;
$5^{3 r_{1}} 5^{n} \bmod p$; etc.
Just 1 mult for each new i.
$\approx 100+\lg p+(p-1) / 100$ mults
to find n given $5^{n} \bmod p$.

Faster: Only \approx to solve
"Shanks discrete-

Example
$5^{n} \bmod$
Comput
Then co $5^{1024} 5^{n}$ $5^{2 \cdot 1024} 5$ $5^{3 \cdot 1024} 5$
$5^{1000 \cdot 102}$
elf-reduction rget
ts.
$, r_{2}, \ldots, r_{100}$
od p,
problems.
)/100 mults
ling n.

Also spent some mults
to compute each $5^{r_{i}} \bmod p$:
$\approx \lg p$ mults for each i.
Faster: Choose $r_{i}=i r_{1}$
with $r_{1} \approx(p-1) / 100$.
Compute $5^{r_{1}} \bmod p$;
$5^{r_{1}} 5^{n} \bmod p$;
$5^{2 r_{1}} 5^{n} \bmod p$;
$5^{3 r_{1}} 5^{n} \bmod p$; etc.
Just 1 mult for each new i.
$\approx 100+\lg p+(p-1) / 100$ mults
to find n given $5^{n} \bmod p$.

Faster: Increase 1 Only $\approx 2 \sqrt{p}$ mult to solve one DL p
"Shanks baby-step discrete-logarithm

Example: $p=100$ $5^{n} \bmod p=26268$

Compute $5^{1024} \mathrm{mc}$ Then compute 10 $5^{1024} 5^{n} \bmod p=$ $5^{2 \cdot 1024} 5^{n} \bmod p=$ $5^{3 \cdot 1024} 5^{n} \bmod p=$ $5^{1000 \cdot 1024} 5^{n} \bmod$

Also spent some mults to compute each $5^{r_{i}} \bmod p$:
$\approx \lg p$ mults for each i.
Faster: Choose $r_{i}=i r_{1}$
with $r_{1} \approx(p-1) / 100$.
Compute $5^{r_{1}} \bmod p$;
$5^{r_{1}} 5^{n} \bmod p$;
$5^{2 r_{1}} 5^{n} \bmod p$;
$5^{3 r_{1}} 5^{n} \bmod p$; etc.
Just 1 mult for each new i.
$\approx 100+\lg p+(p-1) / 100$ mults
to find n given $5^{n} \bmod p$.

Faster: Increase 100 to $\approx \sqrt{ }$ Only $\approx 2 \sqrt{p}$ mults to solve one DL problem!
"Shanks baby-step-giant-ste discrete-logarithm algorithm

Example: $p=1000003$, $5^{n} \bmod p=262682$.

Compute $5^{1024} \bmod p=58$ Then compute 1000 targets $5^{1024} 5^{n} \bmod p=966849$, $5^{2 \cdot 1024} 5^{n} \bmod p=579277$, $5^{3 \cdot 1024} 5^{n} \bmod p=579062$, $5^{1000 \cdot 1024} 5^{n} \bmod p=32170$

Also spent some mults to compute each $5^{r_{i}} \bmod p$:
$\approx \lg p$ mults for each i.
Faster: Choose $r_{i}=i r_{1}$
with $r_{1} \approx(p-1) / 100$.
Compute $5^{r_{1}} \bmod p$;
$5^{r_{1}} 5^{n} \bmod p$;
$5^{2 r_{1}} 5^{n} \bmod p$;
$5^{3 r_{1}} 5^{n} \bmod p$; etc.
Just 1 mult for each new i.
$\approx 100+\lg p+(p-1) / 100$ mults to find n given $5^{n} \bmod p$.

Faster: Increase 100 to $\approx \sqrt{p}$. Only $\approx 2 \sqrt{p}$ mults
to solve one DL problem!
"Shanks baby-step-giant-step discrete-logarithm algorithm."

Example: $p=1000003$, $5^{n} \bmod p=262682$.

Compute $5^{1024} \bmod p=58588$.
Then compute 1000 targets:
$5^{1024} 5^{n} \bmod p=966849$,
$5^{2 \cdot 1024} 5^{n} \bmod p=579277$,
$5^{3 \cdot 1024} 5^{n} \bmod p=579062, \ldots$,
$5^{1000 \cdot 1024} 5^{n} \bmod p=321705$.
nt some mults
ute each $5^{r_{i}} \bmod p$:
ults for each i.
Choose $r_{i}=i r_{1}$
$\approx(p-1) / 100$
e $5^{r_{1}} \bmod p ;$
od p;
$\operatorname{nod} p ;$
nod p; etc.
ult for each new i.
$\lg p+(p-1) / 100$ mults
2 given $5^{n} \bmod p$

Faster: Increase 100 to $\approx \sqrt{p}$.
Only $\approx 2 \sqrt{p}$ mults
to solve one DL problem!
"Shanks baby-step-giant-step
discrete-logarithm algorithm."
Example: $p=1000003$,
$5^{n} \bmod p=262682$.
Compute $5^{1024} \bmod p=58588$.
Then compute 1000 targets:
$5^{1024} 5^{n} \bmod p=966849$,
$5^{2 \cdot 1024} 5^{n} \bmod p=579277$,
$5^{3 \cdot 1024} 5^{n} \bmod p=579062, \ldots$,
$5^{1000 \cdot 1024} 5^{n} \bmod p=321705$.

Build a $2573=$
$3371=$ $3593=$
$4960=$
$5218=$ 999675

Look up $5^{3} \mathrm{mod}$ $5^{755} \mathrm{mo}$ 966603
in the ta
so $755=$ deduce

nults

${ }^{r_{i}} \bmod p:$
ach i.
$=i r_{1}$
/100.
p
ch new i.

- 1)/100 mults $\bmod p$.

Faster: Increase 100 to $\approx \sqrt{p}$.
Only $\approx 2 \sqrt{p}$ mults
to solve one DL problem!
"Shanks baby-step-giant-step discrete-logarithm algorithm."

Example: $p=1000003$, $5^{n} \bmod p=262682$.

Compute $5^{1024} \bmod p=58588$.
Then compute 1000 targets:
$5^{1024} 5^{n} \bmod p=966849$,
$5^{2 \cdot 1024} 5^{n} \bmod p=579277$,
$5^{3 \cdot 1024} 5^{n} \bmod p=579062, \ldots$,
$5^{1000 \cdot 1024} 5^{n} \bmod p=321705$.

Build a sorted tab $2573=5^{430 \cdot 1024} 5$
$3371=5^{102 \cdot 1024} 5^{7}$
$3593=5^{626 \cdot 1024} 5^{7}$
$4960=5^{663 \cdot 1024} 5$
$5218=5^{376 \cdot 1024} 5$
$999675=5^{344 \cdot 102}$
Look up $5^{1} \bmod p$ $5^{3} \bmod p$, etc. in
$5^{755} \bmod p=966$ $966603=5^{332 \cdot 102}$
in the table of tar
so $755=332 \cdot 102$
deduce $n=66078$

Faster: Increase 100 to $\approx \sqrt{p}$.
Only $\approx 2 \sqrt{p}$ mults
to solve one DL problem!
"Shanks baby-step-giant-step discrete-logarithm algorithm."

Example: $p=1000003$,
$5^{n} \bmod p=262682$.
Compute $5^{1024} \bmod p=58588$.
Then compute 1000 targets:
$5^{1024} 5^{n} \bmod p=966849$,
$5^{2 \cdot 1024} 5^{n} \bmod p=579277$,
$5^{3 \cdot 1024} 5^{n} \bmod p=579062, \ldots$,
$5^{1000 \cdot 1024} 5^{n} \bmod p=321705$.

Build a sorted table of targe $2573=5^{430 \cdot 1024} 5^{n} \bmod p$, $3371=5^{192 \cdot 1024} 5^{n} \bmod p$, $3593=5^{626 \cdot 1024} 5^{n} \bmod p$, $4960=5^{663 \cdot 1024} 5^{n} \bmod p$, $5218=5^{376 \cdot 1024} 5^{n} \bmod p$, $999675=5^{344 \cdot 1024} 5^{n} \bmod x$ Look up $5^{1} \bmod p, 5^{2} \bmod$ $5^{3} \bmod p$, etc. in this table.
$5^{755} \bmod p=966603 ;$ find $966603=5^{332 \cdot 1024} 5^{n} \bmod x$ in the table of targets;
so $755=332 \cdot 1024+n \bmod$ deduce $n=660789$.

Faster: Increase 100 to $\approx \sqrt{p}$. Only $\approx 2 \sqrt{p}$ mults to solve one DL problem!
"Shanks baby-step-giant-step discrete-logarithm algorithm."

Example: $p=1000003$,
$5^{n} \bmod p=262682$.
Compute $5^{1024} \bmod p=58588$.
Then compute 1000 targets:
$5^{1024} 5^{n} \bmod p=966849$, $5^{2 \cdot 1024} 5^{n} \bmod p=579277$, $5^{3 \cdot 1024} 5^{n} \bmod p=579062, \ldots$, $5^{1000 \cdot 1024} 5^{n} \bmod p=321705$.

Build a sorted table of targets:
$2573=5^{430 \cdot 1024} 5^{n} \bmod p$,
$3371=5^{192 \cdot 1024} 5^{n} \bmod p$,
$3593=5^{626 \cdot 1024} 5^{n} \bmod p$,
$4960=5^{663 \cdot 1024} 5^{n} \bmod p$,
$5218=5^{376 \cdot 1024} 5^{n} \bmod p, \ldots$,
$999675=5^{344 \cdot 1024} 5^{n} \bmod p$.
Look up $5^{1} \bmod p, 5^{2} \bmod p$, $5^{3} \bmod p$, etc. in this table.
$5^{755} \bmod p=966603$; find $966603=5^{332 \cdot 1024} 5^{n} \bmod p$
in the table of targets;
so $755=332 \cdot 1024+n \bmod p-1$; deduce $n=660789$.

Increase 100 to $\approx \sqrt{p}$.
$2 \sqrt{p}$ mults
one DL problem!
baby-step-giant-step logarithm algorithm."
$: p=1000003$,
$p=262682$.
$5^{1024} \bmod p=58588$
mpute 1000 targets:
$\bmod p=966849$,
${ }^{2} \bmod p=579277$,
${ }^{n} \bmod p=579062, \ldots$,
${ }^{4} 5^{n} \bmod p=321705$.

Build a sorted table of targets:
$2573=5^{430 \cdot 1024} 5^{n} \bmod p$,
$3371=5^{192 \cdot 1024} 5^{n} \bmod p$, $3593=5^{626 \cdot 1024} 5^{n} \bmod p$, $4960=5^{663 \cdot 1024} 5^{n} \bmod p$, $5218=5^{376 \cdot 1024} 5^{n} \bmod p, \ldots$, $999675=5^{344 \cdot 1024} 5^{n} \bmod p$.

Look up $5^{1} \bmod p, 5^{2} \bmod p$, $5^{3} \bmod p$, etc. in this table.
$5^{755} \bmod p=966603 ;$ find $966603=5^{332 \cdot 1024} 5^{n} \bmod p$
in the table of targets;
so $755=332 \cdot 1024+n \bmod p-1$; deduce $n=660789$.

Eliminat

Improve
$x_{i+1}=$
$x_{i+1}=$
$x_{i+1}=$
Then x_{i} where ($\left(a_{i+1}, b_{i}\right.$ $\left(a_{i+1}, b_{i}\right.$ $\left(a_{i+1}, b_{i}\right.$

Search f
$x_{1}=x_{2}$
$x_{4}=x_{8}$
Deduce

00 to $\approx \sqrt{p}$.
roblem!
-giant-step algorithm."

0003, 32.
d $p=58588$.
00 targets:
966849,
579277, $=579062, \ldots$,
$o=321705$.

Build a sorted table of targets:
$2573=5^{430 \cdot 1024} 5^{n} \bmod p$,
$3371=5^{192 \cdot 1024} 5^{n} \bmod p$,
$3593=5^{626 \cdot 1024} 5^{n} \bmod p$,
$4960=5^{663 \cdot 1024} 5^{n} \bmod p$,
$5218=5^{376 \cdot 1024} 5^{n} \bmod p, \ldots$,
$999675=5^{344 \cdot 1024} 5^{n} \bmod p$.
Look up $5^{1} \bmod p, 5^{2} \bmod p$, $5^{3} \bmod p$, etc. in this table.
$5^{755} \bmod p=966603 ;$ find $966603=5^{332 \cdot 1024} 5^{n} \bmod p$
in the table of targets;
so $755=332 \cdot 1024+n \bmod p-1$; deduce $n=660789$.

Eliminating storag

Improved method:
$x_{i+1}=5 x_{i} \bmod p$
$x_{i+1}=x_{i}^{2} \bmod p$
$x_{i+1}=5^{n} x_{i} \bmod$
Then $x_{i}=5^{a_{i} n+b}$ where $\left(a_{0}, b_{0}\right)=($ $\left(a_{i+1}, b_{i+1}\right)=\left(a_{i}\right.$
$\left(a_{i+1}, b_{i+1}\right)=(2 a$
$\left(a_{i+1}, b_{i+1}\right)=\left(a_{i}\right.$
Search for a collisi
$x_{1}=x_{2} ? x_{2}=x_{4}$
$x_{4}=x_{8} ? x_{5}=x_{1}$
Deduce linear equ

Build a sorted table of targets: $2573=5^{430 \cdot 1024} 5^{n} \bmod p$, $3371=5^{192 \cdot 1024} 5^{n} \bmod p$, $3593=5^{626 \cdot 1024} 5^{n} \bmod p$, $4960=5^{663 \cdot 1024} 5^{n} \bmod p$, $5218=5^{376 \cdot 1024} 5^{n} \bmod p, \ldots$, $999675=5^{344 \cdot 1024} 5^{n} \bmod p$.

Look up $5^{1} \bmod p, 5^{2} \bmod p$, $5^{3} \bmod p$, etc. in this table.
$5^{755} \bmod p=966603$; find $966603=5^{332 \cdot 1024} 5^{n} \bmod p$
in the table of targets;
so $755=332 \cdot 1024+n \bmod p-1$; deduce $n=660789$.

Eliminating storage

Improved method: Define x
$x_{i+1}=5 x_{i} \bmod p$ if $x_{i} \in 32$
$x_{i+1}=x_{i}^{2} \bmod p$ if $x_{i} \in 2$
$x_{i+1}=5^{n} x_{i} \bmod p$ otherwi
Then $x_{i}=5^{a_{i} n+b_{i}} \bmod p$ where $\left(a_{0}, b_{0}\right)=(0,0)$ and $\left(a_{i+1}, b_{i+1}\right)=\left(a_{i}, b_{i}+1\right)$, $\left(a_{i+1}, b_{i+1}\right)=\left(2 a_{i}, 2 b_{i}\right)$, or $\left(a_{i+1}, b_{i+1}\right)=\left(a_{i}+1, b_{i}\right)$.

Search for a collision in x_{i} :
$x_{1}=x_{2} ? x_{2}=x_{4} ? x_{3}=x$ $x_{4}=x_{8}$? $x_{5}=x_{10}$? etc.
Deduce linear equation for r

Build a sorted table of targets:
$2573=5^{430 \cdot 1024} 5^{n} \bmod p$, $3371=5^{192 \cdot 1024} 5^{n} \bmod p$, $3593=5^{626 \cdot 1024} 5^{n} \bmod p$, $4960=5^{663 \cdot 1024} 5^{n} \bmod p$, $5218=5^{376 \cdot 1024} 5^{n} \bmod p, \ldots$, $999675=5^{344 \cdot 1024} 5^{n} \bmod p$.

Look up $5^{1} \bmod p, 5^{2} \bmod p$, $5^{3} \bmod p$, etc. in this table.
$5^{755} \bmod p=966603$; find $966603=5^{332 \cdot 1024} 5^{n} \bmod p$
in the table of targets;
so $755=332 \cdot 1024+n \bmod p-1$; deduce $n=660789$.

Eliminating storage

Improved method: Define $x_{0}=1$;
$x_{i+1}=5 x_{i} \bmod p$ if $x_{i} \in 3 \mathbf{Z}$;
$x_{i+1}=x_{i}^{2} \bmod p$ if $x_{i} \in 2+3 \mathbf{Z}$;
$x_{i+1}=5^{n} x_{i} \bmod p$ otherwise.
Then $x_{i}=5^{a_{i} n+b_{i}} \bmod p$
where $\left(a_{0}, b_{0}\right)=(0,0)$ and
$\left(a_{i+1}, b_{i+1}\right)=\left(a_{i}, b_{i}+1\right)$, or
$\left(a_{i+1}, b_{i+1}\right)=\left(2 a_{i}, 2 b_{i}\right)$, or
$\left(a_{i+1}, b_{i+1}\right)=\left(a_{i}+1, b_{i}\right)$.
Search for a collision in x_{i} :

$$
\begin{aligned}
& x_{1}=x_{2} ? x_{2}=x_{4} ? x_{3}=x_{6} ? \\
& x_{4}=x_{8} ? x_{5}=x_{10} ? \text { etc. }
\end{aligned}
$$

Deduce linear equation for n.
sorted table of targets:
$5^{430 \cdot 1024} 5^{n} \bmod p$,
$5^{192 \cdot 1024} 5^{n} \bmod p$,
$5^{626 \cdot 1024} 5^{n} \bmod p$,
$5^{663 \cdot 1024} 5^{n} \bmod p$,
$5^{376 \cdot 1024} 5^{n} \bmod p, \ldots$,
$=5^{344 \cdot 1024} 5^{n} \bmod p$.
$5^{1} \bmod p, 5^{2} \bmod p$, p, etc. in this table.
d $p=966603$; find
$=5^{332 \cdot 1024} 5^{n} \bmod p$
ble of targets;
$=332 \cdot 1024+n \bmod p-1$; $\imath=660789$.

Eliminating storage

Improved method: Define $x_{0}=1$;
$x_{i+1}=5 x_{i} \bmod p$ if $x_{i} \in 3 \mathbf{Z}$;
$x_{i+1}=x_{i}^{2} \bmod p$ if $x_{i} \in 2+3 \mathbf{Z}$;
$x_{i+1}=5^{n} x_{i} \bmod p$ otherwise.
Then $x_{i}=5^{a_{i} n+b_{i}} \bmod p$
where $\left(a_{0}, b_{0}\right)=(0,0)$ and
$\left(a_{i+1}, b_{i+1}\right)=\left(a_{i}, b_{i}+1\right)$, or
$\left(a_{i+1}, b_{i+1}\right)=\left(2 a_{i}, 2 b_{i}\right)$, or
$\left(a_{i+1}, b_{i+1}\right)=\left(a_{i}+1, b_{i}\right)$.
Search for a collision in x_{i} :

$$
\begin{aligned}
& x_{1}=x_{2} ? x_{2}=x_{4} ? x_{3}=x_{6} ? \\
& x_{4}=x_{8} ? x_{5}=x_{10} ? \text { etc. }
\end{aligned}
$$

Deduce linear equation for n.

The x_{i} 's typically

Example
Modulo

$$
x_{1}=5^{n}
$$

$$
x_{2}=5^{2 \prime}
$$

$$
x_{3}=5^{2 \prime}
$$

$$
x_{4}=5^{2 \prime}
$$

$$
x_{5}=5^{2 \prime}
$$

$$
x_{6}=5^{2 \prime}
$$

$$
x_{7}=5^{4 n}
$$

$$
x_{8}=5^{4 n}
$$

etc.
le of targets:
${ }^{2} \bmod p$, $2 \bmod p$, ${ }^{2} \bmod p$, $2 \bmod p$, ${ }^{n} \bmod p, \ldots$, ${ }^{4} 5^{n} \bmod p$. $5^{2} \bmod p$, this table.

603; find ${ }^{4} 5^{n} \bmod p$ gets;
$4+n \bmod p-1 ;$ 39.

Eliminating storage

Improved method: Define $x_{0}=1$;
$x_{i+1}=5 x_{i} \bmod p$ if $x_{i} \in 3 Z$;
$x_{i+1}=x_{i}^{2} \bmod p$ if $x_{i} \in 2+3 \mathbf{Z}$;
$x_{i+1}=5^{n} x_{i} \bmod p$ otherwise.
Then $x_{i}=5^{a_{i} n+b_{i}} \bmod p$ where $\left(a_{0}, b_{0}\right)=(0,0)$ and $\left(a_{i+1}, b_{i+1}\right)=\left(a_{i}, b_{i}+1\right)$, or $\left(a_{i+1}, b_{i+1}\right)=\left(2 a_{i}, 2 b_{i}\right)$, or $\left(a_{i+1}, b_{i+1}\right)=\left(a_{i}+1, b_{i}\right)$.

Search for a collision in x_{i} :
$x_{1}=x_{2} ? x_{2}=x_{4} ? x_{3}=x_{6}$?
$x_{4}=x_{8}$? $x_{5}=x_{10}$? etc.
Deduce linear equation for n.

The x_{i} 's enter a c typically within \approx

Example: 100000
Modulo 1000003:
$x_{1}=5^{n}=262682$
$x_{2}=5^{2 n}=26268$
$x_{3}=5^{2 n+1}=5 \cdot 6$
$x_{4}=5^{2 n+2}=5 \cdot 1$
$x_{5}=5^{2 n+3}=5 \cdot 6$
$x_{6}=5^{2 n+4}=5 \cdot 2$
$x_{7}=5^{4 n+8}=324$
$x_{8}=5^{4 n+9}=5 \cdot 7$
etc.

Eliminating storage

Improved method: Define $x_{0}=1$;
$x_{i+1}=5 x_{i} \bmod p$ if $x_{i} \in 3 Z$;
$x_{i+1}=x_{i}^{2} \bmod p$ if $x_{i} \in 2+3 \mathbf{Z}$;
$x_{i+1}=5^{n} x_{i} \bmod p$ otherwise.
Then $x_{i}=5^{a_{i} n+b_{i}} \bmod p$
where $\left(a_{0}, b_{0}\right)=(0,0)$ and
$\left(a_{i+1}, b_{i+1}\right)=\left(a_{i}, b_{i}+1\right)$, or
$\left(a_{i+1}, b_{i+1}\right)=\left(2 a_{i}, 2 b_{i}\right)$, or
$\left(a_{i+1}, b_{i+1}\right)=\left(a_{i}+1, b_{i}\right)$.
Search for a collision in x_{i} :
$x_{1}=x_{2}$? $x_{2}=x_{4} ? x_{3}=x_{6}$?
$x_{4}=x_{8}$? $x_{5}=x_{10}$? etc.
Deduce linear equation for n.

The x_{i} 's enter a cycle, typically within $\approx \sqrt{p}$ steps.

Example: 1000003, 262682.
Modulo 1000003:

$$
\begin{aligned}
& x_{1}=5^{n}=262682 . \\
& x_{2}=5^{2 n}=262682^{2}=6261 \\
& x_{3}=5^{2 n+1}=5 \cdot 626121=1 \\
& x_{4}=5^{2 n+2}=5 \cdot 130596=6 \\
& x_{5}=5^{2 n+3}=5 \cdot 652980=2 \\
& x_{6}=5^{2 n+4}=5 \cdot 264891=3 \\
& x_{7}=5^{4 n+8}=324452^{2}=78 \\
& x_{8}=5^{4 n+9}=5 \cdot 784500=9 \\
& \text { etc. }
\end{aligned}
$$

Eliminating storage

Improved method: Define $x_{0}=1$;
$x_{i+1}=5 x_{i} \bmod p$ if $x_{i} \in 3 Z$;
$x_{i+1}=x_{i}^{2} \bmod p$ if $x_{i} \in 2+3 \mathbf{Z}$;
$x_{i+1}=5^{n} x_{i} \bmod p$ otherwise.
Then $x_{i}=5^{a_{i} n+b_{i}} \bmod p$
where $\left(a_{0}, b_{0}\right)=(0,0)$ and
$\left(a_{i+1}, b_{i+1}\right)=\left(a_{i}, b_{i}+1\right)$, or
$\left(a_{i+1}, b_{i+1}\right)=\left(2 a_{i}, 2 b_{i}\right)$, or
$\left(a_{i+1}, b_{i+1}\right)=\left(a_{i}+1, b_{i}\right)$.
Search for a collision in x_{i} :

$$
\begin{aligned}
& x_{1}=x_{2} ? x_{2}=x_{4} ? x_{3}=x_{6} ? \\
& x_{4}=x_{8} ? x_{5}=x_{10} ? \text { etc. }
\end{aligned}
$$

Deduce linear equation for n.

The x_{i} 's enter a cycle, typically within $\approx \sqrt{p}$ steps.

Example: 1000003, 262682.
Modulo 1000003:

$$
\begin{aligned}
& x_{1}=5^{n}=262682 \\
& x_{2}=5^{2 n}=262682^{2}=626121 \\
& x_{3}=5^{2 n+1}=5 \cdot 626121=130596 \\
& x_{4}=5^{2 n+2}=5 \cdot 130596=652980 \\
& x_{5}=5^{2 n+3}=5 \cdot 652980=264891 \\
& x_{6}=5^{2 n+4}=5 \cdot 264891=324452 \\
& x_{7}=5^{4 n+8}=324452^{2}=784500 \\
& x_{8}=5^{4 n+9}=5 \cdot 784500=922491 . \\
& \text { etc. }
\end{aligned}
$$

ing storage

d method: Define $x_{0}=1$;
$\bar{z} x_{i} \bmod p$ if $x_{i} \in 3 Z ;$
$x_{i}^{2} \bmod p$ if $x_{i} \in 2+3 Z$
${ }^{n} x_{i} \bmod p$ otherwise.
$=5^{a_{i} n+b_{i}} \bmod p$
$\left.v_{0}, b_{0}\right)=(0,0)$ and
$+1)=\left(a_{i}, b_{i}+1\right)$, or
$+1)=\left(2 a_{i}, 2 b_{i}\right)$, or
$+1)=\left(a_{i}+1, b_{i}\right)$.
or a collision in x_{i} :
$x_{2}=x_{4} ? x_{3}=x_{6} ?$
$x_{5}=x_{10} ?$ etc.
linear equation for n.

The x_{i} 's enter a cycle, typically within $\approx \sqrt{p}$ steps.

Example: 1000003, 262682.
Modulo 1000003:
$x_{1}=5^{n}=262682$.
$x_{2}=5^{2 n}=262682^{2}=626121$.
$x_{3}=5^{2 n+1}=5.626121=130596$.
$x_{4}=5^{2 n+2}=5 \cdot 130596=652980$.
$x_{5}=5^{2 n+3}=5.652980=264891$.
$x_{6}=5^{2 n+4}=5 \cdot 264891=324452$.
$x_{7}=5^{4 n+8}=324452^{2}=784500$.
$x_{8}=5^{4 n+9}=5.784500=922491$.
etc.
$x_{1785}=$
$x_{3570}=$
(Cycle I
Conclud $249847 r$ $388795 r$ so $n \equiv$

Only 6
Try each
Find tha for $n=$ for $n=$

The $x_{i}{ }^{\prime}$'s enter a cycle,
Define $x_{0}=1$;
if $x_{i} \in 3 Z$;
if $x_{i} \in 2+3 Z ;$
p otherwise.
$\bmod p$
$0,0)$ and
, $b_{i}+1$), or ${ }_{i}, 2 b_{i}$), or $\left.+1, b_{i}\right)$.
on in x_{i} :
$? x_{3}=x_{6}$?
o? etc.
ation for n.
typically within $\approx \sqrt{p}$ steps.

Example: 1000003, 262682.
Modulo 1000003:

$$
\begin{aligned}
& x_{1}=5^{n}=262682 . \\
& x_{2}=5^{2 n}=262682^{2}=626121 . \\
& x_{3}=5^{2 n+1}=5 \cdot 626121=130596 \\
& x_{4}=5^{2 n+2}=5 \cdot 130596=652980 . \\
& x_{5}=5^{2 n+3}=5 \cdot 652980=264891 . \\
& x_{6}=5^{2 n+4}=5 \cdot 264891=324452 . \\
& x_{7}=5^{4 n+8}=324452^{2}=784500 . \\
& x_{8}=5^{4 n+9}=5 \cdot 784500=922491 . \\
& \text { etc. }
\end{aligned}
$$

$x_{1785}=5^{249847 n+}$ $x_{3570}=5^{388795 n+}$
(Cycle length is 35
Conclude that
$249847 n+75912$ $388795 n+63278$
so $n \equiv 160788$
Only 6 possible n Try each of them.
Find that $5^{n} \bmod$ for $n=160788+$ for $n=660789$.

The x_{i} 's enter a cycle,

$$
0=1 ;
$$

Example: 1000003, 262682.
Modulo 1000003:

$$
\begin{aligned}
& x_{1}=5^{n}=262682 . \\
& x_{2}=5^{2 n}=262682^{2}=626121 . \\
& x_{3}=5^{2 n+1}=5 \cdot 626121=130596 \\
& x_{4}=5^{2 n+2}=5 \cdot 130596=652980 . \\
& x_{5}=5^{2 n+3}=5 \cdot 652980=264891 . \\
& x_{6}=5^{2 n+4}=5 \cdot 264891=324452 . \\
& x_{7}=5^{4 n+8}=324452^{2}=784500 . \\
& x_{8}=5^{4 n+9}=5 \cdot 784500=922491 . \\
& \text { etc. }
\end{aligned}
$$

$x_{1785}=5^{249847 n+759123}=5$ $x_{3570}=5^{388795 n+632781}=5$
(Cycle length is 357.)
Conclude that
$249847 n+759123 \equiv$
$388795 n+632781(\bmod \eta$ so $n \equiv 160788 \quad(\bmod (p-$

Only 6 possible n 's.
Try each of them.
Find that $5^{n} \bmod p=2626$ for $n=160788+3(p-1) /$ for $n=660789$.

The x_{i} 's enter a cycle, typically within $\approx \sqrt{p}$ steps.

Example: 1000003, 262682.
Modulo 1000003:

$$
\begin{aligned}
& x_{1}=5^{n}=262682 \\
& x_{2}=5^{2 n}=262682^{2}=626121 . \\
& x_{3}=5^{2 n+1}=5 \cdot 626121=130596 . \\
& x_{4}=5^{2 n+2}=5 \cdot 130596=652980 . \\
& x_{5}=5^{2 n+3}=5 \cdot 652980=264891 . \\
& x_{6}=5^{2 n+4}=5 \cdot 264891=324452 . \\
& x_{7}=5^{4 n+8}=324452^{2}=784500 . \\
& x_{8}=5^{4 n+9}=5 \cdot 784500=922491 .
\end{aligned}
$$

etc.
$x_{1785}=5^{249847 n+759123}=555013$.
$x_{3570}=5^{388795 n+632781}=555013$.
(Cycle length is 357.)
Conclude that
$249847 n+759123 \equiv$ $388795 n+632781(\bmod p-1)$, so $n \equiv 160788 \quad(\bmod (p-1) / 6)$.

Only 6 possible n 's.
Try each of them.
Find that $5^{n} \bmod p=262682$ for $n=160788+3(p-1) / 6$, i.e., for $n=660789$.
enter a cycle, within $\approx \sqrt{p}$ steps.
: 1000003, 262682.

1000003:

$=262682$.
${ }^{2}=262682^{2}=626121$.
${ }^{n+1}=5 \cdot 626121=130596$.
${ }^{n+2}=5 \cdot 130596=652980$.
${ }^{n+3}=5 \cdot 652980=264891$.
${ }^{n+4}=5 \cdot 264891=324452$.
${ }^{2+8}=324452^{2}=784500$.
${ }^{\imath+9}=5 \cdot 784500=922491$.
$x_{1785}=5^{249847 n+759123}=555013$.
$x_{3570}=5^{388795 n+632781}=555013$.
(Cycle length is 357.)
Conclude that
$249847 n+759123 \equiv$
$388795 n+632781(\bmod p-1)$,
so $n \equiv 160788 \quad(\bmod (p-1) / 6)$.
Only 6 possible n 's.
Try each of them.
Find that $5^{n} \bmod p=262682$ for $n=160788+3(p-1) / 6$, i.e., for $n=660789$.

This is
Optimiz Another
"Pollard
Can par
"van Oo
DL usin
Bottom distribut have ch of findin

With 2^{9}
have cha
Negligib
ycle,
\sqrt{p} steps.
3, 262682.

$$
2^{2}=626121
$$

$26121=130596$.
$30596=652980$.
$52980=264891$.
$64891=324452$.
$452^{2}=784500$.
$84500=922491$.
$x_{1785}=5^{249847 n+759123}=555013$.
$x_{3570}=5^{388795 n+632781}=555013$.
(Cycle length is 357.)
Conclude that
$249847 n+759123 \equiv$
$388795 n+632781(\bmod p-1)$,
so $n \equiv 160788 \quad(\bmod (p-1) / 6)$.
Only 6 possible n 's.
Try each of them.
Find that $5^{n} \bmod p=262682$ for $n=160788+3(p-1) / 6$, i.e., for $n=660789$.

This is "Pollard's Optimized: $\approx \sqrt{p}$ Another method, "Pollard's kangaro

Can parallelize bot "van Oorschot/W DL using distingui

Bottom line: With distributed across have chance $\approx c^{2}$ of finding n from

With 2^{90} mults (a have chance $\approx 2^{18}$ Negligible if, e.g.,
$x_{1785}=5^{249847 n+759123}=555013$. $x_{3570}=5^{388795 n+632781}=555013$.
(Cycle length is 357.)
Conclude that
$249847 n+759123 \equiv$
$388795 n+632781(\bmod p-1)$,
so $n \equiv 160788 \quad(\bmod (p-1) / 6)$.
Only 6 possible n 's.
Try each of them.
Find that $5^{n} \bmod p=262682$ for $n=160788+3(p-1) / 6$, i.e., for $n=660789$.

This is "Pollard's rho metho Optimized: $\approx \sqrt{p}$ mults.
Another method, similar spe
"Pollard's kangaroo method
Can parallelize both method "van Oorschot/Wiener paral DL using distinguished poin

Bottom line: With c mults, distributed across many core have chance $\approx c^{2} / p$ of finding n from $5^{n} \bmod p$. With 2^{90} mults (a few years have chance $\approx 2^{180} / p$.
Negligible if, e.g., $p \approx 2^{256}$.
$x_{1785}=5^{249847 n+759123}=555013$.
$x_{3570}=5^{388795 n+632781}=555013$.
(Cycle length is 357 .)
Conclude that
$249847 n+759123 \equiv$
$388795 n+632781(\bmod p-1)$,
so $n \equiv 160788 \quad(\bmod (p-1) / 6)$.
Only 6 possible n 's.
Try each of them.
Find that $5^{n} \bmod p=262682$ for $n=160788+3(p-1) / 6$, i.e., for $n=660789$.

This is "Pollard's rho method." Optimized: $\approx \sqrt{p}$ mults.
Another method, similar speed: "Pollard's kangaroo method."

Can parallelize both methods. "van Oorschot/Wiener parallel DL using distinguished points."

Bottom line: With c mults, distributed across many cores, have chance $\approx c^{2} / p$
of finding n from $5^{n} \bmod p$.
With 2^{90} mults (a few years?), have chance $\approx 2^{180} / p$.
Negligible if, e.g., $p \approx 2^{256}$.
$5^{249847 n+759123}=555013$.
$5^{388795 n+632781}=555013$.
ength is 357.)
e that
$+759123 \equiv$
$+632781(\bmod p-1)$,
$60788(\bmod (p-1) / 6)$.
ossible n 's.
of them.
t $5^{n} \bmod p=262682$
$160788+3(p-1) / 6$, i.e., 660789.

This is "Pollard's rho method."
Optimized: $\approx \sqrt{p}$ mults.
Another method, similar speed:
"Pollard's kangaroo method."
Can parallelize both methods. "van Oorschot/Wiener parallel DL using distinguished points."

Bottom line: With c mults, distributed across many cores, have chance $\approx c^{2} / p$ of finding n from $5^{n} \bmod p$.

With 2^{90} mults (a few years?), have chance $\approx 2^{180} / p$.
Negligible if, e.g., $p \approx 2^{256}$.

Factors

Assume
Given x,
5^{a} has 0 x^{a} is a Comput 5^{b} has o $x / 5^{\ell}$ is
Comput
Then x
$759123=555013$. $632781=555013$.
57.)

$$
(\bmod p-1)
$$

$\bmod (p-1) / 6)$.
s.
$p=262682$
$3(p-1) / 6$, i.e.,

This is "Pollard's rho method." Optimized: $\approx \sqrt{p}$ mults.
Another method, similar speed:
"Pollard's kangaroo method."
Can parallelize both methods.
"van Oorschot/Wiener parallel
DL using distinguished points."
Bottom line: With c mults, distributed across many cores, have chance $\approx c^{2} / p$ of finding n from $5^{n} \bmod p$.

With 2^{90} mults (a few years?),
have chance $\approx 2^{180} / p$.
Negligible if, e.g., $p \approx 2^{256}$.

Factors of the gro
Assume 5 has ord
Given x, a power
5^{a} has order b, an x^{a} is a power of 5
Compute $\ell=\log _{5}$ 5^{b} has order a, an $x / 5^{\ell}$ is a power of Compute $m=\log$

Then $x=5^{\ell+m b}$.

This is "Pollard's rho method." Optimized: $\approx \sqrt{p}$ mults.
Another method, similar speed:
"Pollard's kangaroo method."
Can parallelize both methods.
"van Oorschot/Wiener parallel DL using distinguished points."

Bottom line: With c mults, distributed across many cores, have chance $\approx c^{2} / p$ of finding n from $5^{n} \bmod p$.

With 2^{90} mults (a few years?), have chance $\approx 2^{180} / p$.
Negligible if, e.g., $p \approx 2^{256}$.

Factors of the group order

Assume 5 has order $a b$.
Given x, a power of 5 :
5^{a} has order b, and x^{a} is a power of 5^{a}.
Compute $\ell=\log _{5} a x^{a}$.
5^{b} has order a, and $x / 5^{\ell}$ is a power of 5^{b}.
Compute $m=\log _{5}\left(x / 5^{\ell}\right)$.
Then $x=5^{\ell+m b}$.

This is "Pollard's rho method." Optimized: $\approx \sqrt{p}$ mults.
Another method, similar speed: "Pollard's kangaroo method."

Can parallelize both methods. "van Oorschot/Wiener parallel DL using distinguished points."

Bottom line: With c mults, distributed across many cores, have chance $\approx c^{2} / p$ of finding n from $5^{n} \bmod p$. With 2^{90} mults (a few years?), have chance $\approx 2^{180} / p$.
Negligible if, e.g., $p \approx 2^{256}$.

Factors of the group order

Assume 5 has order $a b$.
Given x, a power of 5 :
5^{a} has order b, and x^{a} is a power of 5^{a}.
Compute $\ell=\log _{5} a x^{a}$.
5^{b} has order a, and
$x / 5^{\ell}$ is a power of 5^{b}.
Compute $m=\log _{5} b\left(x / 5^{\ell}\right)$.
Then $x=5^{\ell+m b}$.
"Pollard's rho method."
ed: $\approx \sqrt{p}$ mults.
method, similar speed: 's kangaroo method."
allelize both methods. rschot/Wiener parallel distinguished points."
line: With c mults, ed across many cores, ance $\approx c^{2} / p$
$\mathrm{g} n$ from $5^{n} \bmod p$.
mults (a few years?), ance $\approx 2^{180} / p$.
le if, e.g., $p \approx 2^{256}$.

Factors of the group order

Assume 5 has order $a b$.
Given x, a power of 5 :
5^{a} has order b, and
x^{a} is a power of 5^{a}.
Compute $\ell=\log _{5} a x^{a}$.
5^{b} has order a, and
$x / 5^{\ell}$ is a power of 5^{b}.
Compute $m=\log _{5}\left(x / 5^{\ell}\right)$.
Then $x=5^{\ell+m b}$.

This "P converts an order and a fe
e.g. $p=$
$p-1=$
Comput
Comput
Comput
Then x
Use rho: Better if apply Pc
rho method." mults.
similar speed:
o method."
ch methods.
iener parallel shed points."
c mults,
many cores,
/p
$5^{n} \bmod p$.
few years?),
$30 / p$.
$p \approx 2^{256}$.

Factors of the group order

Assume 5 has order $a b$.
Given x, a power of 5 :
5^{a} has order b, and
x^{a} is a power of 5^{a}.
Compute $\ell=\log _{5} a x^{a}$.
5^{b} has order a, and
$x / 5^{\ell}$ is a power of 5^{b}.
Compute $m=\log _{5}\left(x / 5^{\ell}\right)$.
Then $x=5^{\ell+m b}$.

This "Pohlig-Hellr converts an orderan order- $a \mathrm{DL}$, an and a few exponer
e.g. $p=1000003$,
$p-1=6 b$ where Compute $\log _{56}\left(x^{6}\right.$ Compute $x / 5^{16078}$
Compute $\log _{5 b} 100$
Then $x=5^{160788-}$
Use rho: $\approx \sqrt{a}+$ Better if $a b$ factor apply Pohlig-Helln

Factors of the group order

Assume 5 has order $a b$.
Given x, a power of 5 :
5^{a} has order b, and x^{a} is a power of 5^{a}.
Compute $\ell=\log _{5} a x^{a}$.
5^{b} has order a, and
$x / 5^{\ell}$ is a power of 5^{b}.
Compute $m=\log _{5}\left(x / 5^{\ell}\right)$.
Then $x=5^{\ell+m b}$.

This "Pohlig-Hellman methc converts an order- $a b \mathrm{DL}$ int an order- $a \mathrm{DL}$, an order- $b \mathrm{D}$ and a few exponentiations.
e.g. $p=1000003, x=2626$
$p-1=6 b$ where $b=16666$
Compute $\log _{56}\left(x^{6}\right)=16078$
Compute $x / 5^{160788}=10000$
Compute $\log _{5 b} 1000002=3$
Then $x=5^{160788+3 b}=5^{660}$
Use rho: $\approx \sqrt{a}+\sqrt{b}$ mults. Better if $a b$ factors further: apply Pohlig-Hellman recurs

Factors of the group order

Assume 5 has order $a b$.
Given x, a power of 5 :
5^{a} has order b, and x^{a} is a power of 5^{a}.
Compute $\ell=\log _{5} a x^{a}$.
5^{b} has order a, and $x / 5^{\ell}$ is a power of 5^{b}.
Compute $m=\log _{5}\left(x / 5^{\ell}\right)$.
Then $x=5^{\ell+m b}$.

This "Pohlig-Hellman method" converts an order- $a b$ DL into an order- $a \mathrm{DL}$, an order- $b \mathrm{DL}$, and a few exponentiations.
e.g. $p=1000003, x=262682$:
$p-1=6 b$ where $b=166667$.
Compute $\log _{56}\left(x^{6}\right)=160788$.
Compute $x / 5^{160788}=1000002$.
Compute $\log _{5 b} 1000002=3$.
Then $x=5^{160788+36}=5^{660789}$.
Use rho: $\approx \sqrt{a}+\sqrt{b}$ mults.
Better if $a b$ factors further:
apply Pohlig-Hellman recursively.

of the group order

5 has order $a b$.
a power of 5 :
rder b, and ower of 5^{a}.
$\ell=\log _{5} a x^{a}$.
rder a, and
power of 5^{b}.
$m=\log _{5 b}\left(x / 5^{\ell}\right)$.
$=5^{\ell+m b}$.

This "Pohlig-Hellman method" converts an order- $a b$ DL into an order- $a \mathrm{DL}$, an order- $b \mathrm{DL}$, and a few exponentiations.
e.g. $p=1000003, x=262682$:
$p-1=6 b$ where $b=166667$.
Compute $\log _{56}\left(x^{6}\right)=160788$.
Compute $x / 5^{160788}=1000002$.
Compute $\log _{5} 1000002=3$.
Then $x=5^{160788+3 b}=5^{660789}$.
Use rho: $\approx \sqrt{a}+\sqrt{b}$ mults.
Better if $a b$ factors further:
apply Pohlig-Hellman recursively.

All of th apply to

An ellipt has $\approx q$ so can c $\approx \sqrt{q} \mathrm{el}$ Need qu If larges of numb is much then Pol comput Need lar or chang

up order

er $a b$.
of 5 :
5^{b}
$5^{b}\left(x / 5^{\ell}\right)$.

This "Pohlig-Hellman method" converts an order- $a b$ DL into an order- $a \mathrm{DL}$, an order- $b \mathrm{DL}$, and a few exponentiations.
e.g. $p=1000003, x=262682$:
$p-1=6 b$ where $b=166667$.
Compute $\log _{56}\left(x^{6}\right)=160788$.
Compute $x / 5^{160788}=1000002$.
Compute $\log _{5} 1000002=3$.
Then $x=5^{160788+3 b}=5^{660789}$.
Use rho: $\approx \sqrt{a}+\sqrt{b}$ mults.
Better if $a b$ factors further: apply Pohlig-Hellman recursively.

All of the techniq apply to elliptic CL An elliptic curve o has $\approx q+1$ point so can compute E $\approx \sqrt{q}$ elliptic-curv Need quite large q

If largest prime di of number of poin is much smaller th then Pohlig-Hellm computes ECDL n Need larger q; or change choice

This "Pohlig-Hellman method" converts an order- $a b$ DL into an order- $a \mathrm{DL}$, an order- $b \mathrm{DL}$, and a few exponentiations.
e.g. $p=1000003, x=262682$:
$p-1=6 b$ where $b=166667$.
Compute $\log _{56}\left(x^{6}\right)=160788$.
Compute $x / 5^{160788}=1000002$.
Compute $\log _{5} 1000002=3$.
Then $x=5^{160788+3 b}=5^{660789}$.
Use rho: $\approx \sqrt{a}+\sqrt{b}$ mults.
Better if $a b$ factors further:
apply Pohlig-Hellman recursively.

All of the techniques so far apply to elliptic curves.

An elliptic curve over \mathbf{F}_{q} has $\approx q+1$ points so can compute ECDL using $\approx \sqrt{q}$ elliptic-curve adds.
Need quite large q.
If largest prime divisor of number of points is much smaller than q then Pohlig-Hellman methoc computes ECDL more quick Need larger q;
or change choice of curve.

This "Pohlig-Hellman method" converts an order- $a b$ DL into an order- $a \mathrm{DL}$, an order- $b \mathrm{DL}$, and a few exponentiations.
e.g. $p=1000003, x=262682$:
$p-1=6 b$ where $b=166667$.
Compute $\log _{56}\left(x^{6}\right)=160788$. Compute $x / 5^{160788}=1000002$.
Compute $\log _{5} 51000002=3$.
Then $x=5^{160788+3 b}=5^{660789}$.
Use rho: $\approx \sqrt{a}+\sqrt{b}$ mults.
Better if $a b$ factors further:
apply Pohlig-Hellman recursively.

All of the techniques so far apply to elliptic curves.

An elliptic curve over \mathbf{F}_{q} has $\approx q+1$ points
so can compute ECDL using
$\approx \sqrt{q}$ elliptic-curve adds.
Need quite large q.
If largest prime divisor of number of points is much smaller than q then Pohlig-Hellman method computes ECDL more quickly.
Need larger q;
or change choice of curve.
ohlig-Hellman method" an order- $a b \mathrm{DL}$ into $-a \mathrm{DL}$, an order- $b \mathrm{DL}$, w exponentiations.

1000003, $x=262682$:
$6 b$ where $b=166667$.
$\log _{56}\left(x^{6}\right)=160788$
$e x / 5^{160788}=1000002$.
$\log _{5} 1000002=3$.
$=5^{160788+3 b}=5^{660789}$.
$\approx \sqrt{a}+\sqrt{b}$ mults.
$a b$ factors further:
ohlig-Hellman recursively.

All of the techniques so far apply to elliptic curves.

An elliptic curve over \mathbf{F}_{q}
has $\approx q+1$ points
so can compute ECDL using
$\approx \sqrt{q}$ elliptic-curve adds.
Need quite large q.
If largest prime divisor
of number of points
is much smaller than q
then Pohlig-Hellman method computes ECDL more quickly.
Need larger q;
or change choice of curve.

Index ca
Have ge group el Deducec from rar Index ca discretein a diff

Example Can con $-3 /(p-$ so -3^{1}
so $\log _{5}($
$6 \log _{5} 2$
nan method" $a b$ DL into order-b DL, tiations.
$x=262682$:
$b=166667$.
) $=160788$.
$8=1000002$.
$0002=3$.
$-3 b=5^{660789}$.
$\sqrt{6}$ mults.
s further:
nan recursively.

All of the techniques so far apply to elliptic curves.

An elliptic curve over \mathbf{F}_{q}
has $\approx q+1$ points
so can compute ECDL using
$\approx \sqrt{q}$ elliptic-curve adds.
Need quite large q.
If largest prime divisor of number of points
is much smaller than q then Pohlig-Hellman method computes ECDL more quickly.
Need larger q;
or change choice of curve.

Index calculus

Have generated m group elements 5^{a} Deduced equation from random collis

Index calculus obt discrete-logarithm in a different way.

Example for $p=1$
Can completely fa
$-3 /(p-3)$ as -3
so $-3^{1} \equiv 2^{6} 5^{6}$
so $\log _{5}(-1)+\log ^{2}$ $6 \log _{5} 2+6 \log _{5} 5$

All of the techniques so far apply to elliptic curves.

An elliptic curve over \mathbf{F}_{q}
has $\approx q+1$ points
so can compute ECDL using
$\approx \sqrt{q}$ elliptic-curve adds.
Need quite large q.
If largest prime divisor
of number of points
is much smaller than q
then Pohlig-Hellman method
computes ECDL more quickly.
Need larger q;
or change choice of curve.

Index calculus

Have generated many
group elements $5^{a n+b} \bmod$
Deduced equations for n from random collisions.

Index calculus obtains discrete-logarithm equations in a different way.

Example for $p=1000003$:
Can completely factor
$-3 /(p-3)$ as $-3^{1} / 2^{6} 5^{6}$ in so $-3^{1} \equiv 2^{6} 5^{6} \quad(\bmod p)$
so $\log _{5}(-1)+\log _{5} 3 \equiv$ $6 \log _{5} 2+6 \log _{5} 5 \quad(\bmod p$

All of the techniques so far apply to elliptic curves.

An elliptic curve over \mathbf{F}_{q} has $\approx q+1$ points
so can compute ECDL using
$\approx \sqrt{q}$ elliptic-curve adds.
Need quite large q.
If largest prime divisor of number of points is much smaller than q then Pohlig-Hellman method computes ECDL more quickly.
Need larger q;
or change choice of curve.

Index calculus

Have generated many
group elements $5^{a n+b} \bmod p$.

Deduced equations for n

from random collisions.
Index calculus obtains discrete-logarithm equations in a different way.

Example for $p=1000003$:
Can completely factor

$$
-3 /(p-3) \text { as }-3^{1} / 2^{6} 5^{6} \text { in } \mathbf{Q}
$$

$$
\text { so }-3^{1} \equiv 2^{6} 5^{6} \quad(\bmod p)
$$

so $\log _{5}(-1)+\log _{5} 3 \equiv$
$6 \log _{5} 2+6 \log _{5} 5(\bmod p-1)$.
e techniques so far elliptic curves.
ic curve over \mathbf{F}_{q}
+1 points
ompute ECDL using liptic-curve adds.
ite large q.
prime divisor
er of points
smaller than q
alig-Hellman method
ECDL more quickly.
ger q;
choice of curve.

Index calculus

Have generated many
group elements $5^{a n+b} \bmod p$.
Deduced equations for n from random collisions.

Index calculus obtains
discrete-logarithm equations in a different way.

Example for $p=1000003$:
Can completely factor
$-3 /(p-3)$ as $-3^{1} / 2^{6} 5^{6}$ in \mathbf{Q}
so $-3^{1} \equiv 2^{6} 5^{6} \quad(\bmod p)$
so $\log _{5}(-1)+\log _{5} 3 \equiv$
$6 \log _{5} 2+6 \log _{5} 5(\bmod p-1)$.

Can con as $2^{1} 31^{1}$
so $\log _{5} 2$ $\log _{5} 3+$ $\log _{5} 19$

Try to c $1 /(p+1$
Find fac as prodı
$2,3,5,7$ for each
-5100,
-403, -
62, 957,
es so far irves.
$\operatorname{ver} \mathbf{F}_{q}$

CDL using e adds.
jisor
ts
an q
an method nore quickly.
f curve.

Index calculus

Have generated many group elements $5^{a n+b} \bmod p$.
Deduced equations for n
from random collisions.
Index calculus obtains discrete-logarithm equations in a different way.

Example for $p=1000003$:
Can completely factor
$-3 /(p-3)$ as $-3^{1} / 2^{6} 5^{6}$ in \mathbf{Q}
so $-3^{1} \equiv 2^{6} 5^{6} \quad(\bmod p)$
so $\log _{5}(-1)+\log _{5} 3 \equiv$
$6 \log _{5} 2+6 \log _{5} 5(\bmod p-1)$.

Can completely fa as $2^{1} 31^{1} / 3^{1} 5^{1} 11^{2}$ so $\log _{5} 2+\log _{5} 31$ $\log _{5} 3+\log _{5} 5+2$ $\log _{5} 19+\log _{5} 29$

Try to completely $1 /(p+1), 2 /(p+$
Find factorization as product of pow $2,3,5,7,11,13,17$ for each of the fol
-5100, -4675, -
$-403,-368,-14$
62, 957, 2912, 38

Index calculus

Have generated many
group elements $5^{a n+b} \bmod p$.
Deduced equations for n
from random collisions.
Index calculus obtains discrete-logarithm equations in a different way.

Example for $p=1000003$:
Can completely factor
$-3 /(p-3)$ as $-3^{1} / 2^{6} 5^{6}$ in \mathbf{Q}
so $-3^{1} \equiv 2^{6} 5^{6} \quad(\bmod p)$
so $\log _{5}(-1)+\log _{5} 3 \equiv$
$6 \log _{5} 2+6 \log _{5} 5(\bmod p-1)$.

Can completely factor $62 /(x$ as $2^{1} 31^{1} / 3^{1} 5^{1} 11^{2} 19^{1} 29^{1}$
so $\log _{5} 2+\log _{5} 31 \equiv$
$\log _{5} 3+\log _{5} 5+2 \log _{5} 11+$ $\log _{5} 19+\log _{5} 29 \quad(\bmod p-$

Try to completely factor
$1 /(p+1), 2 /(p+2)$, etc.
Find factorization of $a /(p+$ as product of powers of -1 ,
$2,3,5,7,11,13,17,19,23,2$ for each of the following a 's
-5100, -4675, -3128,
-403, -368, -147, -3,
62, 957, 2912, 3857, 6877.

Index calculus

Have generated many
group elements $5^{a n+b} \bmod p$.
Deduced equations for n
from random collisions.
Index calculus obtains discrete-logarithm equations in a different way.

Example for $p=1000003$:
Can completely factor
$-3 /(p-3)$ as $-3^{1} / 2^{6} 5^{6}$ in \mathbf{Q}
so $-3^{1} \equiv 2^{6} 5^{6} \quad(\bmod p)$
so $\log _{5}(-1)+\log _{5} 3 \equiv$
$6 \log _{5} 2+6 \log _{5} 5(\bmod p-1)$.

Can completely factor $62 /(p+62)$
as $2^{1} 31^{1} / 3^{1} 5^{1} 11^{2} 19^{1} 29^{1}$
so $\log _{5} 2+\log _{5} 31 \equiv$
$\log _{5} 3+\log _{5} 5+2 \log _{5} 11+$ $\log _{5} 19+\log _{5} 29 \quad(\bmod p-1)$.

Try to completely factor
$1 /(p+1), 2 /(p+2)$, etc.
Find factorization of $a /(p+a)$ as product of powers of -1 ,
$2,3,5,7,11,13,17,19,23,29,31$ for each of the following a 's:
-5100, -4675, -3128,
-403, -368, -147, -3,
62, 957, 2912, 3857, 6877.

Iculus

nerated many
ements $5^{a n+b} \bmod p$.
equations for n dom collisions.

Iculus obtains
logarithm equations erent way.
for $p=1000003:$
pletely factor
3) as $-3^{1} / 2^{6} 5^{6}$ in \mathbf{Q}
$=2^{6} 5^{6} \quad(\bmod p)$
$-1)+\log _{5} 3 \equiv$
$+6 \log _{5} 5(\bmod p-1)$.

Can completely factor $62 /(p+62)$
as $2^{1} 31^{1} / 3^{1} 5^{1} 11^{2} 19^{1} 29^{1}$
so $\log _{5} 2+\log _{5} 31 \equiv$
$\log _{5} 3+\log _{5} 5+2 \log _{5} 11+$
$\log _{5} 19+\log _{5} 29 \quad(\bmod p-1)$.
Try to completely factor
$1 /(p+1), 2 /(p+2)$, etc.
Find factorization of $a /(p+a)$
as product of powers of -1 ,
$2,3,5,7,11,13,17,19,23,29,31$
for each of the following a 's:
-5100, -4675, -3128,
$-403,-368,-147,-3$,
62, 957, 2912, 3857, 6877.

Each co produce

Now hà for $\log _{5}$
Free equ $\log _{5}(-1$

By linea $\log _{5} 2$, Ic
(If this could ha

By simil discrete

Can completely factor $62 /(p+62)$ as $2^{1} 31^{1} / 3^{1} 5^{1} 11^{2} 19^{1} 29^{1}$
so $\log _{5} 2+\log _{5} 31 \equiv$
$\log _{5} 3+\log _{5} 5+2 \log _{5} 11+$ $\log _{5} 19+\log _{5} 29 \quad(\bmod p-1)$.

Try to completely factor
$1 /(p+1), 2 /(p+2)$, etc.
Find factorization of $a /(p+a)$
as product of powers of -1 ,
$2,3,5,7,11,13,17,19,23,29,31$
for each of the following a 's:
-5100, -4675, -3128,
$-403,-368,-147,-3$,
62, 957, 2912, 3857, 6877.

Each complete fac produces a log eqı

Now have 12 linea for $\log _{5} 2, \log _{5} 3$. . Free equations: lo $\log _{5}(-1)=(p-1$

By linear algebra $\log _{5} 2, \log _{5} 3, \ldots$,
(If this hadn't bee could have search

By similar techniq discrete log of any

Can completely factor $62 /(p+62)$
as $2^{1} 31^{1} / 3^{1} 5^{1} 11^{2} 19^{1} 29^{1}$
so $\log _{5} 2+\log _{5} 31 \equiv$
$\log _{5} 3+\log _{5} 5+2 \log _{5} 11+$
$\log _{5} 19+\log _{5} 29 \quad(\bmod p-1)$.
Try to completely factor
$1 /(p+1), 2 /(p+2)$, etc.
Find factorization of $a /(p+a)$
as product of powers of -1 ,
$2,3,5,7,11,13,17,19,23,29,31$
for each of the following a 's:
-5100, -4675, -3128,
-403, -368, -147, -3,
62, 957, 2912, 3857, 6877.

Each complete factorization produces a log equation.

Now have 12 linear equatior for $\log _{5} 2, \log _{5} 3, \ldots, \log _{5} 31$ Free equations: $\log _{5} 5=1$, $\log _{5}(-1)=(p-1) / 2$.

By linear algebra compute $\log _{5} 2, \log _{5} 3, \ldots, \log _{5} 31$.
(If this hadn't been enough, could have searched more a

By similar technique obtain discrete log of any target.

Can completely factor $62 /(p+62)$ as $2^{1} 31^{1} / 3^{1} 5^{1} 11^{2} 19^{1} 29^{1}$
so $\log _{5} 2+\log _{5} 31 \equiv$ $\log _{5} 3+\log _{5} 5+2 \log _{5} 11+$ $\log _{5} 19+\log _{5} 29 \quad(\bmod p-1)$.

Try to completely factor $1 /(p+1), 2 /(p+2)$, etc.
Find factorization of $a /(p+a)$ as product of powers of -1 ,
$2,3,5,7,11,13,17,19,23,29,31$ for each of the following a 's:
-5100, -4675, -3128,
$-403,-368,-147,-3$,
62, 957, 2912, 3857, 6877.

Each complete factorization produces a log equation.

Now have 12 linear equations for $\log _{5} 2, \log _{5} 3, \ldots, \log _{5} 31$.
Free equations: $\log _{5} 5=1$, $\log _{5}(-1)=(p-1) / 2$.

By linear algebra compute $\log _{5} 2, \log _{5} 3, \ldots, \log _{5} 31$.
(If this hadn't been enough, could have searched more a 's.)

By similar technique obtain discrete log of any target.
pletely factor $62 /(p+62)$ $/ 3^{1} 5^{1} 11^{2} 19^{1} 29^{1}$
$+\log _{5} 31 \equiv$
$\log _{5} 5+2 \log _{5} 11+$
$+\log _{5} 29(\bmod p-1)$.
ompletely factor
), $2 /(p+2)$, etc.
torization of $a /(p+a)$
ct of powers of -1 ,
$11,13,17,19,23,29,31$
of the following a 's:
$-4675,-3128$,
-368, -147, -3,
2912, 3857, 6877.

Each complete factorization produces a log equation.

Now have 12 linear equations for $\log _{5} 2, \log _{5} 3, \ldots, \log _{5} 31$.
Free equations: $\log _{5} 5=1$,
$\log _{5}(-1)=(p-1) / 2$.
By linear algebra compute $\log _{5} 2, \log _{5} 3, \ldots, \log _{5} 31$.
(If this hadn't been enough, could have searched more a 's.)

By similar technique obtain discrete log of any target.

For $p \rightarrow$ scales st $\operatorname{cost} p^{\epsilon}$

Compar
Specific $a \in\{1$, $\lg y \in O$ finds y into prin and com
(Assumi Have ex
factor
2), etc.
of $a /(p+a)$
ers of -1 ,
, 19, 23, 29, 31
lowing a 's:
3128,
7, -3 ,
57, 6877.

Each complete factorization produces a log equation.

Now have 12 linear equations
for $\log _{5} 2, \log _{5} 3, \ldots, \log _{5} 31$.
Free equations: $\log _{5} 5=1$,
$\log _{5}(-1)=(p-1) / 2$.
By linear algebra compute $\log _{5} 2, \log _{5} 3, \ldots, \log _{5} 31$.
(If this hadn't been enough, could have searched more a^{\prime} 's.)

By similar technique obtain discrete log of any target.

For $p \rightarrow \infty$, index scales surprisingly cost p^{ϵ} where $\epsilon \rightarrow$

Compare to rho:
Specifically: searc $a \in\left\{1,2, \ldots, y^{2}\right\}$ $\lg y \in O(\sqrt{\lg p \lg \mid}$ finds y complete f into primes $\leq y$, and computes disc
(Assuming standa Have extensive ev
$+62)$
1).
$a)$
), 31

Each complete factorization produces a log equation.

Now have 12 linear equations for $\log _{5} 2, \log _{5} 3, \ldots, \log _{5} 31$.
Free equations: $\log _{5} 5=1$, $\log _{5}(-1)=(p-1) / 2$.

By linear algebra compute $\log _{5} 2, \log _{5} 3, \ldots, \log _{5} 31$.
(If this hadn't been enough, could have searched more a 's.)

By similar technique obtain discrete log of any target.

For $p \rightarrow \infty$, index calculus scales surprisingly well: cost p^{ϵ} where $\epsilon \rightarrow 0$.

Compare to rho: $\approx p^{1 / 2}$.
Specifically: searching $a \in\left\{1,2, \ldots, y^{2}\right\}$, with $\lg y \in O(\sqrt{\lg p \lg \lg p})$, finds y complete factorizatic into primes $\leq y$, and computes discrete logs.
(Assuming standard conject Have extensive evidence.)

Each complete factorization produces a log equation.

Now have 12 linear equations for $\log _{5} 2, \log _{5} 3, \ldots, \log _{5} 31$.
Free equations: $\log _{5} 5=1$, $\log _{5}(-1)=(p-1) / 2$.

By linear algebra compute $\log _{5} 2, \log _{5} 3, \ldots, \log _{5} 31$.
(If this hadn't been enough, could have searched more a^{\prime} 's.)

By similar technique obtain discrete log of any target.

For $p \rightarrow \infty$, index calculus
scales surprisingly well:
cost p^{ϵ} where $\epsilon \rightarrow 0$.
Compare to rho: $\approx p^{1 / 2}$.
Specifically: searching
$a \in\left\{1,2, \ldots, y^{2}\right\}$, with
$\lg y \in O(\sqrt{\lg p \lg \lg p})$,
finds y complete factorizations into primes $\leq y$, and computes discrete logs.
(Assuming standard conjectures.
Have extensive evidence.)
mplete factorization
5 a log equation.
e 12 linear equations
$2, \log _{5} 3, \ldots, \log _{5} 31$.
iations: $\log _{5} 5=1$,
$=(p-1) / 2$.
r algebra compute
$g_{5} 3, \ldots, \log _{5} 31$.
ladn't been enough, ve searched more a 's.)
ar technique obtain
log of any target.

For $p \rightarrow \infty$, index calculus
scales surprisingly well:
cost p^{ϵ} where $\epsilon \rightarrow 0$.
Compare to rho: $\approx p^{1 / 2}$.
Specifically: searching
$a \in\left\{1,2, \ldots, y^{2}\right\}$, with $\lg y \in O(\sqrt{\lg p \lg \lg p})$,
finds y complete factorizations into primes $\leq y$, and computes discrete logs.
(Assuming standard conjectures. Have extensive evidence.)

Latest ir use the and the

To com $\lg \operatorname{cost}$ $O((\lg q)$

For secu
$q \approx 2^{256}$ $q \approx 2^{204}$

We don' index-ca
... exce
torization dation.
r equations
. . , $\log _{5} 31$.
$g_{5} 5=1$,
)/2.
compute
$\mathrm{og}_{5} 31$.
n enough, ed more a 's.)
ue obtain
target.

For $p \rightarrow \infty$, index calculus
scales surprisingly well:
cost p^{ϵ} where $\epsilon \rightarrow 0$.
Compare to rho: $\approx p^{1 / 2}$.
Specifically: searching
$a \in\left\{1,2, \ldots, y^{2}\right\}$, with
$\lg y \in O(\sqrt{\lg p \lg \lg p})$,
finds y complete factorizations into primes $\leq y$, and computes discrete logs.
(Assuming standard conjectures.
Have extensive evidence.)

Latest index-calcu use the "number-f and the "function-

To compute discre $\lg \operatorname{cost} \in$
$O\left((\lg q)^{1 / 3}(\lg \lg q)\right.$
For security:
$q \approx 2^{256}$ to stop r $q \approx 2^{2048}$ to stop

We don't know an index-calculus met
... except for som

For $p \rightarrow \infty$, index calculus
scales surprisingly well:
cost p^{ϵ} where $\epsilon \rightarrow 0$.
Compare to rho: $\approx p^{1 / 2}$.
Specifically: searching
$a \in\left\{1,2, \ldots, y^{2}\right\}$, with
$\lg y \in O(\sqrt{\lg p \lg \lg p})$,
finds y complete factorizations into primes $\leq y$, and computes discrete logs.
(Assuming standard conjectures.
Have extensive evidence.)

Latest index-calculus variant use the "number-field sieve" and the "function-field sieve

To compute discrete logs in $\lg \operatorname{cost} \in$
$O\left((\lg q)^{1 / 3}(\lg \lg q)^{2 / 3}\right)$.
For security:
$q \approx 2^{256}$ to stop rho; $q \approx 2^{2048}$ to stop NFS.

We don't know any
index-calculus methods for
... except for some curves.

For $p \rightarrow \infty$, index calculus
scales surprisingly well: cost p^{ϵ} where $\epsilon \rightarrow 0$.

Compare to rho: $\approx p^{1 / 2}$.
Specifically: searching
$a \in\left\{1,2, \ldots, y^{2}\right\}$, with
$\lg y \in O(\sqrt{\lg p \lg \lg p})$,
finds y complete factorizations into primes $\leq y$, and computes discrete logs.
(Assuming standard conjectures. Have extensive evidence.)

Latest index-calculus variants use the "number-field sieve" and the "function-field sieve."

To compute discrete logs in \mathbf{F}_{q} : $\lg \operatorname{cost} \in$
$O\left((\lg q)^{1 / 3}(\lg \lg q)^{2 / 3}\right)$.
For security:
$q \approx 2^{256}$ to stop rho;
$q \approx 2^{2048}$ to stop NFS.
We don't know any index-calculus methods for ECDL!
... except for some curves.

