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The discrete-logarithm problem

Define p = 1000003.

Easy to prove: p is prime.

Can we find an integer

n 2 f1; 2; 3; : : : ; p� 1g
such that 5n mod p = 262682?
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So there exists an n

such that 5n mod p = 262682.

Could find n by brute force.

Is there a faster way?
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Given public key 5n mod p,
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(Warning: This is one way

to attack the protocol.

Maybe there are better ways.)
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Understanding brute force

Can compute successively

51 mod p = 5,

52 mod p = 25,

53 mod p = 125, : : : ,

58 mod p = 390625,

59 mod p = 953122, : : : ,

51000002 mod p = 1.

At some point we’ll find n

with 5n mod p = 262682.

Maximum cost of computation:

� p� 1 mults by 5 mod p;

� p� 1 nanoseconds on a CPU

that does 1 mult/nanosecond.
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Computation has a good chance

of finishing earlier.

Chance scales linearly:

1=2 chance of 1=2 cost;

1=10 chance of 1=10 cost; etc.

“So users should choose large n.”

That’s pointless. We can apply

“random self-reduction”:

choose random r, say 726379;

compute 5r mod p = 515040;

compute 5r5n mod p as

(515040 � (5n mod p)) mod p;

compute discrete log;

subtract r mod p� 1; obtain n.
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so 234 cores,
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Multiple targets and giant steps

Computation can be applied

to many targets at once.

Given 100 DL targets 5n1 mod p,

5n2 mod p, : : : , 5n100 mod p:

Can find all of n1; n2; : : : ; n100

with � p� 1 mults mod p.

Simplest approach: First build

a sorted table containing

5n1 mod p, : : : , 5n100 mod p.

Then check table for

51 mod p, 52 mod p, etc.
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for n = 660789.
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This is “Pollard’s rho method.”

Optimized: � pp mults.

Another method, similar speed:

“Pollard’s kangaroo method.”

Can parallelize both methods.

“van Oorschot/Wiener parallel

DL using distinguished points.”

Bottom line: With c mults,

distributed across many cores,

have chance � c2=p

of finding n from 5n mod p.

With 290 mults (a few years?),

have chance � 2180=p.

Negligible if, e.g., p � 2256.
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This “Pohlig-Hellman method”

converts an order-ab DL into

an order-a DL, an order-b DL,
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p� 1 = 6b where b = 166667.
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Compute x=5160788 = 1000002.
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Use rho: � pa +
p
b mults.

Better if ab factors further:

apply Pohlig-Hellman recursively.
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All of the techniques so far

apply to elliptic curves.

An elliptic curve over Fq
has � q + 1 points

so can compute ECDL using

� pq elliptic-curve adds.

Need quite large q.

If largest prime divisor

of number of points

is much smaller than q

then Pohlig-Hellman method

computes ECDL more quickly.

Need larger q;

or change choice of curve.
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Index calculus

Have generated many

group elements 5an+b mod p.

Deduced equations for n

from random collisions.

Index calculus obtains

discrete-logarithm equations

in a different way.

Example for p = 1000003:

Can completely factor

�3=(p� 3) as �31=2656 in Q

so �31 � 2656 (mod p)

so log5(�1) + log5 3 �
6 log5 2 + 6 log5 5 (mod p� 1).
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log5 3 + log5 5 + 2 log5 11 +

log5 19 + log5 29 (mod p� 1).

Try to completely factor

1=(p + 1), 2=(p + 2), etc.

Find factorization of a=(p + a)

as product of powers of �1;

2; 3; 5; 7; 11; 13; 17; 19; 23; 29; 31

for each of the following a’s:

�5100, �4675, �3128,

�403, �368, �147, �3,

62, 957, 2912, 3857, 6877.
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We don’t know any

index-calculus methods for ECDL!

: : : except for some curves.
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