The discrete-logarithm problem

Define $p = 1000003$.

Easy to prove: p is prime.

Can we find an integer $n \in \{1, 2, 3, \ldots, p - 1\}$ such that $5^n \mod p = 262682$?

Easy to prove: $n \mapsto 5^n \mod p$ permutes $\{1, 2, 3, \ldots, p - 1\}$.

So there exists an n such that $5^n \mod p = 262682$.

Could find n by brute force.

Is there a faster way?
The discrete-logarithm problem
Define $p = 1000003$.
Easy to prove: p is prime.
Can we find an integer $n \in \{1, 2, 3, \ldots, p - 1\}$ such that $5^n \mod p = 262682$?

Easy to prove: $n \mapsto 5^n \mod p$ permutes $\{1, 2, 3, \ldots, p - 1\}$.
So there exists an n
such that $5^n \mod p = 262682$.

Could find n by brute force.
Is there a faster way?
The discrete-logarithm problem

Define \(p = 1000003 \).
Easy to prove: \(p \) is prime.

Can we find an integer \(n \in \{1, 2, 3, \ldots, p - 1\} \)
such that \(5^n \mod p = 262682 \)?

Easy to prove: \(n \mapsto 5^n \mod p \)
permutes \(\{1, 2, 3, \ldots, p - 1\} \).
So there exists an \(n \)
such that \(5^n \mod p = 262682 \).

Could find \(n \) by brute force.
Is there a faster way?

Typical cryptanalytic application:

Imagine standard \(p = 1000003 \)
in the Diffie-Hellman protocol.

User chooses secret key \(n \),
publishes \(5^n \mod p = 262682 \).

Can attacker quickly solve the discrete-logarithm problem?
Given public key \(5^n \mod p \),
quickly find secret key \(n \)?

(Warning: This is one way
to attack the protocol.
Maybe there are better ways.)
The discrete-logarithm problem

Define $p = 1000003$.

Easy to prove: p is prime.

Can we find an integer $n \in \{1, 2, 3, \ldots, p - 1\}$ such that $5^n \mod p = 262682$?

Easy to prove: $n \mapsto 5^n \mod p$ permutes $\{1, 2, 3, \ldots, p - 1\}$.

So there exists an n such that $5^n \mod p = 262682$.

Could find n by brute force.

Is there a faster way?

Typical cryptanalytic application:

Imagine standard $p = 1000003$ in the Diffie-Hellman protocol.

User chooses secret key n, publishes $5^n \mod p = 262682$.

Can attacker quickly solve the discrete-logarithm problem?

Given public key $5^n \mod p$, quickly find secret key n?

(Warning: This is one way to attack the protocol. Maybe there are better ways.)
The discrete-logarithm problem

Define \(p = 1000003 \).
Easy to prove: \(p \) is prime.

Can we find an integer
\(n \in \{1, 2, 3, \ldots, p - 1\} \)
such that \(5^n \mod p = 262682 \)?

Easy to prove: \(n \mapsto 5^n \mod p \)
permutes \(\{1, 2, 3, \ldots, p - 1\} \).
So there exists an \(n \)
such that \(5^n \mod p = 262682 \).
Could find \(n \) by brute force.
Is there a faster way?

Typical cryptanalytic application:

Imagine standard \(p = 1000003 \)
in the Diffie-Hellman protocol.

User chooses secret key \(n \),
publishes \(5^n \mod p = 262682 \).

Can attacker quickly solve
the discrete-logarithm problem?
Given public key \(5^n \mod p \),
quickly find secret key \(n \)?

(Warning: This is one way
to attack the protocol.
Maybe there are better ways.)
The discrete-logarithm problem

\[p = 1000003. \]

Easy to prove: \(p \) is prime.

Can we find an integer \(n \in \{2, 3, \ldots, p - 1\} \) such that \(5^n \mod p = 262682? \)

Easy to prove: \(n \mapsto 5^n \mod p \) permutes \(\{1, 2, 3, \ldots, p - 1\} \).

So there exists an \(n \) such that \(5^n \mod p = 262682. \)

Could find \(n \) by brute force.

Is there a faster way?

Typical cryptanalytic application:

Imagine standard \(p = 1000003 \) in the Diffie-Hellman protocol.

User chooses secret key \(n \), publishes \(5^n \mod p = 262682. \)

Can attacker quickly solve the discrete-logarithm problem?

Given public key \(5^n \mod p \), quickly find secret key \(n \)?

(Warning: This is one way to attack the protocol.
Maybe there are better ways.)

Relations to ECC:

1. Some DL techniques also apply to elliptic-curve DL problems.
 Use in evaluating security of elliptic curves.

2. Some techniques don't apply.
 Use in evaluating advantages of elliptic curves compared to multiplication.

3. Tricky: Some techniques have extra applications to some curves.
 See Tanja Lange's talk on Weil descent etc.
The discrete-logarithm problem

Define \(p = 1000003 \).

Easy to prove: \(p \) is prime.

Can we find an integer \(n \in \{1, 2, 3, \ldots, p - 1\} \) such that \(5^n \mod p = 262682 \)?

Easy to prove: \(n \) permutes \(\{1, 2, 3, \ldots, p - 1\} \).

So there exists an \(n \) such that \(5^n \mod p = 262682 \).

Could find \(n \) by brute force.

Is there a faster way?

Typical cryptanalytic application:

Imagine standard \(p = 1000003 \) in the Diffie-Hellman protocol.

User chooses secret key \(n \),
publishes \(5^n \mod p = 262682 \).

Can attacker quickly solve the discrete-logarithm problem?

Given public key \(5^n \mod p \),
quickly find secret key \(n \)?

(Warning: This is one way to attack the protocol.
Maybe there are better ways.)

Relations to ECC:

1. Some DL techniques also apply to elliptic-curve DL problems.
Use in evaluating security of an elliptic curve.

2. Some techniques don’t apply.
Use in evaluating advantages of elliptic curves compared to multiplication.

3. Tricky: Some techniques have extra applications to some curves.
See Tanja Lange’s talk on Weil descent etc.
The discrete-logarithm problem

Define \(p = 1000003 \).

Easy to prove: \(p \) is prime.

Can we find an integer \(n \in \{1, 2, 3, \ldots, p-1\} \) such that \(5^n \mod p = 262682 \)?

Easy to prove: \(n \) permutes \(\{1, 2, 3, \ldots, p-1\} \).

So there exists an \(n \) such that \(5^n \mod p = 262682 \).

Could find \(n \) by brute force.

Is there a faster way?

Typical cryptanalytic application:

Imagine standard \(p = 1000003 \) in the Diffie-Hellman protocol.

User chooses secret key \(n \), publishes \(5^n \mod p = 262682 \).

Can attacker quickly solve the discrete-logarithm problem?

Given public key \(5^n \mod p \), quickly find secret key \(n \)?

(Warning: This is one way to attack the protocol.
Maybe there are better ways.)

Relations to ECC:

1. Some DL techniques also apply to elliptic-curve DL problems.
 Use in evaluating security of an elliptic curve.

2. Some techniques don’t apply.
 Use in evaluating advantages of elliptic curves compared to multiplication.

3. Tricky: Some techniques have extra applications to some curves.
 See Tanja Lange’s talk on Weil descent etc.
Typical cryptanalytic application:
Imagine standard $p = 1000003$ in the Diffie-Hellman protocol.

User chooses secret key n, publishes $5^n \mod p = 262682$.

Can attacker quickly solve the discrete-logarithm problem?
Given public key $5^n \mod p$, quickly find secret key n?

(Warning: This is one way to attack the protocol.
Maybe there are better ways.)

Relations to ECC:
1. Some DL techniques also apply to elliptic-curve DL problems.
Use in evaluating security of an elliptic curve.

2. Some techniques don’t apply.
Use in evaluating advantages of elliptic curves compared to multiplication.

3. Tricky: Some techniques have extra applications to some curves.
See Tanja Lange’s talk on Weil descent etc.
Typical cryptanalytic application:
Imagine standard $p = 1000003$ in the Diffie-Hellman protocol. User chooses secret key n, publishes $5^n \mod p = 262682$. Can attacker quickly solve the discrete-logarithm problem? Given public key $5^n \mod p$, quickly find secret key n? (Warning: This is one way to attack the protocol. Maybe there are better ways.)

Relations to ECC:
1. Some DL techniques also apply to elliptic-curve DL problems. Use in evaluating security of an elliptic curve.
2. Some techniques don’t apply. Use in evaluating advantages of elliptic curves compared to multiplication.
3. Tricky: Some techniques have extra applications to some curves. See Tanja Lange’s talk on Weil descent etc.

Understanding brute force
Can compute successively
$5^1 \mod p = 5,$
$5^2 \mod p = 25,$
$5^3 \mod p = 125, \ldots$,
$5^{1000002} \mod p = 1.$
At some point we’ll find n with $5^n \mod p = 262682.$
Maximum cost of computation:
p 1 mults by 5 mod p;
p 1 nanoseconds on a CPU that does 1 mult/nanosecond.
Relations to ECC:

1. Some DL techniques also apply to elliptic-curve DL problems.
 Use in evaluating security of an elliptic curve.

2. Some techniques don’t apply.
 Use in evaluating advantages of elliptic curves compared to multiplication.

3. Tricky: Some techniques have extra applications to some curves.
 See Tanja Lange’s talk on Weil descent etc.

Understanding brute force

Can compute successively

\[5^1 \mod p = 5, \]
\[5^2 \mod p = 25, \]
\[5^3 \mod p = 125, \]
\[5^8 \mod p = 390625, \]
\[5^9 \mod p = 953125, \]
\[5^{1000002} \mod p = 1. \]

At some point we’ll find key \(n \) with \(5^n \mod p = 262682. \)

Maximum cost of computation:
\[\leq p - 1 \text{ mults by 5 mod } p; \]
\[\leq p - 1 \text{ nanoseconds on a CPU that does 1 mult/nanosecond.} \]
Relations to ECC:

1. Some DL techniques also apply to elliptic-curve DL problems.
 Use in evaluating security of an elliptic curve.

2. Some techniques don't apply.
 Use in evaluating advantages of elliptic curves compared to multiplication.

3. Tricky: Some techniques have extra applications to some curves.
 See Tanja Lange's talk on Weil descent etc.

Understanding brute force

Can compute successively

\[5^1 \mod p = 5, \]
\[5^2 \mod p = 25, \]
\[5^3 \mod p = 125, \ldots, \]
\[5^8 \mod p = 390625, \]
\[5^9 \mod p = 953122, \ldots, \]
\[5^{1000002} \mod p = 1. \]

At some point we’ll find \(n \) with \(5^n \mod p = 262682. \)

Maximum cost of computation:

\[\leq p - 1 \text{ mults by } 5 \mod p; \]
\[\leq p - 1 \text{ nanoseconds on a CPU that does } 1 \text{ mult/nanosecond.} \]
Relations to ECC:

1. Some DL techniques also apply to elliptic-curve DL problems. Use in evaluating security of an elliptic curve.

2. Some techniques don’t apply. Use in evaluating advantages of elliptic curves compared to multiplication.

3. Tricky: Some techniques have extra applications to some curves. See Tanja Lange’s talk on Weil descent etc.

Understanding brute force

Can compute successively

\[5^1 \mod p = 5,\]
\[5^2 \mod p = 25,\]
\[5^3 \mod p = 125, \ldots,\]
\[5^8 \mod p = 390625,\]
\[5^9 \mod p = 953122, \ldots,\]
\[5^{1000002} \mod p = 1.\]

At some point we’ll find \(n\) with \(5^n \mod p = 262682.\)

Maximum cost of computation:

\[\leq p - 1\] mults by 5 mod \(p;\)
\[\leq p - 1\] nanoseconds on a CPU that does 1 mult/nanosecond.
Understanding brute force

Can compute successively
\[5^1 \mod p = 5, \]
\[5^2 \mod p = 25, \]
\[5^3 \mod p = 125, \ldots, \]
\[5^8 \mod p = 390625, \]
\[5^9 \mod p = 953122, \ldots, \]
\[5^{1000002} \mod p = 1. \]

At some point we’ll find \(n \) with \(5^n \mod p = 262682. \)

Maximum cost of computation:
\[\leq p - 1 \text{ mults by 5 mod } p; \]
\[\leq p - 1 \text{ nanoseconds on a CPU that does 1 mult/nanosecond.} \]

This is negligible work for \(p \approx 2^{50} \).

But users can standardize a larger \(p \), making the attack slower.

Attack cost scales linearly:
\[\approx 2^{50} \text{ mults for } p \approx 2^{50}, \]
\[\approx 2^{100} \text{ mults for } p \approx 2^{100}, \] etc.

(Not exactly linearly: cost of mults grows with \(p \). But this is a minor effect.)
Relations to ECC:

1. Some DL techniques also apply to elliptic-curve DL problems. Use in evaluating security of an elliptic curve.

2. Some techniques don’t apply. Use in evaluating advantages of elliptic curves compared to multiplication.

3. Tricky: Some techniques have extra applications to some curves. See Tanja Lange’s talk on Weil descent etc.

Understanding brute force

Can compute successively

\[5^1 \mod p = 5, \]
\[5^2 \mod p = 25, \]
\[5^3 \mod p = 125, \ldots, \]
\[5^8 \mod p = 390625, \]
\[5^9 \mod p = 953122, \ldots, \]
\[5^{1000002} \mod p = 1. \]

At some point we’ll find \(n \) with \(5^n \mod p = 262682. \)

Maximum cost of computation:

\[\leq p - 1 \text{ mults by } 5 \mod p; \]
\[\leq p - 1 \text{ nanoseconds on a CPU that does } 1 \text{ mult/nanosecond.} \]

This is negligible work for \(p \approx 2^{20}. \)

But users can standardize a larger \(p \), making the attack slower.

Attack cost scales linearly:

\(\approx 2^{50} \text{ mults for } p \approx 2^{50}, \)
\(\approx 2^{100} \text{ mults for } p \approx 2^{100}, \) etc.

(Not exactly linearly: cost of mults grows with \(p \). But this is a minor effect.)
Understanding brute force

Can compute successively:

\[
\begin{align*}
5^1 & \mod p = 5, \\
5^2 & \mod p = 25, \\
5^3 & \mod p = 125, \ldots, \\
5^8 & \mod p = 390625, \\
5^9 & \mod p = 953122, \ldots, \\
5^{1000002} & \mod p = 1.
\end{align*}
\]

At some point we’ll find \(n \) with \(5^n \mod p = 262682. \)

Maximum cost of computation:

\[
\leq p - 1 \text{ mults by } 5 \mod p;
\]

\[
\leq p - 1 \text{ nanoseconds on a CPU that does } 1 \text{ mult/nanosecond.}
\]

This is negligible work for \(p \approx 2^{20} \).

But users can standardize a larger \(p \), making the attack slower.

Attack cost scales linearly:

\[
\approx 2^{50} \text{ mults for } p \approx 2^{50},
\]

\[
\approx 2^{100} \text{ mults for } p \approx 2^{100}, \text{ etc.}
\]

(Not exactly linearly: cost of mults grows with \(p \).)

But this is a minor effect.)
Understanding brute force

Can compute successively

\[5^1 \mod p = 5, \]
\[5^2 \mod p = 25, \]
\[5^3 \mod p = 125, \ldots, \]
\[5^8 \mod p = 390625, \]
\[5^9 \mod p = 953122, \ldots, \]
\[5^{1000002} \mod p = 1. \]

At some point we’ll find \(n \) with \(5^n \mod p = 262682. \)

Maximum cost of computation:
\[\leq p - 1 \text{ mults by } 5 \mod p; \]
\[\leq p - 1 \text{ nanoseconds on a CPU that does 1 mult/nanosecond.} \]

This is negligible work for \(p \approx 2^{20}. \)

But users can standardize a larger \(p, \) making the attack slower.

Attack cost scales linearly:
\[\approx 2^{50} \text{ mults for } p \approx 2^{50}, \]
\[\approx 2^{100} \text{ mults for } p \approx 2^{100}, \text{ etc.} \]

(Not exactly linearly: cost of mults grows with \(p. \)

But this is a minor effect.)
Understanding brute force

Can compute successively

\[5^1 \mod p = 5, \]
\[5^2 \mod p = 25, \]
\[5^3 \mod p = 125, \ldots, \]
\[5^8 \mod p = 390625, \]
\[5^9 \mod p = 953125, \ldots, \]
\[5^{1000002} \mod p = 1. \]

At some point we’ll find \(n \) with \(5^n \mod p = 262682. \)

Maximum cost of computation:
\[p \times 1 \text{ mults by } 5 \mod p; \]
\[p \times 1 \text{ nanoseconds on a CPU that does } 1 \text{ mult/nanosecond.} \]

This is negligible work for \(p \approx 2^{20}. \)

But users can standardize a larger \(p, \) making the attack slower.

Attack cost scales linearly:
\[\approx 2^{50} \text{ mults for } p \approx 2^{50}, \]
\[\approx 2^{100} \text{ mults for } p \approx 2^{100}, \text{ etc.} \]

(Not exactly linearly: cost of mults grows with \(p. \) But this is a minor effect.)

But users can standardize a larger \(p, \) making the attack slower.

Attack cost scales linearly:
\[\approx 2^{50} \text{ mults for } p \approx 2^{50}, \]
\[\approx 2^{100} \text{ mults for } p \approx 2^{100}, \text{ etc.} \]

(Not exactly linearly: cost of mults grows with \(p. \) But this is a minor effect.)

This is negligible work for \(p \approx 2^{20}. \)

But users can standardize a larger \(p, \) making the attack slower.

Attack cost scales linearly:
\[\approx 2^{50} \text{ mults for } p \approx 2^{50}, \]
\[\approx 2^{100} \text{ mults for } p \approx 2^{100}, \text{ etc.} \]

(Not exactly linearly: cost of mults grows with \(p. \) But this is a minor effect.)

That’s pointless. We can apply “random self-reduction”:
choose random \(r, \) say 726379;
compute \(5^r \mod p = 515040; \)
compute \(5^r \cdot 5^n \mod p \) as \((515040 \cdot (5^n \mod p)) \mod p; \)
compute discrete log;
subtract \(r \mod p \) \(- 1; \) obtain \(n. \)
This is negligible work for \(p \approx 2^{20} \).

But users can standardize a larger \(p \), making the attack slower.

Attack cost scales linearly:
\(\approx 2^{50} \) mults for \(p \approx 2^{50} \),
\(\approx 2^{100} \) mults for \(p \approx 2^{100} \), etc.

(Not exactly linearly: cost of mults grows with \(p \). But this is a minor effect.)

Computation has a good chance of finishing earlier.

Chance scales linearly:
1/2 chance of 1/2 cost;
1/10 chance of 1/10 cost;

“So users should choose large \(n \).”

That’s pointless. We can apply “random self-reduction”:
choose random \(r \), say 262682.
compute \(5^r \mod p \);
compute \(5^r 5^n \mod p \) as \((515040 \cdot (5^n \mod p)) \mod p\);
compute discrete log;
subtract \(r \mod p - 1\); obtain \(n \).
This is negligible work for \(p \approx 2^{20} \).

But users can standardize a larger \(p \), making the attack slower.

Attack cost scales linearly:
\[\approx 2^{50} \text{ mults for } p \approx 2^{50} , \]
\[\approx 2^{100} \text{ mults for } p \approx 2^{100} , \text{ etc.} \]

(Not exactly linearly: cost of mults grows with \(p \). But this is a minor effect.)

Computation has a good chance of finishing earlier.

Chance scales linearly:
1/2 chance of 1/2 cost;
1/10 chance of 1/10 cost; etc.

“So users should choose large \(p \).”

That’s pointless. We can apply “random self-reduction”:
choose random \(r \), say 726379;
compute \(5^r \mod p = 515040 \);
compute \(5^r \cdot 5^n \mod p \) as \((515040 \cdot (5^n \mod p)) \mod p \);
compute discrete log;
subtract \(r \mod p - 1 \); obtain \(n \).
This is negligible work for $p \approx 2^{20}$.

But users can standardize a larger p, making the attack slower.

Attack cost scales linearly:

$\approx 2^{50}$ mults for $p \approx 2^{50}$,

$\approx 2^{100}$ mults for $p \approx 2^{100}$, etc.

(Not exactly linearly: cost of mults grows with p.
But this is a minor effect.)

Computation has a good chance of finishing earlier.
Chance scales linearly:

$1/2$ chance of $1/2$ cost;

$1/10$ chance of $1/10$ cost; etc.

“So users should choose large n.”

That’s pointless. We can apply “random self-reduction”:
choose random r, say 726379;
compute $5^r \mod p = 515040$;
compute $5^r 5^n \mod p$ as $(515040 \cdot (5^n \mod p)) \mod p$;
compute discrete log;
subtract $r \mod p - 1$; obtain n.
This is negligible work for $p^{2^{20}}$.

Users can standardize a larger p, making the attack slower.

Cost scales linearly: 2^{50} mults for $p \approx 2^{50}$,
2^{100} mults for $p \approx 2^{100}$, etc.

(Not exactly linearly: cost of mults grows with p.
But this is a minor effect.)

Computation has a good chance of finishing earlier.
Chance scales linearly:
$1/2$ chance of $1/2$ cost;
$1/10$ chance of $1/10$ cost; etc.

“So users should choose large n.”

That’s pointless. We can apply “random self-reduction”:
choose random r, say 726379;
compute $5^r \mod p = 515040$;
compute $5^r 5^n \mod p$ as $(515040 \cdot (5^n \mod p)) \mod p$;
compute discrete log;
subtract $r \mod p - 1$; obtain n.

Computation can be parallelized.
One low-cost chip can run many parallel searches.
Example, 2^{6}: one chip, 2^{10} cores on the chip, each 2^{30} mults/second?
Maybe; see SHARCS workshops for detailed cost analyses.

Attacker can run many parallel chips.
Example, 2^{30}: 2^{24} chips, so 2^{34} cores, so 2^{64} mults/second, so 2^{89} mults/year.
This is negligible work for p^{20}. But users can standardize a larger p, making the attack slower.

Attack cost scales linearly:
- 2^{50} mults for p^{250},
- 2^{100} mults for p^{2100}, etc.

(Not exactly linearly: cost of mults grows with p. But this is a minor effect.)

Computation has a good chance of finishing earlier.
Chance scales linearly:
- $1/2$ chance of $1/2$ cost;
- $1/10$ chance of $1/10$ cost; etc.

“So users should choose large n.”

That’s pointless. We can apply “random self-reduction”:
- choose random r, say 726379;
- compute $5^r \mod p = 515040$;
- compute $5^r 5^n \mod p$ as $(515040 \cdot (5^n \mod p)) \mod p$;
- compute discrete log;
- subtract $r \mod p - 1$; obtain n.

Computation can be parallelized.
One low-cost chip can run many parallel searches.
Example, $2^6 \in$: one chip, 2^{10} cores on the chip, each 2^{30} mults/second?
Maybe; see SHARC for detailed cost analyses.

Attacker can run many parallel chips.
Example, $2^{30} \in$: 224 chips, so 2^{34} cores, so 2^{64} mults/second, so 2^{89} mults/year.
Computation has a good chance of finishing earlier.
Chance scales linearly:
1/2 chance of 1/2 cost;
1/10 chance of 1/10 cost; etc.

“So users should choose large n.”

That’s pointless. We can apply “random self-reduction”:
choose random r, say 726379;
compute $5^r \mod p = 515040$;
compute $5^r 5^n \mod p$ as
$(515040 \cdot (5^n \mod p)) \mod p$;
compute discrete log;
subtract $r \mod p - 1$; obtain n.

Computation can be parallelized.
One low-cost chip can run many parallel searches.
Example, $2^6 \in$: one chip, 2^{10} cores on the chip, each 2^{30} mults/second?
Maybe; see SHARCS workshops for detailed cost analyses.

Attacker can run many parallel chips.
Example, $2^{30} \in$: 2^{24} chips, so 2^{34} cores,
so 2^{64} mults/second,
so 2^{89} mults/year.
Computation has a good chance of finishing earlier.
Chance scales linearly:
1/2 chance of 1/2 cost;
1/10 chance of 1/10 cost; etc.

“So users should choose large n.”

That’s pointless. We can apply “random self-reduction”:
choose random r, say 726379;
compute $5^r \mod p = 515040$;
compute $5^r 5^n \mod p$ as $(515040 \cdot (5^n \mod p)) \mod p$;
compute discrete log;
subtract $r \mod p - 1$; obtain n.

Computation can be parallelized.
One low-cost chip can run many parallel searches.
Example, $2^6 \in$: one chip, 2^{10} cores on the chip, each 2^{30} mults/second?
Maybe; see SHARCS workshops for detailed cost analyses.

Attacker can run many parallel chips.
Example, $2^{30} \in$: 2^{24} chips, so 2^{34} cores, so 2^{64} mults/second, so 2^{89} mults/year.
Computation has a good chance of finishing earlier.

Chance scales linearly:
1/2 chance of 1/2 cost;
1/10 chance of 1/10 cost; etc.

Users should choose large n.

That's pointless. We can apply "random self-reduction":

Choose random r, say 726379;

Compute $5^r \mod p = 515040$;

Compute $5^r 5^n \mod p$ as
$(5^n \mod p)(5^r \mod p)$ mod p;

Compute discrete log;

Subtract $r \mod p - 1$; obtain n.

Computation can be parallelized.

One low-cost chip can run many parallel searches.

Example, $2^6 \in$: one chip, 2^{10} cores on the chip, each 2^{30} mults/second?

Maybe; see SHARCS workshops for detailed cost analyses.

Attacker can run many parallel chips.

Example, $2^{30} \in$: 2^{24} chips, 2^{34} cores, 2^{64} mults/second, 2^{89} mults/year.

Multiple targets and giant steps

Computation can be applied to many targets at once.

Given 100 DL targets $5^n_1 \mod p, 5^n_2 \mod p, \ldots$:

Can find all of $n_1, n_2, \ldots, n_{100}$ with $\leq p$ mults.

Simplest approach: First build a sorted table containing $5^n_1 \mod p, 5^n_2 \mod p, \ldots$.

Then check table for $5^1 \mod p, 5^2 \mod p, \ldots$.
Computation can be parallelized.

One low-cost chip can run many parallel searches.
Example, $2^6 \in$: one chip, 2^{10} cores on the chip, each 2^{30} mults/second?
Maybe; see SHARCS workshops for detailed cost analyses.

Attacker can run many parallel chips.
Example, $2^{30} \in$: 2^{24} chips, so 2^{34} cores, so 2^{64} mults/second, so 2^{89} mults/year.

Multiple targets and giant steps
Computation can be applied to many targets at once.
Given 100 DL targets $5^{n_1} \mod p$, \ldots, $5^{n_{100}} \mod p$:
Can find all of n_1, \ldots, n_{100} with $\leq p - 1$ mults mod p.

Simplest approach: First build a sorted table containing $5^{n_1} \mod p$, \ldots, $5^{n_{100}} \mod p$.
Then check table for $5^1 \mod p$, $5^2 \mod p$, etc.
Computation can be parallelized.

One low-cost chip can run many parallel searches.
Example, $2^6 \in$: one chip, 2^{10} cores on the chip, each 2^{30} mults/second?
Maybe; see SHARCS workshops for detailed cost analyses.

Attacker can run many parallel chips.
Example, $2^{30} \in$: 2^{24} chips, so 2^{34} cores, so 2^{64} mults/second, so 2^{89} mults/year.

Multiple targets and giant steps
Computation can be applied to many targets at once.

Given 100 DL targets $5^{n_1} \mod p$, $5^{n_2} \mod p$, \ldots, $5^{n_{100}} \mod p$.
Can find all of n_1, n_2, \ldots, n_{100} with $\leq p - 1$ mults $\mod p$.

Simplest approach: First build a sorted table containing $5^{n_1} \mod p$, \ldots, $5^{n_{100}} \mod p$.
Then check table for $5^1 \mod p$, $5^2 \mod p$, etc.
Computation can be parallelized.
One low-cost chip can run many parallel searches.
Example, 2^6: one chip, 2^{10} cores on the chip, each 2^{30} mults/second?
Maybe; see SHARCS workshops for detailed cost analyses.

Attacker can run many parallel chips.
Example, $2^{30} = 2^{24}$ chips, so 2^{34} cores, so 2^{64} mults/second, so 2^{89} mults/year.

Multiple targets and giant steps
Computation can be applied to many targets at once.
Given 100 DL targets $5^{n_1} \mod p$, $5^{n_2} \mod p$, \ldots, $5^{n_{100}} \mod p$:
Can find all of $n_1, n_2, \ldots, n_{100}$ with $\leq p - 1$ mults $\mod p$.

Simplest approach: First build a sorted table containing $5^{n_1} \mod p$, \ldots, $5^{n_{100}} \mod p$.
Then check table for $5^1 \mod p$, $5^2 \mod p$, etc.
Computation can be parallelized. One low-cost chip can run many parallel searches.

Example, $2^6 \in$: one chip, $2^{30} \in$: 24 chips, $2^{64} \in$: 64 cores, 2^{89} \in: 64 \times 2^{89} \text{mults/year}?

see SHARCS workshops for detailed cost analyses.

Attacker can run many parallel chips.

Example, $2^{30} \in$: 24 chips, $2^{64} \in$: 64 cores, $2^{89} \in$: 64 \times 2^{89} \text{mults/year}.

Multiple targets and giant steps

Computation can be applied to many targets at once.

Given 100 DL targets $5^{n_1} \mod p$, $5^{n_2} \mod p$, \ldots, $5^{n_{100}} \mod p$:

Can find all of n_1, n_2, \ldots, n_{100} with $\leq p - 1 \text{mults mod } p$.

Simplest approach: First build a sorted table containing $5^{n_1} \mod p$, \ldots, $5^{n_{100}} \mod p$.

Then check table for $5^1 \mod p$, $5^2 \mod p$, etc.

Interesting consequence #1: Solving all 100 DL problems isn't much harder than solving one DL problem.

Interesting consequence #2: Solving at least one out of 100 DL problems is much easier than solving one DL problem.

When did this computation find its first n_i?

Typically $(p - 1) = 100 \text{mults}$.
Computation can be parallelized. One low-cost chip can run many parallel searches. Example, $2^{6} = 64$ cores on the chip, each 2^{30} mults/second? Maybe; see SHARCS workshops for detailed cost analyses. Attacker can run many parallel chips. Example, $2^{30} = 2^{24}$ chips, so 2^{34} cores, so 2^{64} mults/second, so 2^{89} mults/year.

Multiple targets and giant steps

Computation can be applied to many targets at once. Given 100 DL targets $5^{n_{1}} \mod p$, $5^{n_{2}} \mod p$, ..., $5^{n_{100}} \mod p$: Can find all of $n_{1}, n_{2}, \ldots, n_{100}$ with $\leq p - 1$ mults mod p.

Simplest approach: First build a sorted table containing $5^{n_{1}} \mod p$, ..., $5^{n_{100}} \mod p$. Then check table for $5^{1} \mod p$, $5^{2} \mod p$, etc.

Interesting consequence #1: Solving all 100 DL problems isn't much harder than solving one DL problem.

Interesting consequence #2: Solving at least one out of 100 DL problems is much easier than solving one DL problem.

When did this computation find its first n_{i}?

Typically $(p - 1) = 100$ mults.
Multiple targets and giant steps

Computation can be applied to many targets at once.

Given 100 DL targets $5^{n_1} \mod p$, $5^{n_2} \mod p$, \ldots, $5^{n_{100}} \mod p$:
Can find all of $n_1, n_2, \ldots, n_{100}$ with $\leq p - 1$ mults mod p.

Simplest approach: First build a sorted table containing $5^{n_1} \mod p$, \ldots, $5^{n_{100}} \mod p$.
Then check table for $5^1 \mod p$, $5^2 \mod p$, etc.

Interesting consequence #1:
Solving all 100 DL problems isn’t much harder than solving one DL problem.

Interesting consequence #2:
Solving at least one out of 100 DL problems is much easier than solving one DL problem.

When did this computation find its first n_i?
Typically $\approx (p - 1)/100$ mults.
Multiple targets and giant steps

Computation can be applied to many targets at once.

Given 100 DL targets $5^{n_1} \mod p$, $5^{n_2} \mod p$, \ldots, $5^{n_{100}} \mod p$:
Can find all of $n_1, n_2, \ldots, n_{100}$ with $\leq p - 1$ mults mod p.

Simplest approach: First build a sorted table containing $5^{n_1} \mod p$, \ldots, $5^{n_{100}} \mod p$.
Then check table for $5^1 \mod p$, $5^2 \mod p$, etc.

Interesting consequence #1:
Solving all 100 DL problems isn’t much harder than solving one DL problem.

Interesting consequence #2:
Solving at least one out of 100 DL problems is much easier than solving one DL problem.

When did this computation find its first n_i?
Typically $\approx (p - 1)/100$ mults.
targets and giant steps

Computation can be applied to many targets at once.

Given 100 DL targets 5^{n_1} \mod p, 5^{n_2} \mod p, \ldots, 5^{n_{100}} \mod p:

\begin{align*}
\text{find all of } n_1, n_2, \ldots, n_{100} \\
\text{with } p - 1 \text{ mults } \mod p.
\end{align*}

Simplest approach: First build a sorted table containing 5^{n_1} \mod p, \ldots, 5^{n_{100}} \mod p.
Then check table for 5^{n_1} \mod p, 5^{n_2} \mod p, etc.

Interesting consequence #1:
Solving all 100 DL problems isn't much harder than solving one DL problem.

Interesting consequence #2:
Solving at least one out of 100 DL problems is much easier than solving one DL problem.

When did this computation find its first n_i?
Typically \((p - 1)/100 \) mults.

Can use random self-reduction to turn a single target into multiple targets.

Given 5^{n_1} \mod p:
Choose random \(r_1, \ldots, r_{100} \).

Compute 5^{r_1^{n_1} \mod p}, 5^{r_2^{n_1} \mod p}, \ldots, 5^{r_{100}^{n_1} \mod p}.

Solve these 100 DL problems.
Typically \(p - 1 \) mults to find at least one \(r_i + n_1 \mod p \),
immediately revealing \(r_i + n_1 \mod p \).
Multiple targets and giant steps

Computation can be applied to many targets at once. Given 100 DL targets:

\[
\begin{align*}
5^n & \pmod{p} \\
5^{n_1} & \pmod{p} \\
5^{n_2} & \pmod{p} \\
& \vdots \\
5^{n_{100}} & \pmod{p} \\
\end{align*}
\]

Can find all of \(n_1; n_2; \ldots; n_{100}\) with \(p - 1\) mults \(\pmod{p}\).

Simplest approach: First build a sorted table containing

\[
\begin{align*}
5^n & \pmod{p} \\
5^{n_1} & \pmod{p} \\
5^{n_2} & \pmod{p} \\
& \vdots \\
5^{n_{100}} & \pmod{p} \\
\end{align*}
\]

Then check table for

\[
\begin{align*}
5^n & \pmod{p} \\
5^{n_1} & \pmod{p} \\
5^{n_2} & \pmod{p} \\
& \vdots \\
5^{n_{100}} & \pmod{p} \\
\end{align*}
\]

Interesting consequence #1: Solving all 100 DL problems isn’t much harder than solving one DL problem.

Interesting consequence #2: Solving at least one out of 100 DL problems is much easier than solving one DL problem.

When did this computation find its first \(n_i\)? Typically \(\approx (p - 1)/100\) mults.

Can use random self-reduction to turn a single target into multiple targets.

Given \(5^n \pmod{p}\):

Choose random \(r_1, r_2, \ldots, r_{100}\).

Compute \(5^{r_1n} \pmod{p}\), \(5^{r_2n} \pmod{p}\), etc.

Solve these 100 DL problems. Typically \(\approx (p - 1)/100\) to find at least one \(r_i + n \pmod{p} - 1\), immediately revealing \(n\).
Multiple targets and giant steps

Computation can be applied to many targets at once. Given 100 DL targets
\[5^n \mod p, \quad n = 1, 2, \ldots, 100 \]

Can find all of \(n_1, n_2, \ldots, n_{100} \) with \(p-1 \) mults mod \(p \).

Simplest approach: First build a sorted table containing
\[5^n \mod p, \quad n = 1, 2, \ldots, 100 \]

Then check table for \(5^1 \mod p, 5^2 \mod p \), etc.

Interesting consequence #1:
Solving all 100 DL problems isn’t much harder than solving one DL problem.

Interesting consequence #2:
Solving at least one out of 100 DL problems is much easier than solving one DL problem.

When did this computation find its first \(n_i \)? Typically \(\approx (p - 1)/100 \) mults.

Can use random self-reduction to turn a single target
into multiple targets.

Given \(5^n \mod p \):
Choose random \(r_1, r_2, \ldots, r_{100} \): \(1, 2, \ldots, p-1 \).
Compute \(5^{r_1} n \mod p \), \(5^{r_2} n \mod p \), etc.

Solve these 100 DL problems. Typically \(\approx (p - 1)/100 \) mults to find at least one \(r_i + n \mod p - 1 \), immediately revealing \(n \).
Interesting consequence #1: Solving all 100 DL problems isn’t much harder than solving one DL problem.

Interesting consequence #2: Solving at least one out of 100 DL problems is much easier than solving one DL problem.

When did this computation find its first \(n_i \)? Typically \(\approx (p - 1)/100 \) mults.

Can use random self-reduction to turn a single target into multiple targets.

Given \(5^n \mod p \):
Choose random \(r_1, r_2, \ldots, r_{100} \).
Compute \(5^{r_1}5^n \mod p \), \(5^{r_2}5^n \mod p \), etc.
Solve these 100 DL problems. Typically \(\approx (p - 1)/100 \) mults to find at least one \(r_i + n \mod p - 1 \), immediately revealing \(n \).
Interesting consequence #1: Solving all 100 DL problems isn’t much harder than solving one DL problem.

Interesting consequence #2: Solving at least one out of 100 DL problems is much easier than solving one DL problem.

Typically \((p - 1) = 100\) mults.

Can use random self-reduction to turn a single target into multiple targets.

Given \(5^n \mod p\):
Choose random \(r_1, r_2, \ldots, r_{100}\).
Compute \(5^{r_1}5^n \mod p\), \(5^{r_2}5^n \mod p\), etc.
Solve these 100 DL problems.
Typically \(\approx (p - 1)/100\) mults to find at least one \(r_i + n \mod p - 1\), immediately revealing \(n\).

Also spent some mults to compute each \(5^{r_i} \mod p\): \(\approx \lg p\) mults for each \(i\).

Faster: Choose \(r_i = ir_1\) with \(r_1 = \ldots = r_{100}\).
Compute \(5^{r_1}5^n \mod p\), \(5^{2r_1}5^n \mod p\), \(5^{3r_1}5^n \mod p\), etc.
Just 1 mult for each new \(i\).
\(\approx 100 + \lg p + (p - 1) = 100\) mults to find \(n\) given \(5^n \mod p\).
Interesting consequence #1: Solving all 100 DL problems isn't much harder than solving one DL problem.

Interesting consequence #2: Solving at least one out of 100 DL problems is much easier than solving one DL problem.

When did this computation find its first \(n \)?

Typically \((p - 1)/100 \) mults.

Can use random self-reduction to turn a single target into multiple targets.

Given \(5^n \mod p \):
Choose random \(r_1, r_2, \ldots, r_{100} \).
Compute \(5^{r_1}n \mod p \), \(5^{r_2}n \mod p \), etc.

Solve these 100 DL problems.
Typically \(\approx (p - 1)/100 \) mults to find at least one \(r_i + n \mod p - 1 \), immediately revealing \(n \).

Also spent some mults to compute each \(5^{r_i}n \mod p \): \(\approx \lg p \) mults for each \(i \).

Faster: Choose \(r_i = ir_1 \) with \(r_1 \approx (p - 1)/100 \).
Compute \(5^{r_1}n \mod p \); \(5^{r_1}n \mod p \); \(5^{2r_1}n \mod p \); \(5^{3r_1}n \mod p \); etc.
Just 1 mult for each new \(i \).
\(\approx 100 + \lg p + (p - 1)/100 \) mults to find \(n \) given \(5^n \mod p \).
Interesting consequence #1:
Solving all 100 DL problems
isn't much harder than
solving one DL problem.

Interesting consequence #2:
Solving at least one out of 100 DL problems
is much easier than solving one DL problem.

When did this computation
find its first n_i?

Typically $(p-1) = 100$ mults.

Can use random self-reduction
to turn a single target
into multiple targets.

Given $5^n \mod p$:
Choose random $r_1, r_2, \ldots, r_{100}$.
Compute $5^{r_1}5^n \mod p$, $5^{r_2}5^n \mod p$, etc.
Solve these 100 DL problems.
Typically $\approx (p-1)/100$ mults
to find at least one
$r_i + n \mod p - 1$,
immediately revealing n.

Also spent some mults
to compute each $5^{r_i} \mod p$:
$\approx \lg p$ mults for each i.

Faster: Choose $r_i = ir_1$
with $r_1 \approx (p - 1)/100$.
Compute $5^{r_1} \mod p$;
$5^{r_1}5^n \mod p$;
$5^{2r_1}5^n \mod p$;
$5^{3r_1}5^n \mod p$; etc.
Just 1 mult for each new i.
$\approx 100 + \lg p + (p - 1)/100$
to find n given $5^n \mod p$.
Can use random self-reduction to turn a single target into multiple targets.

Given $5^n \mod p$:
Choose random $r_1, r_2, \ldots, r_{100}$.
Compute $5^{r_1}5^n \mod p$,
$5^{r_2}5^n \mod p$, etc.
Solve these 100 DL problems.
Typically $\approx (p - 1)/100$ mults to find at least one
$r_i + n \mod p - 1$,
immediately revealing n.

Also spent some mults to compute each $5^{r_i} \mod p$:
$\approx \lg p$ mults for each i.
Faster: Choose $r_i = ir_1$ with $r_1 \approx (p - 1)/100$.
Compute $5^{r_1} \mod p$;
$5^{r_1}5^n \mod p$;
$5^{2r_1}5^n \mod p$;
$5^{3r_1}5^n \mod p$; etc.
Just 1 mult for each new i.
$\approx 100 + \lg p + (p - 1)/100$ mults to find n given $5^n \mod p$.
Can use random self-reduction to turn a single target into multiple targets.

Given $5^n \mod p$:

Choose random $r_1, r_2, \ldots, r_{100}$.

Compute $5^{r_1}5^n \mod p$,
$5^{r_2}5^n \mod p$, etc.

Solve these 100 DL problems.

Typically $(p - 1) = 100$ mults to find at least one $r_i + n \mod p = 1$, immediately revealing n.

Also spent some mults to compute each $5^{r_i} \mod p$:

- $\approx \lg p$ mults for each i.

Faster: Choose $r_i = ir_1$ with $r_1 \approx (p - 1)/100$.

Compute $5^{r_1} \mod p$;
$5^{r_1}5^n \mod p$;
$5^{2r_1}5^n \mod p$;
$5^{3r_1}5^n \mod p$; etc.

Just 1 mult for each new i.

$\approx 100 + \lg p + (p - 1)/100$ mults to find n given $5^n \mod p$.

Faster: Increase 100 to p.

Only $\approx 2p$ mults to solve one DL problem!

“Shanks baby-step-giant-step discrete-logarithm algorithm.”

Example: $p = 1000003$, $5^n \mod p = 262682$.

Compute $5^{1024} \mod p = 58588$.

Then compute 1000 targets:
$5^{1024}5^n \mod p = 966849$,
$5^{2 \cdot 1024}5^n \mod p = 579277$,
$5^{3 \cdot 1024}5^n \mod p = 579062$, : : : ,
$5^{1000 \cdot 1024}5^n \mod p = 321705$.
Can use random self-reduction to turn a single target into multiple targets.

Given $5^n \mod p$:
Choose random $r_1, r_2, \ldots, r_{100}$.

Compute $5^{r_1} 5^n \mod p$,
$5^{r_2} 5^n \mod p$, etc.
Solve these 100 DL problems.

Typically $(p - 1)/100 = 100$ mults to find at least one $r_i + n \mod p = 1$,
immediately revealing n.

Also spent some mults to compute each $5^{r_i} \mod p$:
$\approx \lg p$ mults for each i.

Faster: Choose $r_i = i r_1$
with $r_1 \approx (p - 1)/100$.

Compute $5^{r_1} \mod p$;
$5^{r_1} 5^n \mod p$;
$5^{2r_1} 5^n \mod p$;
$5^{3r_1} 5^n \mod p$; etc.

Just 1 mult for each new i.

$\approx 100 + \lg p + (p - 1)/100$ mults to find n given $5^n \mod p$.

Faster: Increase 100 to p.

Only $\approx 2\sqrt{p}$ mults to solve one DL problem!

“Shanks baby-step-giant-step discrete-logarithm algorithm.”

Example: $p = 1000003$,
$5^n \mod p = 262682$.

Compute $5^{1024} \mod p$.

Then compute 1000 targets:
$5^{1024} 5^n \mod p = 966849$,
$5^{2 \cdot 1024} 5^n \mod p = 579277$,
$5^{3 \cdot 1024} 5^n \mod p = 579062$, ...
$5^{1000 \cdot 1024} 5^n \mod p = 321705$.

Also spent some mults to compute each $5^{r_i} \mod p$:
$\approx \lg p$ mults for each i.

Faster: Increase 100 to p.

Only $\approx 2\sqrt{p}$ mults to solve one DL problem!

“Shanks baby-step-giant-step discrete-logarithm algorithm.”

Example: $p = 1000003$,
$5^n \mod p = 262682$.

Compute $5^{1024} \mod p$.

Then compute 1000 targets:
$5^{1024} 5^n \mod p = 966849$,
$5^{2 \cdot 1024} 5^n \mod p = 579277$,
$5^{3 \cdot 1024} 5^n \mod p = 579062$, ...
$5^{1000 \cdot 1024} 5^n \mod p = 321705$.

Also spent some mults to compute each $5^{r_i} \mod p$:
$\approx \lg p$ mults for each i.
Can use random self-reduction to turn a single target into multiple targets.

Given \(n \mod p \):

Choose random \(r_1, r_2, \ldots, r_{100} \).

Compute \(5^{r_1}n \mod p \), \(5^{r_2}n \mod p \), etc.

Solve these 100 DL problems.

Typically \((p - 1) = 100\) mults to find at least one \(r_i + n \mod p \), immediately revealing \(n \).

Also spent some mults to compute each \(5^{r_i} \mod p \):

\(\approx \lg p \) mults for each \(i \).

Faster: Choose \(r_i = i r_1 \) with \(r_1 \approx (p - 1)/100 \).

Compute \(5^{r_1} \mod p \); \(5^{r_1}n \mod p \); \(5^{2r_1}n \mod p \); \(5^{3r_1}n \mod p \); etc.

Just 1 mult for each new \(i \).

\(\approx 100 + \lg p + (p - 1)/100 \) mults to find \(n \) given \(5^n \mod p \).

Faster: Increase 100 to \(\approx \sqrt{p} \).

Only \(\approx 2\sqrt{p} \) mults to solve one DL problem!

“Shanks baby-step-giant-step discrete-logarithm algorithm.”

Example: \(p = 1000003 \),\(5^n \mod p = 262682 \).

Compute \(5^{1024} \mod p = 58588 \).

Then compute 1000 targets:

\(5^{1024}5^n \mod p = 966849 \), \(5^{2\cdot1024}5^n \mod p = 579277 \), \(5^{3\cdot1024}5^n \mod p = 579062 \), \(5^{1000\cdot1024}5^n \mod p = 321707 \).
Also spent some mults
to compute each \(5^ri \mod p\):
\[\approx \lg p\] mults for each \(i\).

Faster: Choose \(r_i = ir_1\)
with \(r_1 \approx (p - 1)/100\).
Compute \(5^{r_1} \mod p\);
\(5^{1r_1 5^n} \mod p\);
\(5^{2r_1 5^n} \mod p\);
\(5^{3r_1 5^n} \mod p\); etc.
Just 1 mult for each new \(i\).
\[\approx 100 + \lg p + (p - 1)/100\] mults
to find \(n\) given \(5^n \mod p\).

Faster: Increase 100 to \(\approx \sqrt{p}\).
Only \(\approx 2\sqrt{p}\) mults
to solve one DL problem!

“Shanks baby-step-giant-step
discrete-logarithm algorithm.”

Example: \(p = 1000003\),
\(5^n \mod p = 262682\).
Compute \(5^{1024} \mod p = 58588\).
Then compute 1000 targets:
\(5^{1024 5^n} \mod p = 966849,\)
\(5^{2\cdot 1024 5^n} \mod p = 579277,\)
\(5^{3\cdot 1024 5^n} \mod p = 579062, \ldots,\)
\(5^{1000\cdot 1024 5^n} \mod p = 321705.\)
Also spent some mults to compute each $5^r_i \mod p$:
$\log p$ mults for each i.
Faster: Choose $r_i = i r_1 \approx (p - 1)/100$.
Compute $5^{r_1} \mod p$;
$5^{r_1} \mod p$;
... $5^{r_1} \mod p$; etc.
Just 1 mult for each new i.

$100 + \log p + (p - 1)/100$ mults to solve one DL problem!

“Shanks baby-step-giant-step discrete-logarithm algorithm.”

Example: $p = 1000003$,
$5^n \mod p = 262682$.
Compute $5^{1024} \mod p = 58588$.
Then compute 1000 targets:
$5^{1024} 5^n \mod p = 966849$,
$5^{2 \cdot 1024} 5^n \mod p = 579277$,
$5^{3 \cdot 1024} 5^n \mod p = 579062$, \ldots,
$5^{1000 \cdot 1024} 5^n \mod p = 321705$.

Build a sorted table of targets:

- $2573 = 5^{430} 1024 \mod p$,
- $3371 = 5^{192} 1024 \mod p$,
- $3593 = 5^{626} 1024 \mod p$,
- $4960 = 5^{663} 1024 \mod p$,
- $5218 = 5^{376} 1024 \mod p$,
- ... $999675 = 5^{344} 1024 \mod p$.

Look up $5^{755} \mod p$; $5^{332} 1024 \mod p$ in the table of targets; so $755 = 332 1024 + n \mod p$.
Deduce $n = 660789$.

Faster: Increase 100 to $\approx \sqrt{p}$.
Only $\approx 2 \sqrt{p}$ mults to compute each $5^r_i \mod p$.
Faster: Increase 100 to $\approx \sqrt{p}$. Only $\approx 2\sqrt{p}$ mults to solve one DL problem!

“Shanks baby-step-giant-step discrete-logarithm algorithm.”

Example: $p = 1000003$, $5^n \mod p = 262682$.

Compute $5^{1024} \mod p = 58588$.

Then compute 1000 targets:
$5^{1024}5^n \mod p = 966849$, $5^{2\cdot1024}5^n \mod p = 579277$, $5^{3\cdot1024}5^n \mod p = 579062$, $5^{4\cdot1024}5^n \mod p = 478599$, $5^{5\cdot1024}5^n \mod p = 321705$, $5^{6\cdot1024}5^n \mod p = 66091$, $5^{7\cdot1024}5^n \mod p = 262682$.

Build a sorted table of targets:
$2573 = 5^{430}\cdot10245^n$, $3371 = 5^{192}\cdot10245^n$, $3593 = 5^{626}\cdot10245^n$, $4960 = 5^{663}\cdot10245^n$, $5218 = 5^{376}\cdot10245^n$, $999675 = 5^{344}\cdot10245^n$.

Look up $5^1 \mod p$, $5^3 \mod p$, etc. in the table of targets.

$5^{755} \mod p = 966603$; find $966603 = 5^{332}\cdot10245^n$ in the table of targets, so $755 = 332\cdot1024 + n \mod p$; deduce $n = 660789$.

Also spent some mults to compute each $5^r_i \mod p$: $\lg p$ mults for each i.

Faster: Choose $r_i = ir_1$ with $r_1 \equiv (p_1)^{-1} \mod p$.

Compute $5^{r_1} \mod p$, $5^{2r_1} \mod p$, $5^{3r_1} \mod p$, etc.

Just 1 mult for each new i.

$(100 + \lg p + (p_1)) = 100$ mults to find n, given $5^n \mod p$.

Build a sorted table of targets: $2573 = 5^{430}\cdot10245^n$, $3371 = 5^{192}\cdot10245^n$, $3593 = 5^{626}\cdot10245^n$, $4960 = 5^{663}\cdot10245^n$, $5218 = 5^{376}\cdot10245^n$, $999675 = 5^{344}\cdot10245^n$.

Look up $5^1 \mod p$, $5^3 \mod p$, etc. in the table of targets.

$5^{755} \mod p = 966603$; find $966603 = 5^{332}\cdot10245^n$ in the table of targets, so $755 = 332\cdot1024 + n \mod p$; deduce $n = 660789$.

...
Faster: Increase 100 to $\approx \sqrt{p}$.
Only $\approx 2\sqrt{p}$ mults
to solve one DL problem!

“Shanks baby-step-giant-step
discrete-logarithm algorithm.”

Example: $p = 1000003$,
$5^n \mod p = 262682$.

Compute $5^{1024} \mod p = 58588$.
Then compute 1000 targets:
$5^{1024}5^n \mod p = 966849$,
$5^{2\cdot1024}5^n \mod p = 579277$,
$5^{3\cdot1024}5^n \mod p = 579062$, ...,
$5^{1000\cdot1024}5^n \mod p = 321705$.

Build a sorted table of targets:
$2573 = 5^{430\cdot1024}5^n \mod p$,
$3371 = 5^{192\cdot1024}5^n \mod p$,
$3593 = 5^{626\cdot1024}5^n \mod p$,
$4960 = 5^{663\cdot1024}5^n \mod p$,
$5218 = 5^{376\cdot1024}5^n \mod p$, ...
$999675 = 5^{344\cdot1024}5^n \mod p$.

Look up $5^1 \mod p$, $5^2 \mod p$, $5^3 \mod p$, etc. in this table.
$5^{755} \mod p = 966603$; find
$966603 = 5^{332\cdot1024}5^n \mod p$
in the table of targets;
so $755 = 332 \cdot 1024 + n \mod p$;
deduce $n = 660789$.

Faster: Increase 100 to $\approx \sqrt{p}$. Only $\approx 2\sqrt{p}$ mults to solve one DL problem!

“Shanks baby-step-giant-step discrete-logarithm algorithm.”

Example: $p = 1000003$, $5^n \mod p = 262682$.

Compute $5^{1024} \mod p = 58588$.

Then compute 1000 targets:

$5^{1024}5^n \mod p = 966849$,

$5^2\cdot10245^n \mod p = 579277$,

$5^3\cdot10245^n \mod p = 579062$, \ldots,

$5^{1000}\cdot10245^n \mod p = 321705$.

Build a sorted table of targets:

$2573 = 5^{430\cdot1024}5^n \mod p$,

$3371 = 5^{192\cdot1024}5^n \mod p$,

$3593 = 5^{626\cdot1024}5^n \mod p$,

$4960 = 5^{663\cdot1024}5^n \mod p$,

$5218 = 5^{376\cdot1024}5^n \mod p$, \ldots,

$999675 = 5^{344\cdot1024}5^n \mod p$.

Look up $5^1 \mod p$, $5^2 \mod p$, $5^3 \mod p$, etc. in this table.

$5^{755} \mod p = 966603$; find $966603 = 5^{332\cdot1024}5^n \mod p$ in the table of targets; so $755 = 332\cdot1024 + n \mod p - 1$; deduce $n = 660789$.
Increase 100 to $\approx \sqrt{p}$.

2 \sqrt{p} mults to solve one DL problem!

"Shanks baby-step-giant-step logarithm algorithm."

Example: $p = 1000003$.

Compute $5^{1024} \mod p = 262682$.

Build a sorted table of targets:

- $2573 = 5^{430 \cdot 1024} \cdot 5^n \mod p$,
- $3371 = 5^{192 \cdot 1024} \cdot 5^n \mod p$,
- $3593 = 5^{626 \cdot 1024} \cdot 5^n \mod p$,
- $4960 = 5^{663 \cdot 1024} \cdot 5^n \mod p$,
- $5218 = 5^{376 \cdot 1024} \cdot 5^n \mod p$,

Eliminating storage

Improved method: Define $x_0 = 1$; $x_{i+1} = 5 \cdot x_i \mod p$ if $x_i < 3 \cdot Z$;

$x_{i+1} = x_{2i} \mod p$ if $x_i < 2^2 + 3 \cdot Z$;

$x_{i+1} = 5 \cdot n \cdot x_i \mod p$ otherwise.

Search for a collision in x_i:

$x_1 = x_2 \iff x_2 = x_4 \iff x_3 = x_6 \iff x_4 = x_8 \iff \ldots$

Deduce linear equation for n.

Look up $5^1 \mod p$, $5^2 \mod p$, $5^3 \mod p$, etc. in this table.

Compute 1000 targets:

- $2573 \mod p = 58588$,
- $3371 \mod p = 579277$,
- $3593 \mod p = 579062$, …,
- $999675 \mod p = 321705$.

Now: $p = 1000003$,

$p = 262682$.

Find $5^{1024} \mod p = 58588$.

Compute 1000 targets:

- $2573 \mod p = 58588$,
- $3371 \mod p = 5663 \cdot 1024 \cdot 5^n \mod p$,
- $3593 \mod p = 579277$,
- $4960 \mod p = 579062$, …,
- $999675 \mod p = 321705$.

Look up $5^1 \mod p$, $5^2 \mod p$, $5^3 \mod p$, etc. in this table.

Find $5^{755} \mod p = 966603$; find

$966603 = 5^{332 \cdot 1024} \cdot 5^n \mod p$ in the table of targets;

so $755 = 332 \cdot 1024 + n \mod p - 1$; deduce $n = 660789$.
Faster: Increase 100 to \(\sqrt{p} \).

Only 2 mults to solve one DL problem!

Example:

\[p = 1000003, \]

\[5^{1024} \mod p = 262682. \]

Compute \(5^{1024} \mod p = 58588. \)

Then compute 1000 targets:

\[5^{1024} 5^{n} \mod p = 966849, \]
\[5^{1024} 5^{2n} \mod p = 579277, \]
\[5^{1024} 5^{3n} \mod p = 579062, \ldots, \]
\[5^{1024} 5^{1000n} \mod p = 321705. \]

Eliminating storage

Improved method: Define \(x_0 = 1; \)
\[x_{i+1} = 5x_i \mod p \]
\[x_{i+1} = x_i^2 \mod p \]
\[x_{i+1} = 5^n x_i \mod p \]

Then \(x_i = 5^{a_i n + b_i} \mod p \)
where \((a_0, b_0) = (0, 0) \)
\((a_{i+1}, b_{i+1}) = (a_i, b_i + 1) \)
\((a_{i+1}, b_{i+1}) = (2a_i, 2b_i) \)
\((a_{i+1}, b_{i+1}) = (a_i + 1, b_i) \)

Search for a collision in \(x_i : \)
\[x_1 = x_2 ? \]
\[x_2 = x_4 ? \]
\[x_4 = x_8 ? \]
Deduce linear equation for \(n \).
Faster: Increase 100 to p.

Only $2p$ mults to solve one DL problem!

Example: $p = 1000003$, $5^n \mod p = 262682$.

Compute $5^{1024} \mod p = 58588$.

Then compute 1000 targets:

$5^{1024} \times 5^n \mod p = 966849$, $5^{2 \times 1024} \mod p = 579277$, $5^{3 \times 1024} \mod p = 579062$, ... , $5^{1000 \times 1024} \mod p = 321705$.

Build a sorted table of targets:

$2573 = 5^{430 \cdot 1024} 5^n \mod p$, $3371 = 5^{192 \cdot 1024} 5^n \mod p$, $3593 = 5^{626 \cdot 1024} 5^n \mod p$, $4960 = 5^{663 \cdot 1024} 5^n \mod p$, $5218 = 5^{376 \cdot 1024} 5^n \mod p$, ... , $999675 = 5^{344 \cdot 1024} 5^n \mod p$.

Look up $5^1 \mod p$, $5^2 \mod p$, $5^3 \mod p$, etc. in this table.

$5^{755} \mod p = 966603$; find $966603 = 5^{332 \cdot 1024} 5^n \mod p$ in the table of targets; so $755 = 332 \cdot 1024 + n \mod p - 1$; deduce $n = 660789$.

Eliminating storage

Improved method: Define $x_0 = 1$;

$x_{i+1} = 5^n x_i \mod p$ if $x_i \in 32$;

$x_{i+1} = x_i^2 \mod p$ if $x_i \in 2 + 32$;

$x_{i+1} = 5^n x_i \mod p$ otherwise.

Then $x_i = 5^{a_i n + b_i} \mod p$ where $(a_0, b_0) = (0, 0)$ and

$(a_{i+1}, b_{i+1}) = (a_i, b_i + 1)$, or

$(a_{i+1}, b_{i+1}) = (2a_i, 2b_i)$, or

$(a_{i+1}, b_{i+1}) = (a_i + 1, b_i)$.

Search for a collision in x_i:

$x_1 = x_2$? $x_2 = x_4$? $x_3 = x_6$? $x_4 = x_8$? $x_5 = x_{10}$? etc.

Deduce linear equation for n.
Build a sorted table of targets:

<table>
<thead>
<tr>
<th>Number</th>
<th>Modulo Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2573</td>
<td>$5^{430} \cdot 1024 \cdot 5^n \mod p$</td>
</tr>
<tr>
<td>3371</td>
<td>$5^{192} \cdot 1024 \cdot 5^n \mod p$</td>
</tr>
<tr>
<td>3593</td>
<td>$5^{626} \cdot 1024 \cdot 5^n \mod p$</td>
</tr>
<tr>
<td>4960</td>
<td>$5^{663} \cdot 1024 \cdot 5^n \mod p$</td>
</tr>
<tr>
<td>5218</td>
<td>$5^{376} \cdot 1024 \cdot 5^n \mod p$</td>
</tr>
<tr>
<td>999675</td>
<td>$5^{344} \cdot 1024 \cdot 5^n \mod p$</td>
</tr>
</tbody>
</table>

Eliminating storage

Improved method:

Define $x_0 = 1$; $x_{i+1} = 5^n x_i \mod p$ if $x_i \in 3 \mathbb{Z}$; $x_{i+1} = x_i^2 \mod p$ if $x_i \in 2 + 3 \mathbb{Z}$; $x_{i+1} = 5^n x_i \mod p$ otherwise.

Then $x_i = 5^{a_i n + b_i} \mod p$ where $(a_0, b_0) = (0, 0)$ and

- $(a_{i+1}, b_{i+1}) = (a_i, b_i + 1)$, or
- $(a_{i+1}, b_{i+1}) = (2a_i, 2b_i)$, or
- $(a_{i+1}, b_{i+1}) = (a_i + 1, b_i)$.

Search for a collision in x_i: $x_1 = x_2$? $x_2 = x_4$? $x_3 = x_6$? $x_4 = x_8$? $x_5 = x_{10}$? etc.

Deduce linear equation for n.

Look up $5^1 \mod p$, $5^2 \mod p$, $5^3 \mod p$, etc. in this table.

$5^{755} \mod p = 966603$; find $966603 = 5^{332} \cdot 1024 \cdot 5^n \mod p$ in the table of targets; so $755 = 332 \cdot 1024 + n \mod p - 1$; deduce $n = 660789$.

Deduce linear equation for n.

Eliminating storage

Improved method: Define $x_0 = 1$;
$x_{i+1} = 5x_i \mod p$ if $x_i \in 3\mathbb{Z}$;
$x_{i+1} = x_i^2 \mod p$ if $x_i \in 2 + 3\mathbb{Z}$;
$x_{i+1} = 5^n x_i \mod p$ otherwise.

Then $x_i = 5^{a_i n + b_i} \mod p$
where $(a_0, b_0) = (0, 0)$ and
$(a_{i+1}, b_{i+1}) = (a_i, b_i + 1)$, or
$(a_{i+1}, b_{i+1}) = (2a_i, 2b_i)$, or
$(a_{i+1}, b_{i+1}) = (a_i + 1, b_i)$.

Search for a collision in x_i:
$x_1 = x_2? \ x_2 = x_4? \ x_3 = x_6? \ x_4 = x_8? \ x_5 = x_{10}? \ etc.$

Deduce linear equation for n.

The x_i's enter a cycle, typically within p steps.

Example: 1000003, 262682.
Modulo 1000003:
$x_1 = 5^n \mod p$
$x_2 = 5^{2n} \mod p$
$x_3 = 5^{3n} \mod p$
$x_4 = 5^{4n} \mod p$
$x_5 = 5^{5n} \mod p$
$x_6 = 5^{6n} \mod p$
$x_7 = 5^{7n} \mod p$
$x_8 = 5^{8n} \mod p$

etc.
Example of targets:
\[n \mod p,\]
\[n \mod p,\]
\[n \mod p,\]
\[n \mod p, \ldots,\]
\[5^n \mod p.\]

Look up \(5^n\mod p, 5^2 \mod p, \ldots\) in this table.

Eliminating storage
Improved method: Define \(x_0 = 1;\)
\[x_{i+1} = 5x_i \mod p \quad \text{if} \quad x_i \in 3\mathbb{Z};\]
\[x_{i+1} = x_i^2 \mod p \quad \text{if} \quad x_i \in 2 + 3\mathbb{Z};\]
\[x_{i+1} = 5^n x_i \mod p \quad \text{otherwise.}\]

Then \(x_i = 5^{a_i n + b_i} \mod p\)
where \((a_0, b_0) = (0, 0)\) and
\((a_{i+1}, b_{i+1}) = (a_i, b_i + 1),\)
\((a_{i+1}, b_{i+1}) = (2a_i, 2b_i),\)
\((a_{i+1}, b_{i+1}) = (a_i + 1, b_i).\)

Search for a collision in \(x_i:\)
\[x_1 = x_2? \quad x_2 = x_4? \quad x_3 = x_6? \]
\[x_4 = x_8? \quad x_5 = x_{10}? \quad \text{etc.}\]
Deduce linear equation for \(n.\)

The \(x_i\)'s enter a cycle, typically within \(\approx p\) steps.

Example: 1000003, 262682.

Modulo 1000003:
\[x_1 = 5^n = 262682;\]
\[x_2 = 5^{2n} = 262682;\]
\[x_3 = 5^{2n+1} = 626121;\]
\[x_4 = 5^{2n+2} = 130596;\]
\[x_5 = 5^{2n+3} = 652980;\]
\[x_6 = 5^{2n+4} = 264891;\]
\[x_7 = 5^{4n+8} = 324452;\]
\[x_8 = 5^{4n+9} = 324452;\]
\[\text{etc.}\]
Eliminating storage

Improved method: Define $x_0 = 1$;
$x_{i+1} = 5x_i \mod p$ if $x_i \in 3\mathbb{Z}$;
$x_{i+1} = x_i^2 \mod p$ if $x_i \in 2 + 3\mathbb{Z}$;
$x_{i+1} = 5^n x_i \mod p$ otherwise.

Then $x_i = 5^{a_i n + b_i} \mod p$
where $(a_0, b_0) = (0, 0)$ and
$(a_{i+1}, b_{i+1}) = (a_i, b_i + 1)$, or
$(a_{i+1}, b_{i+1}) = (2a_i, 2b_i)$, or
$(a_{i+1}, b_{i+1}) = (a_i + 1, b_i)$.

Search for a collision in x_i:
$x_1 = x_2? \ x_2 = x_4? \ x_3 = x_6? \ x_4 = x_8? \ x_5 = x_{10}? \ etc.$

Deduce linear equation for n.

The x_i's enter a cycle, typically within $\approx \sqrt{p}$ steps.

Example: 1000003, 262682.

Modulo 1000003:
$x_1 = 5^n = 262682$.
$x_2 = 5^{2n} = 262682^2 = 626121$.
$x_3 = 5^{2n+1} = 5 \cdot 626121 = 130596$.
$x_4 = 5^{2n+2} = 5 \cdot 130596 = 652980$.
$x_5 = 5^{2n+3} = 5 \cdot 652980 = 264891$.
$x_6 = 5^{2n+4} = 5 \cdot 264891 = 324452$.
$x_7 = 5^{4n+8} = 324452^2 = 784500$.
$x_8 = 5^{4n+9} = 5 \cdot 784500 = 922491$.
etc.
Eliminating storage

Improved method: Define $x_0 = 1$;

$x_{i+1} = 5x_i \mod p$ if $x_i \in 3\mathbb{Z}$;

$x_{i+1} = x_i^2 \mod p$ if $x_i \in 2 + 3\mathbb{Z}$;

$x_{i+1} = 5^n x_i \mod p$ otherwise.

Then $x_i = 5^{a_in+b_i} \mod p$

where $(a_0, b_0) = (0, 0)$ and

$(a_{i+1}, b_{i+1}) = (a_i, b_i + 1)$, or

$(a_{i+1}, b_{i+1}) = (2a_i, 2b_i)$, or

$(a_{i+1}, b_{i+1}) = (a_i + 1, b_i)$.

Search for a collision in x_i:

$x_1 = x_2$? $x_2 = x_4$? $x_3 = x_6$?

$x_4 = x_8$? $x_5 = x_{10}$? etc.

Deduce linear equation for n.

The x_i’s enter a cycle, typically within $\approx \sqrt{p}$ steps.

Example: 1000003, 262682.

Modulo 1000003:

$x_1 = 5^n = 262682$.

$x_2 = 5^{2n} = 262682^2 = 626121$.

$x_3 = 5^{2n+1} = 5 \cdot 626121 = 130596$.

$x_4 = 5^{2n+2} = 5 \cdot 130596 = 652980$.

$x_5 = 5^{2n+3} = 5 \cdot 652980 = 264891$.

$x_6 = 5^{2n+4} = 5 \cdot 264891 = 324452$.

$x_7 = 5^{4n+8} = 324452^2 = 784500$.

$x_8 = 5^{4n+9} = 5 \cdot 784500 = 922491$. etc.
Improving storage

Improved method: Define $x_0 = 1$;

- $5x_i \mod p$ if $x_i \in 3\mathbb{Z}$;
- $x_i^2 \mod p$ if $x_i \in 2 + 3\mathbb{Z}$;
- $5^n x_i \mod p$ otherwise.

Deduce linear equation for n.

The x_i's enter a cycle, typically within $\approx \sqrt{p}$ steps.

Example: 1000003, 262682.

Modulo 1000003:

- $x_1 = 5^n = 262682$.
- $x_2 = 5^{2n} = 262682^2 = 626121$.
- $x_3 = 5^{2n+1} = 5 \cdot 626121 = 3130596$.
- $x_4 = 5^{2n+2} = 5 \cdot 130596 = 652980$.
- $x_5 = 5^{2n+3} = 5 \cdot 652980 = 264891$.
- $x_6 = 5^{2n+4} = 5 \cdot 264891 = 324452$.
- $x_7 = 5^{4n+8} = 324452^2 = 784500$.
- $x_8 = 5^{4n+9} = 5 \cdot 784500 = 922491$.

etc.

$x_1785 = \cdots$
$x_3570 = \cdots$

(Cycle length is 357.)

Conclude that $249847 n + 759123 \equiv 555013 \mod (p-1)$,
$388795 n + 632781 \equiv 555013 \mod (p-1)$,
so $n \equiv 160788 \mod (p-1)$.

Only 6 possible n's.

Try each of them.

Find that $5^n \mod p = 262682$
for $n = 160788 + 3(p-1) = 6$, i.e.,
for $n = 660789$.

The x_i's enter a cycle, typically within $\approx \sqrt{p}$ steps.

Example: 1000003, 262682.

Modulo 1000003:

- $x_1 = 5^n = 262682$.
- $x_2 = 5^{2n} = 262682^2 = 626121$.
- $x_3 = 5^{2n+1} = 5 \cdot 626121 = 3130596$.
- $x_4 = 5^{2n+2} = 5 \cdot 130596 = 652980$.
- $x_5 = 5^{2n+3} = 5 \cdot 652980 = 264891$.
- $x_6 = 5^{2n+4} = 5 \cdot 264891 = 324452$.
- $x_7 = 5^{4n+8} = 324452^2 = 784500$.
- $x_8 = 5^{4n+9} = 5 \cdot 784500 = 922491$.

etc.
Define $x_0 = 1$; if $x_i \in 3 \mathbb{Z}$; if $x_i \in 2 + 3 \mathbb{Z}$; p otherwise.

The x_i's enter a cycle, typically within $\approx \sqrt{p}$ steps.

Example: 1000003, 262682.

Modulo 1000003:

\[
x_1 = 5^n = 262682.
\]

\[
x_2 = 5^{2n} = 262682^2 = 626121.
\]

\[
x_3 = 5^{2n+1} = 5 \cdot 626121 = 130596.
\]

\[
x_4 = 5^{2n+2} = 5 \cdot 130596 = 652980.
\]

\[
x_5 = 5^{2n+3} = 5 \cdot 652980 = 264891.
\]

\[
x_6 = 5^{2n+4} = 5 \cdot 264891 = 324452.
\]

\[
x_7 = 5^{4n+8} = 324452^2 = 784500.
\]

\[
x_8 = 5^{4n+9} = 5 \cdot 784500 = 922491.
\]

\[\text{etc.}\]

Conclude that $249847n + 759123 \equiv 0 \pmod{1000003}$, so $n \equiv 160788 \pmod{\frac{1000003-1}{2}}$.

Only 6 possible n's.

Try each of them.

Find that $5^n \mod 1000003 = 262682$ for $n = 160788 + 3(1000003 - 1) = 6$; i.e., for $n = 660789$.

(Cycle length is 357.)

\[
x_{1785} = 5^{249847n+759123} \equiv 784500 \pmod{1000003}.
\]

\[
x_{3570} = 5^{388795n+632781} \equiv 264891 \pmod{1000003}.
\]
Eliminating storage

Improved method: Define \(x_0 = 1; \)
\(x_{i+1} = 5x_i \mod p \) if \(x_i \not\in \mathbb{Z}; \)
\(x_{i+1} = x_i^2 \mod p \) otherwise.

Then \(x_i = 5^{a_i n + b_i} \mod p \) where \((a_0, b_0) = (0, 0)\) and \((a_{i+1}, b_{i+1}) = (a_i, b_i + 1), \) or \((a_{i+1}, b_{i+1}) = (2a_i, 2b_i), \) or \((a_{i+1}, b_{i+1}) = (a_i + 1, b_i).\)

Search for a collision in \(x_i: \)
\(x_1 = x_2 = x_4 = x_6 = \ldots \)
\(x_4 = x_8 = x_{10} = \ldots \)

Deduce linear equation for \(n. \)

The \(x_i's \) enter a cycle, typically within \(\approx \sqrt{p} \) steps.

Example: 1000003, 262682.

Modulo 1000003:
\(x_1 = 5^n = 262682. \)
\(x_2 = 5^{2n} = 262682^2 = 626121. \)
\(x_3 = 5^{2n+1} = 5 \cdot 626121 = 130596. \)
\(x_4 = 5^{2n+2} = 5 \cdot 130596 = 652980. \)
\(x_5 = 5^{2n+3} = 5 \cdot 652980 = 264891. \)
\(x_6 = 5^{2n+4} = 5 \cdot 264891 = 324452. \)
\(x_7 = 5^{4n+8} = 324452^2 = 784500. \)
\(x_8 = 5^{4n+9} = 5 \cdot 784500 = 922491. \)

(Cycle length is 357.)

Conclude that
\(249847n + 759123 \equiv 388795n + 632781 \pmod{p}, \)
so \(n \equiv 160788 \pmod{(p - 1)/6}. \)

Only 6 possible \(n \)'s.

Try each of them.

Find that \(5^n \pmod{p} = 262682 \)
for \(n = 160788 + 3(p - 1)/6, \)
for \(n = 660789. \)
The \(x_i \)'s enter a cycle, typically within \(\sim \sqrt{\rho} \) steps.

Example: 1000003, 262682.

Modulo 1000003:
\[
x_1 = 5^n = 262682.
\]
\[
x_2 = 5^{2n} = 262682^2 = 626121.
\]
\[
x_3 = 5^{2n+1} = 5 \cdot 626121 = 130596.
\]
\[
x_4 = 5^{2n+2} = 5 \cdot 130596 = 652980.
\]
\[
x_5 = 5^{2n+3} = 5 \cdot 652980 = 264891.
\]
\[
x_6 = 5^{2n+4} = 5 \cdot 264891 = 324452.
\]
\[
x_7 = 5^{4n+8} = 324452^2 = 784500.
\]
\[
x_8 = 5^{4n+9} = 5 \cdot 784500 = 922491.
\]

etc.

\[
x_{1785} = 5^{249847n+759123} = 555013.
\]
\[
x_{3570} = 5^{388795n+632781} = 555013.
\]

(Cycle length is 357.)

Conclude that
\[
249847n + 759123 \equiv 388795n + 632781 \pmod{p - 1},
\]
so \(n \equiv 160788 \pmod{(p - 1)/6} \).

Only 6 possible \(n \)'s.

Try each of them.

Find that \(5^n \bmod p = 262682 \)
for \(n = 160788 + 3(p - 1)/6 \), i.e.,
for \(n = 660789 \).
The x_i's enter a cycle, typically within $\approx \sqrt{p}$ steps.

Example: 1000003, 262682.

1000003:

$x_1 = 5$

$x_2 = 5^2 = 262682$.

$x_3 = 5^{2^2} = 130596$.

$x_4 = 5^{2^3} = 652980$.

$x_5 = 5^{2^4} = 264891$.

$x_6 = 5^{2^5} = 324452$.

$x_7 = 5^{2^8} = 784500$.

$x_8 = 5^{2^9} = 922491$.

(Cycle length is 357.)

Conclude that

$x_{1785} = 5^{249847n + 759123} = 555013$.

$x_{3570} = 5^{388795n + 632781} = 555013$.

This is "Pollard's rho method."

Optimized:

Another method, similar speed:

"Pollard's kangaroo method."

Can parallelize both methods.

"van Oorschot/Wiener parallel DL using distinguished points."

Bottom line: With c mults, distributed across many cores, have chance of finding n from $5^n \mod p$.

With 2^{90} mults (a few years?), have chance of $2^{180} = p$.

Negligible if, e.g., $p \approx 2^{256}$.

The x_i's enter a cycle, typically within p steps.

Example: $1000003, 262682$.

Modulo 1000003:

$x_1 = 5$

$n = 262682$

$x_2 = 5^2n = 626121$.

$x_3 = 5^{2n+1} = 130596$.

$x_4 = 5^{2n+2} = 652980$.

$x_5 = 5^{2n+3} = 264891$.

$x_6 = 5^{2n+4} = 324452$.

$x_7 = 5^{4n+8} = 784500$.

$x_8 = 5^{4n+9} = 922491$.

(Cycle length is 357.)

Conclude that

$249847n + 759123 \equiv 388795n + 632781 \pmod{p - 1}$,

so $n \equiv 160788 \pmod{(p - 1)/6}$.

Only 6 possible n's.

Try each of them.

Find that $5^n \pmod{p} = 262682$

for $n = 160788 + 3(p - 1)/6$, i.e.,

for $n = 660789$.

This is “Pollard’s rho method.”

Optimized: $\approx \sqrt{p}$

Another method, similar speed:

“Pollard’s kangaroo method.”

Can parallelize both methods:

“van Oorschot/Wiener parallel DL using distinguished points.”

Bottom line: With c mults, distributed across many cores,

have chance $\approx c^2 / p$ of finding n from $5^n \pmod{p}$.

With 2^{90} mults (a few years?),

have chance $\approx 2^{18}$.

Negligible if, e.g., $p = 2^{256}$.

The x_i's enter a cycle, typically within p steps. Example: 1000003, 262682. Modulo 1000003:

$x_1 = 5$

$n = 262682$.

$x_2 = 5^2 n = 626121$.

$x_3 = 5^{2+1} n = 130596$.

$x_4 = 5^{2+2} n = 652980$.

$x_5 = 5^{2+3} n = 264891$.

$x_6 = 5^{2+4} n = 324452$.

$x_7 = 5^{4+8} n = 784500$.

$x_8 = 5^{4+9} n = 922491$.

etc.

(Cycle length is 357.)

Conclude that

$249847n + 759123 \equiv 262682 \pmod{p}$, so $n \equiv 160788 \pmod{(p - 1)/6}$.

Only 6 possible n's.

Try each of them.

Find that $5^n \pmod{p} = 262682$ for $n = 160788 + 3(p - 1)/6$, i.e., for $n = 660789$.

This is "Pollard’s rho method." Optimized: $\approx \sqrt{p}$ mults.

Another method, similar speed: "Pollard’s kangaroo method." Can parallelize both methods.

"van Oorschot/Wiener parallel DL using distinguished points."

Bottom line: With c mults, distributed across many cores, have chance $\approx c^2 / p$ of finding n from $5^n \pmod{p}$.

With 2^{90} mults (a few years?), have chance $\approx 2^{180} / p$.

Negligible if, e.g., $p \approx 2^{256}$.

$x_{1785} = 5^{249847n + 759123} = 555013.$

$x_{3570} = 5^{388795n + 632781} = 555013.$

This is “Pollard’s rho method.” Optimized: $\approx \sqrt{p}$ mults. Another method, similar speed: “Pollard’s kangaroo method.” Can parallelize both methods. “van Oorschot/Wiener parallel DL using distinguished points.” Bottom line: With c mults, distributed across many cores, have chance $\approx c^2 / p$ of finding n from $5^n \pmod{p}$. With 2^{90} mults (a few years?), have chance $\approx 2^{180} / p$. Negligible if, e.g., $p \approx 2^{256}$.

$121.$

$30596.$

$952980.$

$164891.$

$324500.$

$822491.$
\[x_{1785} = 5^{249847n+759123} = 555013.\]
\[x_{3570} = 5^{388795n+632781} = 555013.\]

(Cycle length is 357.)

Conclude that
\[249847n + 759123 \equiv 388795n + 632781 \pmod{p-1},\]
so \(n \equiv 160788 \pmod{(p-1)/6}.\)

Only 6 possible \(n \)'s.
Try each of them.
Find that \(5^n \mod p = 262682 \)
for \(n = 160788 + 3(p-1)/6, \) i.e.,
for \(n = 660789.\)

This is “Pollard’s rho method.”
Optimized: \(\approx \sqrt{p} \) mults.
Another method, similar speed:
“Pollard’s kangaroo method.”

Can parallelize both methods.
“van Oorschot/Wiener parallel DL using distinguished points.”

Bottom line: With \(c \) mults,
distributed across many cores,
have chance \(\approx c^2/p \)
of finding \(n \) from \(5^n \mod p.\)

With \(2^{90} \) mults (a few years?),
have chance \(\approx 2^{180}/p.\)
Negligible if, e.g., \(p \approx 2^{256}.\)
This is “Pollard’s rho method.”
Optimized: $\approx \sqrt{p}$ mults.
Another method, similar speed: “Pollard’s kangaroo method.”

Can parallelize both methods.
“van Oorschot/Wiener parallel DL using distinguished points.”

Bottom line: With c mults, distributed across many cores, have chance $\approx c^2/p$ of finding n from $5^n \mod p$.

With 2^{90} mults (a few years?), have chance $\approx 2^{180}/p$.
Negligible if, e.g., $p \approx 2^{256}$.

Factors of the group order
Assume 5 has order ab.

Given x, a power of 5:
5^a has order b, and x^a is a power of 5^b.
Compute $m = \log_5 (x = 5^b)$.
Then $x = 5^b + mb$.

5^b has order a, and $x/5^l$ is a power of 5^b.
Compute $m = \log_{5^b} (x/5^l)$.
Then $x = 5^b + mb$.
This is “Pollard’s rho method.” Optimized: $\approx \sqrt{p}$ mults.
Another method, similar speed: “Pollard’s kangaroo method.”

Can parallelize both methods. “van Oorschot/Wiener parallel DL using distinguished points.”

Bottom line: With c mults, distributed across many cores, have chance $\approx c^2/p$ of finding n from $5^n \mod p$.

With 2^{90} mults (a few years?), have chance $\approx 2^{180}/p$.
Negligible if, e.g., $p \approx 2^{256}$.

Factors of the group order
Assume 5 has order ab.
Given x, a power of 5:
5^a has order b, and x^a is a power of 5^a.
Compute $l = \log_{5^a} x$.
5^b has order a, and $x/5^l$ is a power of 5^b.
Compute $m = \log_{5^b} (x/5^l)$.
Then $x = 5^{l+mb}$.

Assume $5 \equiv 1 \pmod{p-1}$, $3 (p-1)/6$, i.e., $p = 262682$
Factors of the group order
Assume 5 has order \(ab \).

Given \(x \), a power of 5:

\[
5^a \text{ has order } b, \text{ and } x^a \text{ is a power of } 5^a.
\]

Compute \(\ell = \log_{5^a} x^a \).

\[
5^b \text{ has order } a, \text{ and } x/5^\ell \text{ is a power of } 5^b.
\]

Compute \(m = \log_{5^b}(x/5^\ell) \).

Then \(x = 5^\ell + mb \).

This is “Pollard's rho method.”
Optimized: \(\approx \sqrt{p} \) mults.

Another method, similar speed:

“Pollard's kangaroo method.”

Can parallelize both methods.

“van Oorschot/Wiener parallel DL using distinguished points.”

Bottom line: With \(c \) mults, distributed across many cores, have chance \(\approx c^2/p \)
of finding \(n \) from \(5^n \mod p \).

With \(2^{90} \) mults (a few years?), have chance \(\approx 2^{180}/p \).

Negligible if, e.g., \(p \approx 2^{256} \).
This is “Pollard’s rho method.”
Optimized: \(\approx \sqrt{p} \) mults.
Another method, similar speed:
“Pollard’s kangaroo method.”
Can parallelize both methods.
“van Oorschot/Wiener parallel DL using distinguished points.”

Bottom line: With \(c \) mults, distributed across many cores, have chance \(\approx c^2/p \) of finding \(n \) from \(5^n \mod p \).

With \(2^{90} \) mults (a few years?), have chance \(\approx 2^{180}/p \).
Negligible if, e.g., \(p \approx 2^{256} \).

Factors of the group order
Assume 5 has order \(ab \).
Given \(x \), a power of 5:
\(5^a \) has order \(b \), and \(x^a \) is a power of \(5^a \).
Compute \(\ell = \log_{5^a} x^a \).
\(5^b \) has order \(a \), and \(x/5^\ell \) is a power of \(5^b \).
Compute \(m = \log_{5^b} (x/5^\ell) \).
Then \(x = 5^{\ell+mb} \).
“Pollard’s rho method.”

Optimized: \(\approx \sqrt{p} \) mults.

Another method, similar speed:

“Pollard’s kangaroo method.”

Can parallelize both methods.

van Oorschot/Wiener parallel DL using distinguished points.”

Bottom line: With \(c^{2} \) mults,
distributed across many cores,
have chance \(c^{2} / p \)
of finding \(n \) from \(5^{n} \) mod \(p \).

With \(2^{90} \) mults (a few years?),
have chance \(2^{180} / p \).

Negligible if, e.g., \(p = 2^{256} \).

Factors of the group order

Assume 5 has order \(ab \).

Given \(x \), a power of 5:

\(5^{a} \) has order \(b \), and
\(x^{a} \) is a power of \(5^{a} \).

Compute \(\ell = \log_{5^{a}} x^{a} \).

\(5^{b} \) has order \(a \), and
\(x/5^{\ell} \) is a power of \(5^{b} \).

Compute \(m = \log_{5^{b}} (x/5^{\ell}) \).

Then \(x = 5^{\ell + mb} \).

This “Pohlig-Hellman method” converts an order- \(ab \) DL into an order- \(a \) DL, an order- \(b \) DL,

and a few exponentiations.

e.g. \(p = 1000003 \), \(x = 262682 \):

\(p - 1 = 160787 \times 6101 \).

Compute \(\log_{5} 160787 \).

Compute \(\log_{5} 6101 \).

Then \(x = 1000002 \).

Use rho:

Better if \(ab \) factors further:
avoid Pohlig-Hellman recursively.
This is “Pollard’s rho method.”

Optimized:

\[p \] mults.

Another method, similar speed:

“Pollard’s kangaroo method.”

Can parallelize both methods.

“van Oorschot/Wiener parallel DL using distinguished points.”

Bottom line: With \(c \) mults, distributed across many cores, have chance \(c^2 = p \) of finding \(n \) from \(5^n \mod p \).

With \(2^{90} \) mults (a few years?), have chance \(2^{180} = p \).

Negligible if, e.g., \(p \approx 2^{256} \).

This “Pohlig-Hellman method” converts an order-\(ab \) DL into an order-\(a \) DL, an order-\(b \) DL, and a few exponentiations.

e.g. \(p = 1000003 \), \(x = 262682 \):

\(p - 1 = 6b \) where \(b = 166667 \).

Compute \(\log_{5^6} (x^6) = 160788 \).

Compute \(x = 5^{160788} = 1000002 \).

Compute \(\log_{5^b} 1000002 = 3 \).

Then \(x = 5^{160788 + 3b} = 5^{660789} \).

Use rho: \(\approx \sqrt{a} + \sqrt{b} \).

Better if \(ab \) factors further:

apply Pohlig-Hellman recursively.

Factors of the group order

Assume 5 has order \(ab \).

Given \(x \), a power of 5:

\(5^a \) has order \(b \), and \(x^a \) is a power of \(5^a \).

Compute \(\ell = \log_{5^a} x^a \).

\(5^b \) has order \(a \), and \(x/5^\ell \) is a power of \(5^b \).

Compute \(m = \log_{5^b} (x/5^\ell) \).

Then \(x = 5^{\ell + mb} \).
Factors of the group order

Assume 5 has order \(ab \).

Given \(x \), a power of 5:

5\(^a\) has order \(b \), and
\(x^a \) is a power of 5\(^a\).

Compute \(\ell = \log_{5^a} x^a \).

5\(^b\) has order \(a \), and
\(x/5^{\ell} \) is a power of 5\(^b\).

Compute \(m = \log_{5^b} (x/5^{\ell}) \).

Then \(x = 5^{\ell+m}b \).

This “Pohlig-Hellman method” converts an order-\(ab \) DL into an order-\(a \) DL, an order-\(b \) DL, and a few exponentiations.

e.g. \(p = 1000003 \), \(x = 262682 \):

\(p - 1 = 6b \) where \(b = 166667 \).

Compute \(\log_{5^6} (x^6) = 160788 \).

Compute \(x/5^{160788} = 1000002 \).

Compute \(\log_{5^b} 1000002 = 3 \).

Then \(x = 5^{160788+3b} = 5^{660789} \).

Use rho: \(\approx \sqrt{a} + \sqrt{b} \) mults.

Better if \(ab \) factors further:

apply Pohlig-Hellman recursively.
Factors of the group order

Assume 5 has order ab.

Given x, a power of 5:

5^a has order b, and
x^a is a power of 5^a.
Compute $l = \log_{5^a} x^a$.

5^b has order a, and
$x/5^l$ is a power of 5^b.
Compute $m = \log_{5^b}(x/5^l)$.

Then $x = 5^l + mb$.

This “Pohlig-Hellman method” converts an order-\(ab\) DL into an order-\(a\) DL, an order-\(b\) DL, and a few exponentiations.

e.g. $p = 1000003$, $x = 262682$:
$p − 1 = 6b$ where $b = 166667$.
Compute $\log_{5^6}(x^6) = 160788$.
Compute $x/5^{160788} = 1000002$.
Compute $\log_{5^b} 1000002 = 3$.
Then $x = 5^{160788+3b} = 5^{660789}$.

Use rho: $\approx \sqrt{a} + \sqrt{b}$ mults.
Better if \(ab\) factors further:
apply Pohlig-Hellman recursively.
Factors of the group order
Assume 5 has order ab.

Given x, a power of 5:

5\(^a\) has order b, and
x\(^a\) is a power of 5\(^b\).
Compute \(\ell = \log_{5^a} x^a\).

5\(^b\) has order a, and
x= 5\(^b\) is a power of 5\(^a\).
Compute \(m = \log_{5^b}(x/5^\ell)\).

Then \(x = 5^\ell + mb\).

This “Pohlig-Hellman method” converts an order-ab DL into an order-a DL, an order-b DL, and a few exponentiations.

e.g. \(p = 1000003, x = 262682: p - 1 = 6b\) where \(b = 166667\).
Compute \(\log_{5^6}(x^6) = 160788\).
Compute \(x/5^{160788} = 1000002\).
Compute \(\log_{5^b}1000002 = 3\).
Then \(x = 5^{160788 + 3b} = 5^{660789}\).

Use rho: \(\approx \sqrt{a} + \sqrt{b}\) mults.
Better if ab factors further: apply Pohlig-Hellman recursively.

All of the techniques so far apply to elliptic curves.

An elliptic curve over \(F_q\) has \(\approx q\) points, so can compute ECDL \(\approx \sqrt{q}\) elliptic-curve adds.
Need quite large \(q\).

If largest prime divisor of number of points is much smaller than \(q\), then Pohlig-Hellman method computes ECDL more quickly.
Need larger \(q\); or change choice of curve.
This “Pohlig-Hellman method” converts an order-\(ab\) DL into an order-\(a\) DL, an order-\(b\) DL, and a few exponentiations.

Given \(x\), a power of 5:
- \(5^a\) has order \(b\), and \(x^a\) is a power of 5.
- \(5^b\) has order \(a\), and \(x=5^b\) is a power of 5.

Compute \(m = \log_{5^b}(x=5^b)\).

Then \(x = 5^a + mb\).

All of the techniques so far apply to elliptic curves.

An elliptic curve over \(F_q\) has \(\approx q + 1\) points, so can compute ECDL using \(q\) elliptic-curve adds.

If largest prime divisor of number of points is much smaller than \(q\), then Pohlig-Hellman computes ECDL more quickly.

Need quite large \(q\); or change choice of curve.

Use rho: \(\approx \sqrt{a} + \sqrt{b}\) mults.
Better if \(ab\) factors further: apply Pohlig-Hellman recursively.
This “Pohlig-Hellman method” converts an order-ab DL into an order-a DL, an order-b DL, and a few exponentiations.

e.g. $p = 1000003$, $x = 262682$:
$p - 1 = 6b$ where $b = 166667$.
Compute $\log_{5^6}(x^6) = 160788$.
$\log_{5^6} x / 5^{160788} = 1000002$.
Compute $\log_{5^6} 1000002 = 3$.
Then $x = 5^{160788 + 3b} = 5^{660789}$.

Use rho: $\approx \sqrt{a} + \sqrt{b}$ mults.
Better if ab factors further:
apply Pohlig-Hellman recursively.

All of the techniques so far apply to elliptic curves.

An elliptic curve over \mathbb{F}_q has $\approx q + 1$ points so can compute ECDL using $\approx \sqrt{q}$ elliptic-curve adds.

Need quite large q.

If largest prime divisor of number of points is much smaller than q then Pohlig-Hellman method computes ECDL more quickly.

Need larger q; or change choice of curve.
This “Pohlig-Hellman method” converts an order-ab DL into an order-a DL, an order-b DL, and a few exponentiations.

e.g. $p = 1000003$, $x = 262682$: $p - 1 = 6b$ where $b = 166667$.
Compute $\log_{5^6}(x^6) = 160788$.
Compute $x/5^{160788} = 1000002$.
Compute $\log_{5^b} 1000002 = 3$.
Then $x = 5^{160788+3b} = 5^{660789}$.

Use rho: $\approx \sqrt{a} + \sqrt{b}$ mults.
Better if ab factors further:
apply Pohlig-Hellman recursively.

All of the techniques so far apply to elliptic curves.

An elliptic curve over \mathbf{F}_q has $\approx q + 1$ points
so can compute ECDL using $\approx \sqrt{q}$ elliptic-curve adds.
Need quite large q.

If largest prime divisor of number of points is much smaller than q
then Pohlig-Hellman method computes ECDL more quickly.
Need larger q;
or change choice of curve.
The "Pohlig-Hellman method" converts an order-ab DL into an order-a DL, an order-b DL, and a few exponentiations.

For example, let $p = 1000003$, $x = 262682$:

Then $6b = 166667$.

Compute $\log_5 6(x^6) = 160788$.

Then $\log_5 6(x^6) = 1000002$.

Compute $\log_5 b 1000002 = 3$.

Then $\log_5 b 1000002 = 5^{160788+3b} = 5^{660789}$.

All of the techniques so far apply to elliptic curves.

An elliptic curve over \mathbb{F}_q has $\approx q + 1$ points

so can compute ECDL using $\approx \sqrt{q}$ elliptic-curve adds.

Need quite large q.

If largest prime divisor of number of points is much smaller than q then Pohlig-Hellman method computes ECDL more quickly. Need larger q; or change choice of curve.

Index calculus

Have generated many group elements $5^{an} + b \mod p$.

Deduced equations for n from random collisions.

Index calculus obtains discrete-logarithm equations in a different way.

Example for $p = 1000003$:

Can completely factor $3^1 = 3$ as $2^6 5^6$, so $-3^{1}/(p - 1) = 1$.

so $\log_5 (8) - 6 \log_5 2 - 6 \log_5 5$.

Any of the techniques so far apply to elliptic curves.

An elliptic curve over \mathbb{F}_q has $\approx q + 1$ points so can compute ECDL using $\approx \sqrt{q}$ elliptic-curve adds.

Need quite large q.

If largest prime divisor of number of points is much smaller than q then Pohlig-Hellman method computes ECDL more quickly. Need larger q; or change choice of curve.
This "Pohlig-Hellman method" converts an order-ab DL into an order-a DL, an order-b DL, and a few exponentiations.

\[x = 262682: \]
\[b = 166667. \]
\[a \cdot b \cdot \text{mults.} \]
\[b^x = 1000002. \]
\[3^x = 2660789. \]

All of the techniques so far apply to elliptic curves.

An elliptic curve over \(F_q \) has \(\approx q + 1 \) points so can compute ECDL using \(\approx \sqrt{q} \) elliptic-curve adds.

Need quite large \(q \).

If largest prime divisor of number of points is much smaller than \(q \) then Pohlig-Hellman method computes ECDL more quickly.

Need larger \(q \); or change choice of curve.

Index calculus:

Have generated many group elements \(5^a + b \mod p \).

Deduced equations for \(n \) from random collisions.

Index calculus obtains discrete-logarithm equations in a different way.

Example for \(p = 1000003 \):

Can completely factor \(-3/(p - 3) \) as \(-3^1 \).

so \(-3^1 \equiv 2^6 5^6 \) (mod \(p \)) so \(\log_5(-1) + \log_5 2 + 6 \log_5 2 + 6 \log_5 5 \)
This “Pohlig-Hellman method” converts an order-ab DL into an order-a DL, an order-b DL, and a few exponentiations.

For example, let $p = 1000003$, $x = 262682$.

Compute $\log_5 6^{160788} = 1000002$.

Compute $\log_5 b^{160788+3} = \log_5 b^{660789}$.

Use rho: $p^a + p^b$ mults.

Better if ab factors further: apply Pohlig-Hellman recursively.

All of the techniques so far apply to elliptic curves.

An elliptic curve over \mathbb{F}_q has $\approx q + 1$ points so can compute ECDL using $\approx \sqrt{q}$ elliptic-curve adds.

Need quite large q.

If largest prime divisor of number of points is much smaller than q then Pohlig-Hellman method computes ECDL more quickly.

Need larger q; or change choice of curve.

Index calculus

Have generated many group elements $5^{an+b} \mod p$.

Deduced equations for n from random collisions.

Index calculus obtains discrete-logarithm equations in a different way.

Example for $p = 1000003$: Can completely factor $-3/(p - 3)$ as $-3^1/2^65^6$ in $\mathbb{Z}/p\mathbb{Z}$ so $-3^1 \equiv 2^65^6 \pmod{p}$.

So $\log_5(-1) + \log_5 3 \equiv 6 \log_5 2 + 6 \log_5 5 \pmod{p + 1}$.
All of the techniques so far apply to elliptic curves.

An elliptic curve over \mathbb{F}_q has $q + 1$ points so can compute ECDL using $\approx \sqrt{q}$ elliptic-curve adds.

Need quite large q.

If largest prime divisor of number of points is much smaller than q then Pohlig-Hellman method computes ECDL more quickly.

Need larger q; or change choice of curve.

Index calculus

Have generated many group elements $5^{an+b} \mod p$.

Deduced equations for n from random collisions.

Index calculus obtains discrete-logarithm equations in a different way.

Example for $p = 1000003$:

Can completely factor $-3/(p - 3)$ as $-3^1/2^6 5^6$ in \mathbb{Q} so $-3^1 \equiv 2^6 5^6 \pmod{p}$.

so $\log_5(-1) + \log_5 3 \equiv 6 \log_5 2 + 6 \log_5 5 \pmod{p - 1}$.
All of the techniques so far apply to elliptic curves. An elliptic curve over \mathbb{F}_q has $q + 1$ points so can compute ECDL using elliptic-curve adds. Need quite large q. If largest prime divisor of number of points is much smaller than q then Pohlig-Hellman method computes ECDL more quickly. Need larger q; or change choice of curve.

Index calculus

Have generated many group elements $5^{an+b} \mod p$. Deduced equations for n from random collisions.

Index calculus obtains discrete-logarithm equations in a different way.

Example for $p = 1000003$:

Can completely factor $62 = (p + 62)$ as 2^131^1

so $\log_5 2 + \log_5 31

Try to completely factor $1/(p + 1)$ etc.

Find factorization of $a=p+a$ as product of powers of $2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31$ for each of the following a’s:

5100, 4675, 3128, 403, 368, 147, 3, 62, 957, 2912, 3857, 6877.
Index calculus

Have generated many group elements $5^{an+b} \mod p$. Deduced equations for n from random collisions.

Index calculus obtains discrete-logarithm equations in a different way.

Example for $p = 1000003$:
Can completely factor $-3/(p - 3)$ as $-3^1/2^65^6$ in \mathbb{Q} so $-3^1 \equiv 2^65^6 \pmod{p}$ so $\log_5(-1) + \log_5 3 \equiv 6\log_5 2 + 6\log_5 5 \pmod{p - 1}$.

Try to completely factor $1/(p + 1), 2/(p + 1)$, Find factorization as product of powers of $2, 3, 5, 7, 11, 13, 17$ for each of the following:

Can completely factor 62 as $2^13^1/3^15^111^2$ so $\log_5 2 + \log_5 31 + \log_5 3 + \log_5 5 + 2\log_5 11 + \log_5 19 + \log_5 29$.

5100, 4675, 3128, 403, 368, 147, 3, 62, 957, 2912, 3857, 6877.
Index calculus
Have generated many group elements $5^{an+b} \mod p$.
Deduced equations for n from random collisions.

Index calculus obtains discrete-logarithm equations in a different way.

Example for $p = 1000003$:
Can completely factor $-3/(p - 3)$ as $-3^1/2^6 5^6$ in \mathbb{Q}
so $-3^1 \equiv 2^6 5^6 \pmod{p}$
so $\log_5(-1) + \log_5 3 \equiv 6 \log_5 2 + 6 \log_5 5 \pmod{p - 1}$.

Can completely factor $62/(p + 62)$ as $2^1 3^1 5^1 11^2 19^1 29^1$
so $\log_5 2 + \log_5 31 \equiv \log_5 3 + \log_5 5 + 2 \log_5 11 + \log_5 19 + \log_5 29 \pmod{p - 1}$.

Try to completely factor $1/(p + 1)$, $2/(p + 2)$, etc.
Find factorization of $a/(p + a)$ as product of powers of $-1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29$ for each of the following a's:
$-5100, -4675, -3128, -403, -368, -147, -3, 62, 957, 2912, 3857, 6877$.

All of the techniques so far apply to elliptic curves.
An elliptic curve over F_q has $q + 1$ points so can compute ECDL using elliptic-curve adds.

Need quite large q.
If largest prime divisor of number of points is much smaller than q then Pohlig-Hellman method computes ECDL more quickly.

Need larger q; or change choice of curve.
Index calculus

Have generated many group elements $5^{an+b} \mod p$. Deduced equations for n from random collisions.

Index calculus obtains discrete-logarithm equations in a different way.

Example for $p = 1000003$:

Can completely factor $62 = (p + 62)$ as $2^1 31^1 / 3^1 5^1 11^2 19^1 29^1$
so $\log_5 2 + \log_5 31 \equiv \log_5 3 + \log_5 5 + 2 \log_5 11 + \log_5 19 + \log_5 29 \pmod{p - 1}$.

Try to completely factor $1/(p + 1), 2/(p + 2)$, etc.

Find factorization of $a/(p + a)$ as product of powers of $-1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31$
for each of the following a's:

$-5100, -4675, -3128, -403, -368, -147, -3, 62, 957, 2912, 3857, 6877$.

Can completely factor $62/(p + 62)$ as $2^1 31^1 / 3^1 5^1 11^2 19^1 29^1$
so $\log_5 2 + \log_5 31 \equiv \log_5 3 + \log_5 5 + 2 \log_5 11 + \log_5 19 + \log_5 29 \pmod{p - 1}$.
Index calculus

Have generated many group elements $5^{an+b} \mod p$.

Deduced equations for n from random collisions.

Index calculus obtains discrete-logarithm equations in a different way.

Example for $p = 1000003$:

Can completely factor $62/(p + 62)$ as $2^131^1/3^15^111^219^129^1$

so $\log_5 2 + \log_5 31 \equiv \log_5 3 + \log_5 5 + 2 \log_5 11 + \log_5 19 + \log_5 29 \pmod{p - 1}$.

Try to completely factor $1/(p + 1), 2/(p + 2)$, etc.

Find factorization of $a/(p + a)$ as product of powers of $-1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31$ for each of the following a's:

$-5100, -4675, -3128, -403, -368, -147, -3, 62, 957, 2912, 3857, 6877$.

Each complete factorization produces a log equation.

Now have 12 linear equations for $\log_5 2, \log_5 3, \ldots$:

Free equations: $\log_5 5 = 1$, $\log_5 (-1) + \log_5 3 \equiv -1 + 6 \log_5 5 \pmod{p - 1}$.

By linear algebra compute $\log_5 2, \log_5 3, \ldots$.

(If this hadn't been enough, could have searched more a's.)

By similar technique obtain discrete log of any target.
Index calculus

Have generated many group elements \(n + b \mod p \).

Deduced equations for \(n \) from random collisions.

Index calculus obtains discrete-logarithm equations in a different way.

Example for \(p = 1000003 \):

Can completely factor \(62/(p + 62) \) as \(2^13^11^15^111^219^129^1 \)

so \(\log_5 2 + \log_5 31 \equiv \)

\(\log_5 3 + \log_5 5 + 2\log_5 11 + \)

\(\log_5 19 + \log_5 29 \pmod{p - 1}. \)

Try to completely factor \(1/(p + 1), 2/(p + 2), \) etc.

Find factorization of \(a/(p + a) \) as product of powers of \(-1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31 \)

for each of the following \(a \)'s:

\(-5100, -4675, -3128, -403, -368, -147, -3, 62, 957, 2912, 3857, 6877.\)

Each complete factorization produces a log equation.

Now have 12 linear equations for \(\log_5 2, \log_5 3, \ldots \).

Free equations: \(\log_5(-1) = (p - 1) \).

By linear algebra compute \(\log_5 2, \log_5 3, \ldots, \log_5 31. \)

(If this hadn’t been enough, could have searched more \(a \)'s.)

By similar technique obtain discrete log of any target.
Each complete factorization produces a log equation.

Now have 12 linear equations for log₅ 2, log₅ 3, ..., log₅ 31.

Free equations: log₅ 5 = 1, log₅ (−1) = (p − 1)/2.

By linear algebra compute log₅ 2, log₅ 3, ..., log₅ 31.

(If this hadn’t been enough, could have searched more a’s.)

By similar technique obtain discrete log of any target.

Can completely factor 62/(p + 62) as 2¹3¹1¹/3¹5¹1¹2¹19¹29¹
so log₅ 2 + log₅ 31 ≡ log₅ 3 + log₅ 5 + 2 log₅ 11 + log₅ 19 + log₅ 29 (mod p − 1).

Try to completely factor
1/(p + 1), 2/(p + 2), etc.
Find factorization of a/(p + a) as product of powers of −1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31 for each of the following a’s:
−5100, −4675, −3128, −403, −368, −147, −3, 62, 957, 2912, 3857, 6877.
Can completely factor $62/(p + 62)$ as $2^131^1/3^15^111^219^129^1$
so $\log_5 2 + \log_5 31 \equiv
\log_5 3 + \log_5 5 + 2 \log_5 11 +
\log_5 19 + \log_5 29 \pmod{p - 1}$.

Try to completely factor
$1/(p + 1), 2/(p + 2)$, etc.
Find factorization of $a/(p + a)$
as product of powers of $-1,$ $2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31$
for each of the following a's:
$-5100, -4675, -3128,$
$-403, -368, -147, -3,$
$62, 957, 2912, 3857, 6877.$

Each complete factorization
produces a log equation.
Now have 12 linear equations
for $\log_5 2, \log_5 3, \ldots, \log_5 31$.
Free equations: $\log_5 5 = 1,$
$\log_5(-1) = (p - 1)/2$.

By linear algebra compute
$\log_5 2, \log_5 3, \ldots, \log_5 31$.
(If this hadn’t been enough,
could have searched more a’s.)

By similar technique obtain
discrete log of any target.
Can completely factor $62/(p + 62)$ as $3^{1}5^{1}11^{1}19^{1}29^{1}$.

Each complete factorization produces a log equation.

Now have 12 linear equations for $\log_{5} 2, \log_{5} 3, \ldots, \log_{5} 31$.
Free equations: $\log_{5} 2 = 1$, $\log_{5} (-1) = (p - 1)/2$.
By linear algebra compute $\log_{5} 2; \log_{5} 3; \ldots; \log_{5} 31$.

For $p \rightarrow \infty$, index calculus scales surprisingly well: cost p^{e} with $e < 0$.

Each complete factorization produces a log equation.

Now have 12 linear equations for $\log_{5} 2, \log_{5} 3, \ldots, \log_{5} 31$.
Free equations: $\log_{5} 2 = 1$, $\log_{5} (-1) = (p - 1)/2$.
By linear algebra compute $\log_{5} 2, \log_{5} 3, \ldots, \log_{5} 31$.

By similar technique obtain discrete log of any target.

For $p \rightarrow \infty$, index calculus scales surprisingly well: cost p^{e} with $e < 0$.

Specifically: searching $a \in \{-1, 2, 3, \ldots, y\}$ finds y complete factorizations into primes and computes discrete logs.

(If this hadn’t been enough, could have searched more a’s.)

By similar technique obtain discrete log of any target.

(If this hadn’t been enough, could have searched more a’s.)

By similar technique obtain discrete log of any target.

(If this hadn’t been enough, could have searched more a’s.)

By similar technique obtain discrete log of any target.

(If this hadn’t been enough, could have searched more a’s.)

By similar technique obtain discrete log of any target.

(If this hadn’t been enough, could have searched more a’s.)

By similar technique obtain discrete log of any target.

(If this hadn’t been enough, could have searched more a’s.)

By similar technique obtain discrete log of any target.

(If this hadn’t been enough, could have searched more a’s.)

By similar technique obtain discrete log of any target.

(If this hadn’t been enough, could have searched more a’s.)

By similar technique obtain discrete log of any target.

(If this hadn’t been enough, could have searched more a’s.)
Can completely factor $62 = (p + 62)$ as $2^1 3^1 5^1 11^2 19^1 29^1$.

$1 \equiv 2 \log_5 11 + \ldots \pmod{p - 1}$.

Each complete factorization produces a log equation.

Now have 12 linear equations for $\log_5 2, \log_5 3, \ldots, \log_5 31$.

Free equations: $\log_5 5 = 1$, $\log_5(-1) = (p - 1)/2$.

By linear algebra compute $\log_5 2, \log_5 3, \ldots, \log_5 31$.

(If this hadn’t been enough, could have searched more a’s.)

By similar technique obtain discrete log of any target.

For $p \to \infty$, index calculus scales surprisingly well: cost p^ϵ where $\epsilon \to 0$.

Compare to rho: $a^2 = 2^1$.

Specifically: searching $a \in \{1, 2, \ldots, y^2\}$ for $\log_5 2, \log_5 3, \ldots, \log_5 31$ finds y complete factorizations into primes $\leq y$, and computes discrete logs.

(Assuming standard conjectures. Have extensive evidence.)

For $p \to 1$, index calculus scales surprisingly well: $\text{cost } p^n$ where $n \to 0$.

Compare to rho: $a^2 = 2^1$.

Specifically: searching $a \in \{1, 2, \ldots, y^2\}$ for $\log_5 2, \log_5 3, \ldots, \log_5 31$ finds y complete factorizations into primes $\leq y$, and computes discrete logs.

(Assuming standard conjectures. Have extensive evidence.)
Each complete factorization produces a log equation.

Now have 12 linear equations for \(\log_5 2, \log_5 3, \ldots, \log_5 31. \)

Free equations: \(\log_5 5 = 1, \)
\(\log_5(-1) = (p - 1)/2. \)

By linear algebra compute \(\log_5 2, \log_5 3, \ldots, \log_5 31. \)

(If this hadn’t been enough, could have searched more \(\alpha \)’s.)

By similar technique obtain discrete log of any target.

For \(p \to \infty, \) index calculus scales surprisingly well: cost \(p^\epsilon \) where \(\epsilon \to 0. \)

Compare to rho: \(\approx p^{1/2}. \)

Specifically: searching \(\alpha \in \{1, 2, \ldots, y^2\}, \) with \(\lg y \in O(\sqrt{\lg p \lg \lg p}), \)
finds \(y \) complete factorizations into primes \(\leq y, \)
and computes discrete logs.

(Assuming standard conjectures. Have extensive evidence.)
Each complete factorization produces a log equation.

Now have 12 linear equations for $\log_5 2, \log_5 3, \ldots, \log_5 31$.
Free equations: $\log_5 5 = 1, \log_5 (-1) = (p - 1)/2$.

By linear algebra compute $\log_5 2, \log_5 3, \ldots, \log_5 31$.

(If this hadn’t been enough, could have searched more a’s.)

By similar technique obtain discrete log of any target.

For $p \to \infty$, index calculus scales surprisingly well:
$\text{cost } p^\epsilon$ where $\epsilon \to 0$.

Compare to rho: $\approx p^{1/2}$.

Specifically: searching $a \in \{1, 2, \ldots, y^2\}$, with $\lg y \in O(\sqrt{\lg p \lg \lg p})$, finds y complete factorizations into primes $\leq y$, and computes discrete logs.

(Assuming standard conjectures. Have extensive evidence.)
Each complete factorization produces a log equation.

Now have 12 linear equations for log \(5^2, \log_5 3, \ldots, \log_5 31\).

By linear algebra compute \(\log_5 2, \log_5 3; \ldots\).

If this hadn’t been enough, could have searched more \(a\)’s.

By similar technique obtain discrete log of any target.

For \(p \to \infty\), index calculus scales surprisingly well:
\[
\text{cost } p^\epsilon \text{ where } \epsilon \to 0.
\]

Compare to rho: \(\approx p^{1/2}\).

Specifically: searching \(a \in \{1, 2, \ldots, y^2\}\), with
\[
\lg y \in O\left(\sqrt{\lg p \lg \lg p}\right),
\]
finds \(y\) complete factorizations into primes \(\leq y\),
and computes discrete logs.

(Assuming standard conjectures. Have extensive evidence.)

Latest index-calculus variants use the “number-field sieve”
and the “function-field sieve.”

To compute \(\lg 2^{128}\) the cost is \(\in O\left((\lg q)/3\right)^{1/3}\).

For security:
\(q \approx 2^{256}\) to stop rho; \(q \approx 2^{2048}\) to stop NFS.

We don’t know any index-calculus methods for ECDL!

\[\cdots\] except for some curves.
Each complete factorization produces a log equation.

Now have 12 linear equations for \(\log_5 2 \); \(\log_5 3 \); \ldots; \(\log_5 31 \).

Free equations: \(\log_5 5 = 1 \), \(\log_5 (\frac{1}{2}) = \frac{1}{2} \).

By linear algebra compute \(\log_5 2 \); \(\log_5 3 \); \ldots; \(\log_5 31 \).

(If this hadn’t been enough, could have searched more \(a \)’s.)

By similar technique obtain discrete log of any target.

For \(p \to \infty \), index calculus scales surprisingly well:
\[
\text{cost } p^\epsilon \quad \text{where } \epsilon \to 0.
\]

Compare to rho: \(\approx p^{1/2} \).

Specifically: searching \(a \in \{1, 2, \ldots, y^2\} \), with \(\lg y \in O(\sqrt{\lg p \lg \lg p}) \), finds \(y \) complete factorizations into primes \(\leq y \), and computes discrete logs.

(Assuming standard conjectures. Have extensive evidence.)

Latest index-calculus variants use the “number-field sieve” and the “function-field sieve.”

To compute discrete logs in \(\text{F}_q \):
\[
\lg \text{cost} \in O((\lg q)^{1/3}(\lg \lg q)).
\]

For security:
\(q \approx 2^{256} \) to stop rho;
\(q \approx 2^{2048} \) to stop NFS.

We don’t know any index-calculus methods for ECDL! … except for some.
For $p \to \infty$, index calculus scales surprisingly well:
\[\text{cost } p^\epsilon \text{ where } \epsilon \to 0. \]

Compare to rho: \(\approx p^{1/2} \).

Specifically: searching
\[a \in \{1, 2, \ldots, y^2\}, \]
with
\[\lg y \in O(\sqrt{\lg p \lg \lg p}), \]
finds y complete factorizations into primes \(\leq y \),
and computes discrete logs.

(Assuming standard conjectures. Have extensive evidence.)

Latest index-calculus variants use the “number-field sieve” and the “function-field sieve.”

To compute discrete logs in \(\mathbb{F}_q \):
\[\lg \text{cost } \in O((\lg q)^{1/3}(\lg \lg q)^{2/3}). \]

For security:
\[q \approx 2^{256} \text{ to stop rho; } \]
\[q \approx 2^{2048} \text{ to stop NFS.} \]

We don’t know any index-calculus methods for ECDL!
\[\text{... except for some curves.} \]
For $p \rightarrow \infty$, index calculus scales surprisingly well:
\[\text{cost } p^\epsilon \text{ where } \epsilon \rightarrow 0. \]

Compare to rho: $\approx p^{1/2}$.

Specifically: searching $a \in \{1, 2, \ldots, y^2\}$, with
\[\lg y \in O(\sqrt{\lg p \lg \lg p}), \]
finds y complete factorizations into primes $\leq y$,
and computes discrete logs.

(Assuming standard conjectures. Have extensive evidence.)

Latest index-calculus variants use the “number-field sieve”
and the “function-field sieve.”

To compute discrete logs in \mathbb{F}_q:
\[\lg \text{cost} \in O((\lg q)^{1/3} (\lg \lg q)^{2/3}). \]

For security:
$q \approx 2^{256}$ to stop rho;
$q \approx 2^{2048}$ to stop NFS.

We don’t know any
index-calculus methods for ECDL!
\[\ldots \text{ except for some curves.} \]