Elliptic curves
over \mathbb{R} and \mathbb{F}_q

D. J. Bernstein
University of Illinois at Chicago
Why elliptic curves?

Can quickly compute
\[4^n \mod 2^{262} - 5081 \]
given \(n \in \{0, 1, 2, \ldots, 2^{256} - 1\} \).

Similarly, can quickly compute
\[4^{mn} \mod 2^{262} - 5081 \]
given \(n \) and \(4^m \mod 2^{262} - 5081 \).

“Discrete-logarithm problem”: given \(4^n \mod 2^{262} - 5081 \), find \(n \). Is this easy to solve?
Diffie-Hellman secret-sharing system using $p = 2^{262} - 5081$:

Alice’s secret key m

Alice’s public key $4^m \mod p$

{Alice, Bob}’s shared secret $4^{mn} \mod p$

Can attacker find $4^{mn} \mod p$?
Bad news: DLP can be solved at surprising speed! Attacker can find \(m \) and \(n \) by “index calculus.”

To protect against this attack, replace \(2^{262} - 5081 \) with a much larger prime. *Much* slower arithmetic.

Alternative: Elliptic-curve cryptography. Replace \(\{1, 2, \ldots, 2^{262} - 5082\} \) with a comparable-size “safe elliptic-curve group.” *Somewhat* slower arithmetic.
An elliptic curve over \mathbb{R}

Consider all pairs of real numbers x, y such that $y^2 - 5xy = x^3 - 7$.

The “points on the elliptic curve $y^2 - 5xy = x^3 - 7$ over \mathbb{R}” are those pairs and one additional point, ∞.

i.e. The set of points is

\[\{(x, y) \in \mathbb{R} \times \mathbb{R} : y^2 - 5xy = x^3 - 7\} \cup \{\infty\}. \]

(\mathbb{R} is the set of real numbers.)
Graph of this set of points:

Don’t forget ∞.

Visualize ∞ as top of y axis.
There is a standard definition of $0, -, +$ on this set of points.

Magical fact: The set of points is a “commutative group”; i.e., these operations $0, -, +$ satisfy every identity satisfied by \mathbb{Z}.

e.g. All $P, Q, R \in \mathbb{Z}$ satisfy $(P + Q) + R = P + (Q + R)$, so all curve points P, Q, R satisfy $(P + Q) + R = P + (Q + R)$.

(\mathbb{Z} is the set of integers.)
Visualizing the group law

\[0 = \infty; \quad -\infty = \infty. \]

Distinct curve points \(P, Q \) on a vertical line have \(-P = Q;\)
\[P + Q = 0 = \infty. \]

A curve point \(R \) with a vertical tangent line has \(-R = R;\)
\[R + R = 0 = \infty. \]
\[-P = Q, \ -Q = P, \ -R = R: \]
Distinct curve points P, Q, R on a line have $P + Q = -R$; $P + Q + R = 0 = \infty$.

Distinct curve points P, R on a line tangent at P have $P + P = -R$; $P + P + R = 0 = \infty$.

A non-vertical line with only one curve point P has $P + P = -P$; $P + P + P = 0$.
$P + Q = -R$:
$P + P = -R$:
Curve addition formulas

Easily find formulas for \(+ \) by finding formulas for lines and for curve-line intersections.

\(x \neq x': (x, y) + (x', y') = (x'', y'') \)

where \(\lambda = (y' - y)/(x' - x) \),
\(x'' = \lambda^2 - 5\lambda - x - x' \),
\(y'' = 5x'' - (y + \lambda(x'' - x)) \).

\(2y \neq 5x: (x, y) + (x, y) = (x'', y'') \)

where \(\lambda = (5y + 3x^2)/(2y - 5x) \),
\(x'' = \lambda^2 - 5\lambda - 2x \),
\(y'' = 5x'' - (y + \lambda(x'' - x)) \).

\((x, y) + (x, 5x - y) = \infty \).
An elliptic curve over $\mathbb{Z}/13$

Consider the prime field $\mathbb{Z}/13 = \{0, 1, 2, \ldots, 12\}$ with $-, +, \cdot$ defined mod 13.

The “set of points on the elliptic curve $y^2 - 5xy = x^3 - 7$ over $\mathbb{Z}/13$” is

$$\{(x, y) \in \mathbb{Z}/13 \times \mathbb{Z}/13 : y^2 - 5xy = x^3 - 7\} \cup \{\infty\}.$$
Graph of this set of points:

As before, don’t forget ∞.
The set of curve points is a commutative group with standard definition of \(0, -, +\).

Can visualize \(0, -, +\) as before. Replace lines over \(\mathbb{R}\) by lines over \(\mathbb{Z}/13\).

Warning: tangent is defined by derivatives; hard to visualize.

Can define \(0, -, +\) using same formulas as before.
Example of line over $\mathbb{Z}/13$:

Formula for this line: $y = 7x + 9$.
\(P + Q = -R: \)
An elliptic curve over \mathbf{F}_{16}

Consider the non-prime field
$$(\mathbb{Z}/2)[t]/(t^4 - t - 1) = \{ 0t^3 + 0t^2 + 0t^1 + 0t^0, \}
0t^3 + 0t^2 + 0t^1 + 1t^0, \quad
0t^3 + 0t^2 + 1t^1 + 0t^0, \quad
0t^3 + 0t^2 + 1t^1 + 1t^0, \quad
0t^3 + 1t^2 + 0t^1 + 0t^0, \quad
\vdots \quad
1t^3 + 1t^2 + 1t^1 + 1t^0 \}$$
of size $2^4 = 16$.
Graph of the “set of points on the elliptic curve $y^2 - 5xy = x^3 - 7$ over $(\mathbb{Z}/2)[t]/(t^4 - t - 1)$”:
Line $y = tx + 1$:

![Diagram of a line](image-url)
$P + Q = -R$:
More elliptic curves

Can use any field k.

Can use any nonsingular curve

$$y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6.$$

“Nonsingular”: no $(x, y) \in k \times k$ simultaneously satisfies

$$y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

and

$$2y + a_1 x + a_3 = 0$$

and

$$a_1 y = 3x^2 + 2a_2 x + a_4.$$

Easy to check nonsingularity.
Almost all curves are nonsingular when k is large.
e.g. \(y^2 = x^3 - 30x \):
\[(x, y) \in k \times k :\]
\[y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6 \} \cup \{ \infty \}\]
is a commutative group with standard definition of 0, −, +. Points on line add to 0 with appropriate multiplicity.

Group is usually called “\(E(k)\)” where \(E\) is “the elliptic curve \(y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6\).”

Fairly easy to write down explicit formulas for 0, −, + as before.
If $\#k$ is finite then $\#E(k)$ is finite.

Each x produces 0, 1, or 2 choices of y with $(x, y) \in E(k)$. So $1 \leq \#E(k) \leq 2\#k + 1$; i.e., $|\#E(k) - \#k - 1| \leq \#k$.

Hasse’s theorem:

$$|\#E(k) - \#k - 1| \leq 2\sqrt{\#k}.$$

For example, if $k = \mathbb{Z}/1000003$, then $\#E(k) \in [998004, 1002004]$.

Using explicit formulas can quickly compute nth multiples in $E(k)$ given $n \in \{0, 1, 2, \ldots, 2^{256} - 1\}$ and given E, k with $\#k \approx 2^{256}$.

(How quickly? See Peter Birkner’s talk.)

Can find curves where ECDLP seems extremely difficult: $\approx 2^{128}$ operations.
See “Handbook of elliptic and hyperelliptic curve cryptography” for much more information.

Two examples of elliptic curves useful for cryptography:

“NIST P-256”: $E(\mathbb{Z}/p)$
where p is the prime
$2^{256} - 2^{224} + 2^{192} + 2^{96} - 1$
and E is the elliptic curve $y^2 = x^3 - 3x + (a \text{ particular constant})$.

“Curve25519”: $E(\mathbb{Z}/p)$
where p is the prime $2^{255} - 19$
and E is the elliptic curve
$y^2 = x^3 + 486662x^2 + x$.