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Why elliptic curves?

Can quickly compute
4™ mod 2292 — 5081
given n € {0,1,2,...,2° — 1},

Similarly, can quickly compute
4™ mod 2202 — 5081

given n and 4™ mod 2292 — 5081.

“Discrete-logarithm problem™:
given 4™ mod 22%% — 5081, find n.
Is this easy to solve?



Ditfie-Hellman secret-sharing
system using p = 2292 — 5081

Alice’s Bob's
secret key m secret key n
Alice’s Bob's
public key public key

\4”"’ mod p>< 4™ mod p/

{Alice, Bob}'s {Bob, Alice}'s

shared secret = shared secret
4" mod p 4" mod p

Can attacker find 4™" mod p?



Bad news: DLP can be solved at
surprising speed! Attacker can
find m and n by “index calculus.”

To protect against this attack,
replace 2202 — 5081 with

a much larger prime.

Much slower arithmetic.

Alternative: Elliptic-curve

cryptography. Replace
{1,2,...,2%2 - 5082}

with a comparable-size

“safe elliptic-curve group.”
Somewhat slower arithmetic.



An elliptic curve over R

Consider all pairs
of real numbers z, y
such that y? — 5zy = 23 — 7.

The “points on the elliptic curve
y? — 5zy = 23 — 7 over R’

are those pairs and

one additional point, co.

i.e. The set of points is

{(z,y) € RXR:
y2—53:y::c3—7}u{oo}.

(R is the set of real numbers.)



Graph of this set of points:
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Don't forget oo.
Visualize co as top of y axis.



There is a standard definition
of 0, —, + on this set of points.

Magical fact: The set of points
Is a “commutative group’;

l.e., these operations 0, —, +
satisfy every identity

satisfied by Z.

e.g. All P,Q, R € Z satisfy
(P+Q)+R=P+(QR+R),

so all curve points P, @, R

satisfy (P+Q)+R = P+ (Q+R).

(Z is the set of integers.)



Visualizing the group law

0 =00, —00 = 0.

Distinct curve points P,
on a vertical line

have — P = Q;

P+ Q =0=oo0.

A curve point R

with a vertical tangent line
has —R = R;

R+ R=0=o0.



—P=Q, -Q=P, -R=R:




Distinct curve points P, @, R
on a line

have P+ (@ = — R:
P+Q@+R=0= .

Distinct curve points P, R
on a line tangent at P
have P+ P = —R;
P+P+R=0=o00.

A non-vertical line

with only one curve point P
has P+ P = —P;

P+ P+ P=0.



= —R:

P+ @




P+P=—R:




Curve addition formulas

Easily find formulas for +
by finding formulas for lines
and for curve-line intersections.

z £z (z,y)+ (2 y) = (2" y")
where A = (v — vy)/(2' — z),
:z:“:Az—S)\—a:—a:’

y' =5z" — (y + A(z" —z)).

2y # 5z (z,y)+(z. y) = (", y")
where X = (5y + 3z°)/(2y — 5z),
:1:” — )2 —5)\ — 2z,

y' =5z" — (y + A(z" —2)).

(z,y) + (z,5z — y) = .



An elliptic curve over Z/13

Consider the prime field
Z/13=4{0,1,2,...,12}
with —, 4+, - defined mod 13.

The “set of points on the elliptic
curve y2 — by = 3 — 7
over Z/13" is
{(z,y) € Z/13 x Z/13 :
y> —5zy =23 — 7} U {0}



Graph of this set of points:

As before, don't forget oo.



The set of curve points
IS a commutative group with
standard definition of 0, —, +.

Can visualize 0, —, + as before.
Replace lines over R

by lines over Z/13.

Warning: tangent is defined by
derivatives; hard to visualize.

Can define 0, —, +

using same formulas as before.



Example of line over Z/13:

Formula for this line: y =7z + 9.






An elliptic curve over Fi¢

Consider the non-prime field

(Z/2)[t]/(t* —t —1) ={
0t3 + 0t + 0t + 049,
0t3 + 0t? + 0t! + 1¢0,
0t3 + 0t + 11 + 049,
0t3 + 0t + 1t + 149,
0t3 + 1¢2 + 0t + 049,

1£3 + 1¢2 + 1t + 1£9}
of size 2% = 16.



Graph of the “set of points on the
elliptic curve y2 — 5zy = 23 — 7
over (Z/2)[1f5]/(t4 —t—1)":



Line y =tz + 1:
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More elliptic curves

Can use any field k.

Can use any nonsingular curve
y? + a1zy + a3y =
3 -+ a,2:c2 + Q4T + Qg.

“Nonsingular’: no (z,y) € k X k
simultaneously satisfies

y2 + a1zy + a3y = z3 + a2$2 +
a4 +ag and 2y + a1z + a3 =0
and a1y = 322 + 2aoT + aq.

Easy to check nonsingularity.
Almost all curves are nonsingular

when £ is large.



3 .
e.g. y2 =23 — 30z




{(z,y) € k X k:

y° + a1zy + a3y =

23 + arz® + a4z + agt U {oo}
IS a commutative group with
standard definition of 0, —, +.
Points on line add to 0
with appropriate multiplicity.

Group is usually called “E(k)"

where E I1s “the elliptic curve
y2 + a1y + a3y =
3 + arz? + a4z + ag.”

Fairly easy to write down
explicit formulas for 0, —, +
as before.



If #£k is finite
then #E(k) is finite.

Each  produces 0, 1, or 2
choices of y with (z,y) € E(k).
So 1 < #E(k) <2#k + 1,

le., |#E(k) — #k — 1] < #k.
Hasse's theorem:

HE(k) — #k — 1| < 2V/Fk

For example, if £ = Z/1000003,
then #E(k) € [998004, 1002004].



Using explicit formulas

can quickly compute

nth multiples in E(k)

given n € {O 1,2,.... 2256 _ 1}

(How quickly?
See Peter Birkner's talk.)

“Elliptic-curve discrete-log
problem” (ECDLP):
given points P and nP, find n.

Can find curves where

ECDLP seems extremely difficult:

~ 2128 gperations.



See “Handbook of elliptic and

hyperelliptic curve cryptography
for much more information.

Two examples of elliptic curves
useful for cryptography:

“NIST P-256": E(Z/p)

where p Is the prime

2256 o 2224 4 2192 4+ 296 1
and E is the elliptic curve y° =

23 — 3z + (a particular constant).

“Curve25519": E(Z/p)
where p is the prime 2222 — 19
and E is the elliptic curve

y? = z3 + 4866622° + z.



