Elliptic curves over \mathbf{R} and \mathbf{F}_q

D. J. Bernstein

University of Illinois at Chicago

Why elliptic curves?

Can quickly compute $4^n \mod 2^{262} - 5081$ given $n \in \{0, 1, 2, \dots, 2^{256} - 1\}$.

Similarly, can quickly compute $4^{mn} \mod 2^{262} - 5081$ given *n* and $4^m \mod 2^{262} - 5081$.

"Discrete-logarithm problem": given $4^n \mod 2^{262} - 5081$, find n. Is this easy to solve? Diffie-Hellman secret-sharing system using $p = 2^{262} - 5081$:

Can attacker find $4^{mn} \mod p$?

Bad news: DLP can be solved at surprising speed! Attacker can find *m* and *n* by "index calculus."

To protect against this attack, replace $2^{262} - 5081$ with a much larger prime. *Much* slower arithmetic.

Alternative: Elliptic-curve cryptography. Replace $\{1, 2, ..., 2^{262} - 5082\}$ with a comparable-size "safe elliptic-curve group." *Somewhat* slower arithmetic.

An elliptic curve over R

Consider all pairs of real numbers x, ysuch that $y^2 - 5xy = x^3 - 7$.

The "points on the elliptic curve $y^2 - 5xy = x^3 - 7$ over **R**" are those pairs and one additional point, ∞ .

i.e. The set of points is $\{(x,y)\in {f R} imes {f R}:\ y^2-5xy=x^3-7\}\cup\{\infty\}.$

(**R** is the set of real numbers.)

Graph of this set of points:

Don't forget ∞ . Visualize ∞ as top of y axis. There is a standard definition of 0, -, + on this set of points. Magical fact: The set of points is a "commutative group"; i.e., these operations 0, -, +satisfy every identity satisfied by **Z**.

e.g. All $P, Q, R \in \mathbf{Z}$ satisfy (P+Q) + R = P + (Q+R),so all curve points P, Q, Rsatisfy (P+Q) + R = P + (Q+R).

(**Z** is the set of integers.)

Visualizing the group law

 $0 = \infty; -\infty = \infty.$

Distinct curve points P, Qon a vertical line have -P = Q; $P + Q = 0 = \infty$.

A curve point Rwith a vertical tangent line has -R = R; $R + R = 0 = \infty$.

Distinct curve points P, Q, R on a line have P + Q = -R; $P + Q + R = 0 = \infty$.

Distinct curve points P, Ron a line tangent at Phave P + P = -R; $P + P + R = 0 = \infty$.

A non-vertical line with only one curve point Phas P + P = -P; P + P + P = 0.

Curve addition formulas

Easily find formulas for + by finding formulas for lines and for curve-line intersections.

 $egin{aligned} x
eq x' &: & (x,y) + (x',y') = (x'',y'') \ ext{where } \lambda &= & (y'-y)/(x'-x), \ x'' &= & \lambda^2 - 5\lambda - x - x', \ y'' &= & 5x'' - (y + \lambda(x''-x)). \end{aligned}$

 $egin{aligned} &2y
eq 5x: \ (x,y) + (x,y) = (x'',y'')\ & ext{where } \lambda = (5y+3x^2)/(2y-5x),\ &x'' = \lambda^2 - 5\lambda - 2x,\ &y'' = 5x'' - (y+\lambda(x''-x)). \end{aligned}$

 $(x, y) + (x, 5x - y) = \infty.$

An elliptic curve over $\mathbf{Z}/13$

Consider the prime field $\mathbf{Z}/13 = \{0, 1, 2, \dots, 12\}$ with $-, +, \cdot$ defined mod 13.

The "set of points on the elliptic curve $y^2 - 5xy = x^3 - 7$ over $\mathbf{Z}/13$ " is $\{(x, y) \in \mathbf{Z}/13 imes \mathbf{Z}/13:$ $y^2 - 5xy = x^3 - 7\} \cup \{\infty\}.$

Graph of this set of points:

As before, don't forget ∞ .

The set of curve points is a commutative group with standard definition of 0, -, +.

Can visualize 0, -, + as before. Replace lines over **R** by lines over **Z**/13.

Warning: tangent is defined by derivatives; hard to visualize.

Can define 0, -, +using same formulas as before.

Example of line over $\mathbf{Z}/13$:

Formula for this line: y = 7x + 9.

P + Q = -R:

An elliptic curve over \mathbf{F}_{16}

Consider the non-prime field $(\mathbf{Z}/2)[t]/(t^4 - t - 1) = \{$ $0t^3 + 0t^2 + 0t^1 + 0t^0$ $0t^3 + 0t^2 + 0t^1 + 1t^0$. $0t^3 + 0t^2 + 1t^1 + 0t^0$. $0t^3 + 0t^2 + 1t^1 + 1t^0$ $0t^3 + 1t^2 + 0t^1 + 0t^0$. $1t^3 + 1t^2 + 1t^1 + 1t^0$ of size $2^4 = 16$.

Graph of the "set of points on the elliptic curve $y^2 - 5xy = x^3 - 7$ over $(\mathbf{Z}/2)[t]/(t^4 - t - 1)$ ":

Line y = tx + 1:

P + Q = -R:

More elliptic curves

Can use any field k.

Can use any nonsingular curve $y^2 + a_1xy + a_3y =$ $x^3 + a_2x^2 + a_4x + a_6.$

"Nonsingular": no $(x, y) \in k \times k$ simultaneously satisfies $y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$ and $2y + a_1x + a_3 = 0$ and $a_1y = 3x^2 + 2a_2x + a_4$.

Easy to check nonsingularity. Almost all curves are nonsingular when *k* is large.

 $\{(x,y)\in k imes k:$ $y^2 + a_1 x y + a_3 y =$ $x^3 + a_2 x^2 + a_4 x + a_6 \} \cup \{\infty\}$ is a commutative group with standard definition of 0, -, +. Points on line add to 0with appropriate multiplicity. Group is usually called "E(k)" where E is "the elliptic curve $y^2 + a_1 x y + a_3 y =$ $x^3 + a_2 x^2 + a_4 x + a_6$."

Fairly easy to write down explicit formulas for 0, -, + as before.

If #k is finite then #E(k) is finite.

Each x produces 0, 1, or 2 choices of y with $(x, y) \in E(k)$. So $1 \le \#E(k) \le 2\#k + 1$; i.e., $|\#E(k) - \#k - 1| \le \#k$.

Hasse's theorem: $|\#E(k) - \#k - 1| \leq 2\sqrt{\#k}.$

For example, if $k = \mathbf{Z}/1000003$, then $\#E(k) \in [998004, 1002004]$. Using explicit formulas can quickly compute nth multiples in E(k)given $n \in \{0, 1, 2, ..., 2^{256} - 1\}$ and given E, k with $\#k \approx 2^{256}$.

(How quickly? See Peter Birkner's talk.)

"Elliptic-curve discrete-log problem" (ECDLP): given points *P* and *nP*, find *n*.

Can find curves where ECDLP seems extremely difficult: $\approx 2^{128}$ operations.

See "Handbook of elliptic and hyperelliptic curve cryptography" for much more information.

Two examples of elliptic curves useful for cryptography:

"NIST P-256": $E(\mathbf{Z}/p)$ where p is the prime $2^{256} - 2^{224} + 2^{192} + 2^{96} - 1$ and E is the elliptic curve $y^2 = x^3 - 3x + (a \text{ particular constant}).$

"Curve25519": $E(\mathbf{Z}/p)$ where p is the prime $2^{255} - 19$ and E is the elliptic curve $y^2 = x^3 + 486662x^2 + x$.