
Edwards coordinates

for elliptic curves

D. J. Bernstein

University of Illinois at Chicago

Joint work with:

Tanja Lange

Technische Universiteit Eindhoven

The Domain Name System

Mail sender at columbia.edu

Administrator at uottawa.ca

DNS packet:

“The mail server for

uottawa.ca

has IP address

137.122.6.57.”

OO

Now columbia.edu

sends mail to 137.122.6.57.

Is this system secure?

Many security holes

in DNS software:

BIND libresolv buffer overflow,

Microsoft cache promiscuity,

BIND 8 TSIG buffer overflow,

BIND 9 dig promiscuity, etc.

Fix: Use better DNS software.

http://cr.yp.to/djbdns.html

But what about protocol holes?

Stealing mail by attacking DNS

Mail sender at columbia.edu

Attacker anywhere on network

DNS packet:

“The mail server for

uottawa.ca

has IP address

131.193.36.27.”

OO

Now columbia.edu

sends mail to 131.193.36.27.

Real uottawa.ca never sees it.

No warning to columbia.edu.

Are attacks really so easy?

Can attacker guess

where mail is being sent?

Can attacker guess

time when mail is being sent?

Can attacker guess

UDP port for DNS packet?

Can attacker guess

the random 16-bit ID

that the mail sender

puts into its DNS request?

For sniffing attackers, yes; but

attackers anywhere on network?

Three weeks ago: Emergency

security update for BIND

to change ID generation.

Previous ID generator was

cryptanalyzed by Amit Klein:

“This is a weak version (since the

output is 16 bits, as opposed to

the traditional 1 bit) of the : : :
mutually clock controlled

(LFSR) generator : : : ”
Attacker legitimately receives

13 successive IDs from sender,

reconstructs stream-cipher state,

predicts sender’s subsequent IDs.

Add signatures to DNS?

Long IDs and strong generators

don’t stop sniffing attackers.

Obvious solution:

Public-key signatures in packets.

But many deployment obstacles:

many DNS implementations;

many different databases;

tiny packets, 512 bytes;

heavily loaded senders;

heavily loaded receivers.

Current Internet situation:

0% of DNS packets are signed.

Can change DNS-security protocol

to minimize effects on

implementations, databases.

But still need extremely small,

extremely fast signatures with

extremely fast verification.

For fastest verification:

state-of-the-art Rabin-Williams.

But that could be trouble

for signature time, space.

Let’s instead choose an

elliptic-curve signature system.

Start by choosing

high-speed, high-security

elliptic curve: “Curve25519”

(Bernstein, PKC 2006).

This is the elliptic curve

y2 = x3 + 486662x2 + x
modulo the prime 2255 � 19.

Standard base point B with

known prime order q � 2252:

(9;p39420360 mod 2255 � 19).

Also choose a high-speed,

high-security hash function H.

I offer US$1000 prize for

the public Rumba20 cryptanalysis

that I consider most interesting.

Awarded at the end of 2007.

Rumba20 is a function from

192 bytes to 64 bytes;

designed for collision-resistance.

http://cr.yp.to

/rumba20.html

A sensible ElGamal-type system

(van Duin, sci.crypt, 2006):

Signer has 32-byte secret key k.
Everyone knows sender’s 32-byte

public key: compressed kB.

Here kB = kth multiple of B
in the Curve25519 group.

To verify (m; compressed R; t):
verify tB = H(R;m)R + kB.

To sign m: generate a secret s;
R = sB; t = H(R;m)s+k mod q.
No tricky inversions mod q.
More advantages, as we’ll see.

Elliptic-curve arithmetic

Consider all pairs

of real numbers x; y
such that y2 � 5xy = x3 � 7.

The “points on the elliptic curve

y2 � 5xy = x3 � 7 over R”

are those pairs and

one additional point, 1.

i.e. The set of points is

f(x; y) 2 R2 :

y2 � 5xy = x3 � 7g [f1g.
(R is the set of real numbers.)

Graph of this set of points:

� oo (6; 35:83 : : :)

y

x

OO

//

II

Don’t forget 1.

Visualize 1 as top of y axis.

Elliptic-curve addition law:

�P�Q
�

�P +Q
jjjjjjjjjjjjjjjjjjj

y

x

OO

//

II

Similar example, an elliptic curve

over a finite field:

Consider the prime field

Z=13 = f0; 1; 2; 3; 4; 5; : : : ; 12g
with �;+; �; = defined mod 13.

The “set of points

on the elliptic curve

y2 � 5xy = x3 � 7

over Z=13” is

f(x; y) 2 (Z=13)2 :

y2 � 5xy = x3 � 7g [f1g.

Graph of this set of points:

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

As before, don’t forget 1.

Example of line over Z=13:

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

Formula for this line: y = 7x+ 9.

Elliptic-curve addition law:

P
EE

E
""

Q ZZZZZZZZ
,,

P + Q
�
���

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

Complete definition of addition:

x 6= x0: (x; y)+ (x0; y0) = (x00; y00)
where � = (y0 � y)=(x0 � x),

x00 = �2 � 5�� x� x0,
y00 = 5x00 � (y + �(x00 � x)).

2y 6= 5x: (x; y)+(x; y) = (x00; y00)
where � = (5y + 3x2)=(2y � 5x),

x00 = �2 � 5�� 2x,

y00 = 5x00 � (y + �(x00 � x)).

(x; y) + (x; 5x� y) = 1.

(x; y) +1 = (x; y).
1+ (x; y) = (x; y).
1+1 = 1.

Addition-law annoyances

1. First (x; y) + (x0; y0) formula

fails if (x; y) = (x0; y0).
Must check, use second formula.

Can attacker see different timing?

Extra implementation work

to avoid side-channel leaks.

2. More exceptional cases.

Can attacker trigger these?

Does implementation always

follow the published protocol?

3. Tons of field arithmetic.

Is this fast enough?

Normally use fractions X=Z; Y=Z
(or X=Z2; Y=Z3: “Jacobian”)

to avoid divisions, saving time.

But need many multiplications.

Can some be eliminated?

Some other elliptic-curve shapes

(“Jacobi intersection,”

“Jacobi quartic,” “Hessian”)

try to unify doublings

with generic additions.

Still have exceptional cases.

Can exceptions be eliminated?

Interlude: Torus-based crypto

The circle

f(x; y) 2 (Z=(2255 � 949))2 :

x2 + y2 = 1g
has a standard addition law:

(x1; y1) + (x2; y2) = (x3; y3)

where x3 = x1y2 + y1x2

and y3 = y1y2 � x1x2.

Not many multiplications.

No exceptional cases.

But also not elliptic.

Broken by number-field sieve

unless field is replaced by

a much larger field.

News: Edwards curves

e.g. x2 + y2 = 1� 30x2y2:

y

x

OO

//

Choose a field K with 2 6= 0

and a parameter d 2 K � f0; 1g.
Edwards addition law for

f(x; y) 2 K2 :

x2 + y2 = 1 + dx2y2g is

x3 =
x1y2 + y1x2

1 + dx1x2y1y2
,

y3 =
y1y2 � x1x2

1� dx1x2y1y2
.

The Edwards addition law

corresponds to

the standard addition law

on an elliptic curve.

If d is not a square

then the Edwards addition law

is complete:

no exceptional cases;

the denominators are never 0.

If x2
1 + y2

1 = 1 + dx2
1y2

1

and x2
2 + y2

2 = 1 + dx2
2y2

2

then dx1x2y1y2 can’t be �1.

Outline of proof:

If (dx1x2y1y2)
2 = 1 then

(x1 + dx1x2y1y2y1)
2 =

dx2
1y2

1(x2 + y2)
2.

Conclude that d is a square.

But d is not a square! Q.E.D.

In particular,

choose K = Z=(2255 � 19)

and d = 121665=121666.

K doesn’t have
p
d,

so the Edwards addition law

for x2 + y2 = 1 + dx2y2

is complete.

This addition law corresponds to

the standard addition law

on Curve25519!

Easy map: x =
p

486664u=v,
y = (u� 1)=(u+ 1).

Can use the Edwards addition law

for Curve25519 computations.

Computations on Edwards curves

To avoid divisions, use

(X : Y : Z) with Z 6= 0 and

(X2 + Y 2)Z2 = Z4 + dX2Y 2

to represent (X=Z; Y=Z)

on the Edwards curve

x2 + y2 = 1 + dx2y2.

Recall the Edwards addition law:

x3 =
x1y2 + y1x2

1 + dx1x2y1y2
,

y3 =
y1y2 � x1x2

1� dx1x2y1y2
.

Clear denominators:

X3 = Z1Z2(X1Y2 + Y1X2)

� (Z2
1Z2

2 � dX1X2Y1Y2),

Y3 = Z1Z2(Y1Y2 �X1X2)

� (Z2
1Z2

2 + dX1X2Y1Y2),

Z3 = (Z2
1Z2

2 � dX1X2Y1Y2)

� (Z2
1Z2

2 + dX1X2Y1Y2).

Rewrite x1y2 + x2y1 as

(x1 + y1)(x2 + y2)� x1x2 � y1y2,

exploit common subexpressions.

12 multiplications (one by d,
one a squaring), 7 additions.

Still complete.

Comparison of addition costs

if curve parameters are small:

System Cost
Doche/Icart/Kohel 12M + 5S
Jacobian 11M + 5S
Jacobi intersection 13M + 2S
Projective 12M + 2S
Jacobi quartic 10M + 3S
Hessian 12M
Edwards 10M + 1S

Can save time

in “mixed additions” (Z2 = 1)

and in “readditions”;

slightly different order of systems.

Can save time in doubling:

rewrite 1 + dx2
1y2

1 as x2
1 + y2

1

(as suggested by Marc Joye);

rewrite 1� dx2
1y2

1 as 2� x2
1 � y2

1 ;

exploit common subexpressions.

B = (X1+Y1)
2, C = X2

1 , D = Y 2
1 ,

E = C +D, H = Z2
1 ,

J = E � 2H, X3 = (B � E)J,

Y3 = E(C �D), Z3 = EJ.

7 multiplications

(4 of which are squarings),

6 additions.

Comparison of doubling costs

if curve parameters are small:

System Cost
Projective 5M + 6S
Projective if a = �3 7M + 3S
Hessian 6M + 3S
Jacobi quartic 1M + 9S
Jacobian 1M + 8S
Jacobian if a = �3 3M + 5S
Jacobi intersection 3M + 4S
Edwards 3M + 4S
Doche/Icart/Kohel 2M + 5S

Several new algorithms here.

Explicit-Formulas Database:

http://www.hyperelliptic.org

/EFD

Consequences for signatures

Edwards coordinates vs. popular

a = �3 Jacobian coordinates

in standard cost model:

� 5% faster for t 7! tB
using typical B precomputation.

� 15% faster for h;R 7! hR.

� 13% faster for

t; h; R 7! tB � hR using “JSF.”

� 38% faster for

batch verification via Bos-Coster.

Plus: complete, low memory, : : :

Batch verification of many

tiB � hiRi � Si = 0:

choose random 128-bit vi,
check (

P
i viti)B �P

i(vihi)Ri �
P

i viSi = 0.

(Bellare/Garay/Rabin, LATIN ’98)

Use subtractive multi-scalar

multiplication algorithm

(credited to Bos and Coster by

de Rooij, EUROCRYPT ’94).

Only � 25:2 curve adds/bit

to verify 100 signatures.

Use Edwards coordinates!

More on Edwards coordinates

Harold M. Edwards,

“A normal form

for elliptic curves,”

Bulletin of the AMS,

July 2007.

Daniel J. Bernstein

and Tanja Lange,

“Faster addition and doubling

on elliptic curves,”

Asiacrypt 2007.

http://cr.yp.to

/newelliptic.html

