Polynomial evaluation
and message authentication

D. J. Bernstein
University of Illinois at Chicago
Cost of this algorithm: 5 mults, 4 adds.

Output of this algorithm, given $m_1, \ldots, r_1, \ldots \in F_q$:
$m_1 r_1 + \cdots + m_5 r_5$.
Alternative (1968 Winograd),
\(\approx 2\times\) speedup in matrix mult:

\[
\begin{array}{cccccccc}
m_1 & r_2 & m_2 & r_1 & m_3 & r_4 & m_4 & r_3 & m_5 & r_5 \\
\downarrow & \downarrow \\
+ & + & + & + & + & \times & \times & \times & \times \\
\end{array}
\]

Output in \(F_q[m_1, \ldots, r_1, \ldots]\):
\[
m_5 r_5 + (m_3 + r_4)(m_4 + r_3) + (m_1 + r_2)(m_2 + r_1) = m_1 r_1 + m_2 r_2 + m_3 r_3 + m_4 r_4 + m_5 r_5 + m_1 m_2 + m_3 m_4 + r_1 r_2 + r_3 r_4.
\]
One good way to recognize forged/corrupted messages:

Standardize a prime $p = 1000003$.

Sender rolls 10-sided die to generate independent uniform random secrets

$r_1 \in \{0, 1, \ldots, 999999\}$,

$r_2 \in \{0, 1, \ldots, 999999\}$,

\ldots,

$r_5 \in \{0, 1, \ldots, 999999\}$,

$s_1 \in \{0, 1, \ldots, 999999\}$,

\ldots,

$s_{100} \in \{0, 1, \ldots, 999999\}$.
Sender meets receiver in private and tells receiver the same secrets \(r_1, r_2, \ldots, r_5, s_1, \ldots, s_{100} \).

Later: Sender wants to send 100 messages \(m_1, \ldots, m_{100} \), each \(m_n \) having 5 components \(m_{n,1}, m_{n,2}, m_{n,3}, m_{n,4}, m_{n,5} \) with \(m_{n,i} \in \{0, 1, \ldots, 999999\} \).

Sender transmits 30-digit \(m_{n,1}, m_{n,2}, m_{n,3}, m_{n,4}, m_{n,5} \) together with an authenticator \((m_{n,1} r_1 + \cdots + m_{n,5} r_5 \mod p) + s_n \mod 1000000 \) and the message number \(n \).
e.g. $r_1 = 314159$, $r_2 = 265358$,
$r_3 = 979323$, $r_4 = 846264$,
$r_5 = 338327$, $s_{10} = 950288$,
$m_{10} = 000006 000007 000000 000000 000000$:

Sender computes authenticator $(6r_1 + 7r_2 \mod p)$
$+ s_{10} \mod 1000000 =$
$(6 \cdot 314159 + 7 \cdot 265358 \mod 10000003)$
$+ 950288 \mod 1000000 =$
$742451 + 950288 \mod 1000000 = 692739$.

Sender transmits
10 000006 000007 000000 000000 000000 000000 692739.
Main work is multiplication. For each 6-digit message chunk, have to do one multiplication by a 6-digit secret r_i.

Scaled up for serious security: Choose, e.g., $p = 2^{130} - 5$. For each 128-bit message chunk, have to do one multiplication by a 128-bit secret r_i. Reduce output mod $2^{130} - 5$. \(\approx 5 \) cycles per message byte, depending on CPU.

Many papers on choosing fields, computing products quickly.
Provably secure authenticators
\((m_1r_1 + m_2r_2 + \cdots) + s\): 1974 Gilbert/MacWilliams/Sloane.

1999 Black/Halevi/Krawczyk/Krovetz/Rogaway (crediting unpublished Carter/Wegman, failing to credit Winograd):
Replace \(m_1r_1 + m_2r_2\) with \((m_1 + r_1)(m_2 + r_2)\),
replace \(m_3r_3 + m_4r_4\) with \((m_3 + r_3)(m_4 + r_4)\), etc.
Half as many multiplications for each message chunk.
Expand short key k into long secret r_1, \ldots, s_1, \ldots as, e.g., $\text{AES}_k(1), \text{AES}_k(2), \ldots$.

Oops, not uniform random. But easily prove that attack implies attack on AES.

Generate r’s, s’s on demand? Need $\ell + 1$ AES invocations for $r_1, r_2, \ldots, r_\ell, s_n$.

Cache r_1, r_2, \ldots, r_ℓ? Bad performance for large ℓ: huge initialization cost; many expensive cache misses; too big for low-cost hardware.
1979 Wegman/Carter: Another authentication function, fewer secrets r_1, r_2, \ldots.

1987 Karp/Rabin, 1981 Rabin: Another authentication function, extremely short secret r, but expensive to generate.

Horner’s rule (const coeff 0):
Cost of this algorithm:
5 mults, 4 adds,
just like dot product.

Output in
$\mathbf{F}_q[m_1, m_2, m_3, m_4, m_5, r]$: $m_5 r^5 + m_4 r^4 + \cdots + m_1 r$.

Substituting any message $(m_1, m_2, m_3, m_4, m_5) \in \mathbf{F}_q^5$ produces poly in $\mathbf{F}_q[r]$;
message \mapsto poly is injective.

Secure for authentication:
at most 5 values of r are roots of any shifted difference of polys for distinct messages.
1 multiplication per chunk.
Can we do better?

Classic observation (1955 Motzkin, 1958 Belaga, et al.): For each \(\varphi \in \mathbb{C}[r] \) there is an algorithm that computes \(\varphi \) using \(\approx (\deg \varphi)/2 \) multiplications.

Idea:
\[
\left((a r + b)(r^2 + c) + d \right) \\
\left(r^2 + e \right) + f \left(r^2 + g \right) + h.
\]

Doesn’t solve the authentication problem. This set of algorithms maps \textit{surjectively} but not \textit{injectively} to \(\mathbb{C}[r] \).
1970 Winograd: Can achieve \(\approx (\deg \varphi)/2 \) multiplications with “rational preparation,” i.e., rational map \(\varphi \mapsto \) algorithm.

Idea:
\[
((r + a)(r^2 + b) + r + c) \\
(r^4 + d) + (r + e)(r^2 + f) + r + g.
\]

Adapt idea to non-monic \(\varphi \) and to \(\deg \varphi \notin \{1, 3, 7, 15, \ldots \} \).

“Aha!
\[
((r + a)(r^2 + b) + r + c) \\
(r^4 + d) + (r + e)(r^2 + f) + r + g
\]
is an authenticator of message \((a, b, c, d, e, f, g)\).”

Have to be careful. Injective? Not just for fixed degree?
Fix odd prime p. Define $H : \{0, 2, 4, \ldots, p - 3\}^* \to \mathbb{F}_p[r]$ by $H() = 0$; $H(m_1) = r + m_1$; $H(m_1, \ldots, m_\ell) =$ $H(m_{t+1}, \ldots, m_\ell) + (r^t + m_t)H(m_1, \ldots, m_{t-1})$ if $t \in \{2, 4, 8, 16, \ldots\}$, $t \leq \ell < 2t$.

e.g. $H(m_1, m_2) =$ $(r + m_1)(r^2 + m_2)$; $H(m_1, m_2, m_3) =$ $(r + m_1)(r^2 + m_2) + (r + m_3)$.

(Could change $H()$ to 1, avoid special case for $\ell = 1$. But my H is slightly faster.)
Easy to prove: H is injective.

Use $rH(m) + s_n$ as authenticator of nth message m.

(Good choice of p: $2^{107} - 1$. Put 13 bytes into each chunk.)

Combines all the advantages of previous authenticators: extremely short secret r, trivial to generate; 1/2 multiplications per chunk.