Polynomial evaluation and message authentication

D. J. BernsteinUniversity of Illinois at Chicago

Cost of this algorithm: 5 mults, 4 adds.

Output of this algorithm, given $m_1,\ldots,r_1,\ldots\in \mathbf{F}_q$: $m_1r_1+\cdots+m_5r_5$.

Alternative (1968 Winograd), $\approx 2 \times$ speedup in matrix mult:

 m_1 r_2 m_2 r_1 m_3 r_4 m_4 r_3 m_5 r_5

Output in $\mathbf{F}_q[m_1,\ldots,r_1,\ldots]$: $m_5r_5+(m_3+r_4)(m_4+r_3)+(m_1+r_2)(m_2+r_1)=m_1r_1+m_2r_2+m_3r_3+m_4r_4+m_5r_5+m_1m_2+m_3m_4+r_1r_2+r_3r_4.$

One good way to recognize forged/corrupted messages:

Standardize a prime p = 1000003.

Sender rolls 10-sided die to generate independent uniform random secrets $r_1 \in \{0, 1, \dots, 999999\}$, $r_2 \in \{0, 1, \ldots, 9999999\}$ $r_5 \in \{0, 1, \dots, 999999\}$ $s_1 \in \{0, 1, \dots, 999999\}$,

 $s_{100} \in \{0, 1, \dots, 999999 .$

Sender meets receiver in private and tells receiver the same secrets $r_1, r_2, \ldots, r_5, s_1, \ldots, s_{100}$.

Later: Sender wants to send 100 messages $m_1,\ldots,m_{100},$ each m_n having 5 components $m_{n,1},m_{n,2},m_{n,3},m_{n,4},m_{n,5}$ with $m_{n,i}\in\{0,1,\ldots,9999999\}$

Sender transmits 30-digit $m_{n,1}, m_{n,2}, m_{n,3}, m_{n,4}, m_{n,5}$ together with an **authenticator** $(m_{n,1}r_1 + \cdots + m_{n,5}r_5 \mod p) + s_n \mod 1000000$ and the message number n.

Sender computes authenticator $(6r_1+7r_2 \mod p) + s_{10} \mod 1000000 = (6 \cdot 314159 + 7 \cdot 265358 \mod 1000003) + 950288 \mod 1000000 = 742451 + 950288 \mod 1000000 = 692739.$

Sender transmits
10 000006 000007 000000 000000 000000 692739.

Main work is multiplication. For each 6-digit message chunk, have to do one multiplication by a 6-digit secret r_i .

Scaled up for serious security: Choose, e.g., $p=2^{130}-5$. For each 128-bit message chunk, have to do one multiplication by a 128-bit secret r_i . Reduce output mod $2^{130}-5$. ≈ 5 cycles per message byte, depending on CPU.

Many papers on choosing fields, computing products quickly.

Provably secure authenticators $(m_1r_1+m_2r_2+\cdots)+s$: 1974 Gilbert/MacWilliams/Sloane.

1999 Black/Halevi/Krawczyk/ Krovetz/Rogaway (crediting unpublished Carter/Wegman, failing to credit Winograd): Replace $m_1r_1 + m_2r_2$ with $(m_1 + r_1)(m_2 + r_2)$, replace $m_3r_3+m_4r_4$ with $(m_3 + r_3)(m_4 + r_4)$, etc. Half as many multiplications for each message chunk.

Expand short key k into long secret r_1, \ldots, s_1, \ldots as, e.g., $AES_k(1)$, $AES_k(2)$, . . .

Oops, not uniform random.

But easily prove that attack implies attack on AES.

Generate r's, s's on demand? Need $\ell+1$ AES invocations for $r_1, r_2, \ldots, r_\ell, s_n$.

Cache r_1, r_2, \ldots, r_ℓ ? Bad performance for large ℓ : huge initialization cost; many expensive cache misses; too big for low-cost hardware. 1979 Wegman/Carter: Another authentication function, fewer secrets r_1, r_2, \ldots

1987 Karp/Rabin, 1981 Rabin: Another authentication function, extremely short secret r, but expensive to generate.

1993 den Boer; independently 1994 Taylor; independently 1994 Johansson/Kabatianskii/Smeets: Another authentication function, extremely short secret r, trivial to generate.

Horner's rule (const coeff 0):

Cost of this algorithm: 5 mults, 4 adds, just like dot product.

Output in

$$\mathbf{F}_q[m_1, m_2, m_3, m_4, m_5, r]$$
: $m_5 r^5 + m_4 r^4 + \cdots + m_1 r$.

Substituting any message $(m_1, m_2, m_3, m_4, m_5) \in \mathbf{F}_q^5$ produces poly in $\mathbf{F}_q[r]$; message \mapsto poly is injective.

Secure for authentication: at most 5 values of r are roots of any shifted difference of polys for distinct messages.

1 multiplication per chunk. Can we do better?

Classic observation (1955 Motzkin, 1958 Belaga, et al.): For each $\varphi \in \mathbf{C}[r]$ there is an algorithm that computes φ using $\approx (\deg \varphi)/2$ multiplications.

Idea:
$$((ar+b)(r^2+c)+d)$$

 $(r^2+e)+f)(r^2+c)+h$.

Doesn't solve the authentication problem. This set of algorithms maps *surjectively* but not *injectively* to $\mathbf{C}[r]$.

1970 Winograd: Can achieve $\approx (\deg \varphi)/2$ multiplications with "rational preparation," i.e., rational map $\varphi \mapsto$ algorithm.

Idea:
$$((r+a)(r^2+b)+r+c)$$

 $(r^4+d)+(r+e)(r^2+f)+r+$.

Adapt idea to non-monic $oldsymbol{arphi}$ and to deg $oldsymbol{arphi}
otin \{1,3,7,15,\dots$

"Aha!
$$((r+a)(r^2+b)+r+c)$$

 $(r^4+d)+(r+e)(r^2+f)+r+$
is an authenticator of
message $(a,b,c,d,e,f,)$."

Have to be careful. Injective? Not just for fixed degree?

Fix odd prime p. Define $H: \{0, 2, 4, \dots, p-3 * \rightarrow \mathbf{F}_{p}[r] \}$ by H()=0; $H(m_1)=r+m_1$; $H(m_1,\ldots,m_\ell)=$ $H(m_{t+1},\ldots,m_{\ell}) +$ $(r^t+m_t)H(m_1,\ldots,m_{t-1})$ if $t \in \{2, 4, 8, 16, \dots, t \leq \ell < 2t.$ e.g. $H(m_1, m_2) =$ $(r+m_1)(r^2+m_2);$ $H(m_1, m_2, m_3) =$ $(r+m_1)(r^2+m_2)+(r+m_3)$. (Could change H() to 1, avoid special case for $\ell=1$.

avoid special case for $\ell=1$. But my H is slightly faster.) Easy to prove: *H* is injective.

Use $rH(m) + s_n$ as authenticator of nth message m.

(Good choice of p: $2^{107} - 1$.) Put 13 bytes into each chunk.)

Combines all the advantages of previous authenticators: extremely short secret r, trivial to generate; 1/2 multiplications per chunk.