Polynomial evaluation
and message authentication

D. J. Bernstein
University of lllinois at Chicago

mi1 71 ™Mo T2 T3 T3 M4 T4 Ty Ts

2RV VR V7 3
X X X X X
\\l/
I

Y

Cost of this algorithm:
5 mults, 4 adds.

Output of this algorithm,
given my,...,7T1,... € Fg:
mi7T1 + -+ MmgTs.

Alternative (1968 Winograd),
~~ 2X speedup In matrix mult:

m1 72 M2 71 M3 T4 M4 T3 M5 TH

YR VR VR VAR T3
+ + + + X
\V \V
X X
\\l/

I

Y

Output in Fg[my,...,71,...]:
msTs + (m3 + r4)(mg + 73) +
(m1 -+ ’r'z)(mg -+ 7'1) = M1T] +
MoTo + M3T3 + M4T4 + METH +
mi1mo + m3mqg + 7172 + 7374.

One good way to recognize
forged /corrupted messages:

Standardize a prime p = 1000003.

Sender rolls 10-sided die
to generate independent

uniform random secrets
r1 € {0,1,..., 9999991},
ro € {0,1,..., 9999991},

rs € {0,1,...,9999991,
s; €{0,1,...,9999991,

s100 € {0,1,...,9999991.

Sender meets receiver in private
and tells receiver the same

secrets r1,72,...,75,81,...,5100-

Later: Sender wants to send
100 messages m1, ..., m100,
each m,, having 5 components

Mnp 1, Mnp 2, Mn 3, Mn 4, Mn 5
with my ; € {0,1,...,999999}.

Sender transmits 30-digit

My 1, Mp2, Mn 3, Mn 4, Mn5

together with an authenticator

(Mmn171 + - + My 575 mod p)
+ s, mod 1000000

and the message number n.

e.g. r1 = 314159, ro = 265358,
r3 = 979323, r4 = 346264,
rg = 338327, s19 = 950288,
m1o = 000006 000007 000000 000000 000000:

Sender computes authenticator
(671 + 772 mod p)

+ s190 mod 1000000 =
(6 - 314159 4+ 7 - 265358

mod 1000003)

+ 950288 mod 1000000 =
742451 + 950288 mod 1000000 =
6927309.

Sender transmits
10 000006 000007 000000 000000 000000 692739.

Main work Is multiplication.

For each 6-digit message chunk,
have to do one multiplication
by a 6-digit secret r;.

Scaled up for serious security:
Choose, e.g., p =2130 _5

For each 128-bit message chunk,
nave to do one multiplication

oy a 128-bit secret r;.
Reduce output mod 2130 — 5.
~ b cycles per message byte,
depending on CPU.

Many papers on choosing fields,
computing products quickly.

Provably secure authenticators
(mir1 + moro +---) + s: 1974
Gilbert/MacWilliams/Sloane.

1999 Black/Halevi/Krawczyk/
Krovetz/Rogaway (crediting
unpublished Carter/Wegman,
failing to credit Winograd):
Replace mi1r; + mors

with (m1 4+ 71)(mo + 72),
replace ms3r3 + mary

with (m3 + r3)(m4 + 74), etc.
Half as many multiplications

for each message chunk.

Expand short key k into

long secret r1,...,51,...
as, e.g., AES,(1), AESL(2),

Oops, not uniform random.
But easily prove that attack
implies attack on AES.

Generate 7's, s's on demand?
Need ¢ + 1 AES invocations
for r1,72,...,7y, Sn.

Cache r1, 70, ..., 147

Bad performance for large ¢
huge initialization cost;

many expensive cache misses;
too big for low-cost hardware.

1979 Wegman/Carter:
Another authentication function,

fewer secrets r1, 7o,

1987 Karp/Rabin, 1981 Rabin:
Another authentication function,
extremely short secret 7,

but expensive to generate.

1993 den Boer; independently
1994 Taylor; independently 1994
Johansson /Kabatianskii /Smeets:
Another authentication function,
extremely short secret 7,

trivial to generate.

Horner's rule (const coeff 0):

T my mg T3 mo m1

Cost of this algorithm:
5 mults, 4 adds,
just like dot product.

Output in
Fq[m11m21m31m41m51’r]
m5r5 + m4r4 + -+ mT.

Substituting any message
(m1, mp, m3, mas, ms) € F
produces poly in Fg[r];

message — poly Is Injective.

Secure for authentication:

at most 5 values of r are roots
of any shifted difference

of polys for distinct messages.

1 multiplication per chunk.
Can we do better?

Classic observation (1955
Motzkin, 1958 Belaga, et al.):
For each ¢ € C|r| there is an
algorithm that computes ¢ using
~ (deg)/2 multiplications.

ldea: (((ar b)(r? + c) + d)
(r* + e) +f)('r2 +9)+h.

Doesn't solve the authentication
problem. This set of algorithms
maps surjectively but not
injectively to Clr].

1970 Winograd: Can achieve

~ (deg)/2 multiplications

with “rational preparation,”

l.e., rational map ¢ — algorithm.

Idea: ((r + a)(r? + b) + r + c)
(r*+d)+(r+e)(r°+ f)+r+g.

Adapt idea to non-monic @

and to degp ¢ {1,3,7,15,...}.

“Aha! ((r +a)(r? +6) + 7 +¢)
(r*+d)+(r+e)(r°+ f)+r+g
is an authenticator of

message (a, b, ¢, d, e, f, g)

Have to be careful. Injective?
Not just for fixed degree?

Fix odd prime ». Define

H:{0,2,4,. p—3}*%Fp[r]

by H() = 0; H(ml) =7+ mq;
my)

te{2,4,8,16,..}, t<{<2t

e.g. Him1,mp) =

(7 +m1)(r° + m2);
H(m1, mp, m3) =

(7 +m1)(r° + m2) + (r + m3).

(Could change H() to 1,
avoid special case for £ = 1.
But my H is slightly faster.)

Easy to prove: H is injective.

Use rH(m) + sy as authenticator
of nth message m.

(Good choice of p: 2197 — 1.
Put 13 bytes into each chunk.)

Combines all the advantages
of previous authenticators:
extremely short secret 7,
trivial to generate;

1/2 multiplications per chunk.

