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Weierstrass coordinates

Fix a field k with 2 6= 0.

Fix a; b 2 k with 4a3 + 27b2 6= 0.

Well-known fact:

The points of the “elliptic curve”

E : y2 = x3 + ax+ b over k

form a commutative group E(k).

“So the group is f(x; y) 2 kˆ k :

y2 = x3 + ax+ bg?”

Not exactly! It’s f(x; y) 2 kˆ k :

y2 = x3 + ax+ bg [ f1g.
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“So the group is f(x; y) 2 kˆ k :

y2 = x3 + ax+ bg?”

Not exactly! It’s f(x; y) 2 kˆ k :

y2 = x3 + ax+ bg [ f1g.

To add (x1; y1); (x2; y2) 2 E(k):

Define x3 = –2 ` x1 ` x2

and y3 = –(x1 ` x3)` y1

where – = (y2 ` y1)=(x2 ` x1).

Then (x3; y3) 2 E(k).

Geometric interpretation:

(x1; y1); (x2; y2); (x3;`y3) are

on the curve y2 = x3 + ax+ b

and on a line;

(x3; y3); (x3;`y3) are

on a vertical line.

“So that’s the group law?

(x1; y1) + (x2; y2) = (x3; y3)?”
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The curve’s tangent line at

(x1; y1) passes through (x3;`y3).

“So that’s the group law?

One special case for doubling?”



Not exactly! Definition of –

assumes that x2 6= x1.
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Then (x3; y3) 2 E(k).

Geometric interpretation:

The curve’s tangent line at

(x1; y1) passes through (x3;`y3).

“So that’s the group law?

One special case for doubling?”

Not exactly! More exceptions:

e.g., y1 could be 0.
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(x3; y3) with x3 = –2 ` x1 ` x2,

y3 = –(x1 ` x3)` y1,

– = (y2 ` y1)=(x2 ` x1).



Not exactly! More exceptions:

e.g., y1 could be 0.

Six cases overall: 1+1 =1;

1+ (x2; y2) = (x2; y2);

(x1; y1) +1 = (x1; y1);
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(x3; y3) with x3 = –2 ` x1 ` x2,

y3 = –(x1 ` x3)` y1,

– = (y2 ` y1)=(x2 ` x1).

E(k) is a commutative group:

Has neutral element 1, and `:

`1 =1; `(x; y) = (x;`y).

Commutativity: P +Q = Q+ P .

Associativity:

(P +Q) + R = P + (Q+ R).

Straightforward but tedious:

use a computer-algebra system

to check each possible case.

Or relate each P +Q case

to “ideal-class product.”

Many other proofs,

but can’t escape case analysis.
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Projective coordinates

Can eliminate some exceptions.

Define (X : Y : Z), for

(X; Y; Z) 2 kˆ kˆ k`f(0; 0; 0)g,
as f(rX; rY; rZ) : r 2 k` f0gg.
Could split into cases:

(X : Y : Z) =

(X=Z : Y=Z : 1) if Z 6= 0;

(X : Y : 0) =

(X=Y : 1 : 0) if Y 6= 0;

(X : 0 : 0) = (1 : 0 : 0).

But scaling unifies all cases.
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Can eliminate some exceptions.

Define (X : Y : Z), for

(X; Y; Z) 2 kˆ kˆ k`f(0; 0; 0)g,
as f(rX; rY; rZ) : r 2 k` f0gg.
Could split into cases:

(X : Y : Z) =

(X=Z : Y=Z : 1) if Z 6= 0;

(X : Y : 0) =

(X=Y : 1 : 0) if Y 6= 0;

(X : 0 : 0) = (1 : 0 : 0).

But scaling unifies all cases.

Write P2(k) = f(X : Y : Z)g.
Revised definition: E(k) =

f(X : Y : Z) 2 P2(k) :

Y 2Z = X3 + aXZ2 + bZ3g.
Could split into cases:

If (X : Y : Z) 2 E(k) and Z 6= 0:

(X : Y : Z) = (x : y : 1)

where x = X=Z, y = Y=Z.

Note that y2 = x3 + ax+ b.

Corresponds to previous (x; y).

If (X : Y : Z) 2 E(k) and Z = 0:

X3 = 0 so X = 0 so Y 6= 0

so (X : Y : Z) = (0 : 1 : 0).

Corresponds to previous 1.



Write P2(k) = f(X : Y : Z)g.
Revised definition: E(k) =

f(X : Y : Z) 2 P2(k) :

Y 2Z = X3 + aXZ2 + bZ3g.
Could split into cases:

If (X : Y : Z) 2 E(k) and Z 6= 0:

(X : Y : Z) = (x : y : 1)

where x = X=Z, y = Y=Z.

Note that y2 = x3 + ax+ b.

Corresponds to previous (x; y).

If (X : Y : Z) 2 E(k) and Z = 0:

X3 = 0 so X = 0 so Y 6= 0
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(X1 : Y1 : Z1) + (X2 : Y2 : Z2)

= (X3 : Y3 : Z3) where

U = Y2Z1 ` Y1Z2,

V = X2Z1 `X1Z2,

W = U2Z1Z2 ` V 3 ` 2V 2X1Z2,

X3 = V W ,

Y3 = U(V 2X1Z2 `W )` V 3Y1Z2,

Z3 = V 3Z1Z2.

“Aha! No more divisions by 0.”

Compare to previous formulas:

x3 = –2 ` x1 ` x2

and y3 = –(x1 ` x3)` y1

where – = (y2 ` y1)=(x2 ` x1).
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“Aha! No more divisions by 0.”

Compare to previous formulas:

x3 = –2 ` x1 ` x2

and y3 = –(x1 ` x3)` y1

where – = (y2 ` y1)=(x2 ` x1).

Oops, still have exceptions!

Formulas give bogus

(X3; Y3; Z3) = (0; 0; 0)

if (X1 : Y1 : Z1) = (0 : 1 : 0).

Same problem for doubling.

Formulas produce (0 : 1 : 0) for

(X1 : Y1 : Z1) + (X1 : `Y1 : Z1)

if Y1 6= 0 and Z1 6= 0

but not if Y1 = 0.

To define complete group law,

use six cases as before.
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Jacobian coordinates

“Weighted projective coordinates

using weights 2; 3; 1”:

Redefine (X : Y : Z) as˘
(r2X; r3Y; rZ) : r 2 k` f0g¯.

Redefine E(k)

using Y 2 = X3 + aXZ4 + bZ6.

Could again split into cases

for (X : Y : Z) 2 E(k):

if Z 6= 0 then (X : Y : Z) =

(X=Z2 : Y=Z3 : 1); if Z = 0

then (X : Y : Z) = (1 : 1 : 0).
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using Y 2 = X3 + aXZ4 + bZ6.
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if Z 6= 0 then (X : Y : Z) =

(X=Z2 : Y=Z3 : 1); if Z = 0

then (X : Y : Z) = (1 : 1 : 0).

(X1 : Y1 : Z1) + (X2 : Y2 : Z2)

= (X3 : Y3 : Z3) where

U1 = X1Z
2
2 , U2 = X2Z

2
1 ,

S1 = Y1Z
3
2 , S2 = Y2Z

3
1 ,

H = U2 ` U1, J = S2 ` S1,

X3 = `H3 ` 2U1H
2 + J2,

Y3 = `S1H
3 + J(U1H

2 `X3),

Z3 = Z1Z2H.

Streamlined algorithm

uses 16 multiplications,

of which 4 are squarings.

(1986 Chudnovsky/Chudnovsky)

5 squarings. (2001 Bernstein)
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5 squarings. (2001 Bernstein)

Still need all six cases.

Why use Jacobian coordinates?

8 mults (including 5 squarings)

for Jacobian-coordinate doubling

if a = `3 (e.g. NIST’s curves):

If Y1 6= 0 then

(X1 : Y1 : Z1) + (X1 : Y1 : Z1)

= (X3; Y3; Z3) where

T = Z2
1 , U = Y 2

1 , V = X1U,

W = 3(X1 ` T )(X1 + T ),

X3 = W 2 ` 8V ,

Z3 = (Y1 + Z1)2 ` U ` T ,

Y3 = W (4V `X3)` 8U2.
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Why use Jacobian coordinates?

8 mults (including 5 squarings)
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Unified addition laws

Do addition laws

have to fail for doublings?

Not necessarily!

Example: “Jacobi intersection”

s2 + c2 = t2, as2 + d2 = t2

has 17-multiplication addition

formula that works for doublings.

(1986 Chudnovsky/Chudnovsky)

16. (2001 Liardet/Smart)

Many more “unified formulas.”

But always find exceptions:

points not added by formulas.
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Do we need 6 cases? No!

Can cover E(k)ˆ E(k)

using 3 addition laws.

(1985 H. Lange/Ruppert)

How about just one law

that covers E(k)ˆ E(k)?

One complete addition law?

Bad news: “Theorem 1.

The smallest cardinality of a

complete system of addition laws

on E equals two.”

(1995 Bosma/H. Lenstra)



Do we need 6 cases? No!

Can cover E(k)ˆ E(k)

using 3 addition laws.

(1985 H. Lange/Ruppert)

How about just one law

that covers E(k)ˆ E(k)?

One complete addition law?

Bad news: “Theorem 1.

The smallest cardinality of a

complete system of addition laws

on E equals two.”

(1995 Bosma/H. Lenstra)

Interlude: The circle

Fix a field k with 2 6= 0.

Fix c 2 k with c 6= 0.
˘

(x; y) 2 kˆ k : x2 + y2 = c2
¯

is a commutative group with

(x1; y1) + (x2; y2) = (x3; y3)

where x3 = (x1y2 + y1x2)=c

and y3 = (y1y2 ` x1x2)=c.

Exercise: on curve.

Exercise: associative.

Look, a complete addition law!

But it’s not elliptic.



Interlude: The circle

Fix a field k with 2 6= 0.

Fix c 2 k with c 6= 0.
˘

(x; y) 2 kˆ k : x2 + y2 = c2
¯

is a commutative group with

(x1; y1) + (x2; y2) = (x3; y3)

where x3 = (x1y2 + y1x2)=c

and y3 = (y1y2 ` x1x2)=c.

Exercise: on curve.

Exercise: associative.

Look, a complete addition law!

But it’s not elliptic.

Edwards curves

Fix a field k with 2 6= 0.

Fix c; d 2 k with cd(1` dc4) 6= 0

and with d not a square.

f(x; y) 2 kˆ k :

x2 + y2 = c2(1 + dx2y2)g
is a commutative group with

(x1; y1) + (x2; y2) = (x3; y3)

defined by Edwards addition law:

x3 =
x1y2 + y1x2

c(1 + dx1x2y1y2)
,

y3 =
y1y2 ` x1x2

c(1` dx1x2y1y2)
.



Edwards curves

Fix a field k with 2 6= 0.

Fix c; d 2 k with cd(1` dc4) 6= 0

and with d not a square.

f(x; y) 2 kˆ k :

x2 + y2 = c2(1 + dx2y2)g
is a commutative group with

(x1; y1) + (x2; y2) = (x3; y3)

defined by Edwards addition law:

x3 =
x1y2 + y1x2

c(1 + dx1x2y1y2)
,

y3 =
y1y2 ` x1x2

c(1` dx1x2y1y2)
.

“What if denominators are 0?”

Answer: They aren’t!

If x2
1 + y2

1 = c2(1 + dx2
1y

2
1)

and x2
2 + y2

2 = c2(1 + dx2
2y

2
2)

then dx1x2y1y2 can’t be ˚1.

Outline of proof:

If (dx1x2y1y2)2 = 1 then

curve equation implies

(x1 + dx1x2y1y2y1)2 =

dx2
1y

2
1(x2 + y2)2.

Conclude that d is a square.

But d is not a square! Q.E.D.
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2
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(x1 + dx1x2y1y2y1)2 =

dx2
1y

2
1(x2 + y2)2.

Conclude that d is a square.

But d is not a square! Q.E.D.

So (x3; y3) is always defined:

x3 =
x1y2 + y1x2

c(1 + dx1x2y1y2)
,

y3 =
y1y2 ` x1x2

c(1` dx1x2y1y2)
.

Neutral element (0; c).

Commutative. `(x; y) = (`x; y).

Exercise: on curve.

Exercise: associative.

Magma computer-algebra system

solves both exercises in 20 secs.



So (x3; y3) is always defined:

x3 =
x1y2 + y1x2

c(1 + dx1x2y1y2)
,

y3 =
y1y2 ` x1x2

c(1` dx1x2y1y2)
.

Neutral element (0; c).

Commutative. `(x; y) = (`x; y).

Exercise: on curve.

Exercise: associative.

Magma computer-algebra system

solves both exercises in 20 secs.

Is this elliptic

(after desingularization)? Yes!

Transform to z2 = quartic:

y2(1` dc2x2) = c2 ` x2

so z2 = (1` dc2x2)(c2 ` x2)

where z = y(1` dc2x2).

Or transform to v2 = cubic:

v2 = eu3 + (4` 2e)u2 + eu

where u = (c+ y)=(c` y),

v = 2cu=x, e = 1` dc4.

Obtain every elliptic curve

having a point of order 4

and a unique point of order 2.
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where z = y(1` dc2x2).
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v2 = eu3 + (4` 2e)u2 + eu

where u = (c+ y)=(c` y),

v = 2cu=x, e = 1` dc4.

Obtain every elliptic curve

having a point of order 4

and a unique point of order 2.

So many elliptic curves have a

complete addition law.

What about Bosma/Lenstra?

Recall “Theorem 1.

The smallest cardinality of a

complete system of addition laws

on E equals two.”

“Complete” in the theorem

means “covers E(k)ˆ E(k)”;

k is the algebraic closure of k.

The Edwards addition law has

exceptions defined over k(
p
d),

but no exceptions defined over k.
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What about Bosma/Lenstra?

Recall “Theorem 1.

The smallest cardinality of a

complete system of addition laws

on E equals two.”

“Complete” in the theorem

means “covers E(k)ˆ E(k)”;

k is the algebraic closure of k.

The Edwards addition law has

exceptions defined over k(
p
d),

but no exceptions defined over k.

Historical notes

on the addition law:

Euler/Gauss: c = 1, d = `1

over field with
p`1.

2007 Edwards: d = 1, general c.

Theorem: over k,

obtain all elliptic curves.

2007 Bernstein/Lange:

general d. In particular:

complete for non-square d.

Also streamlined formulas,

coming next!
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Theorem: over k,

obtain all elliptic curves.
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general d. In particular:

complete for non-square d.

Also streamlined formulas,
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Computations on Edwards curves

Take c = 1 for simplicity, speed;

no loss of generality.

To avoid divisions, use

(X : Y : Z) with Z 6= 0 and

(X2 + Y 2)Z2 = Z4 + dX2Y 2 to

represent (X=Z; Y=Z) on Edwards

curve x2 + y2 = 1 + dx2y2.

Edwards addition law (for c = 1):

x3 =
x1y2 + y1x2

1 + dx1x2y1y2
,

y3 =
y1y2 ` x1x2

1` dx1x2y1y2
.



Computations on Edwards curves

Take c = 1 for simplicity, speed;

no loss of generality.

To avoid divisions, use

(X : Y : Z) with Z 6= 0 and

(X2 + Y 2)Z2 = Z4 + dX2Y 2 to

represent (X=Z; Y=Z) on Edwards

curve x2 + y2 = 1 + dx2y2.

Edwards addition law (for c = 1):

x3 =
x1y2 + y1x2

1 + dx1x2y1y2
,

y3 =
y1y2 ` x1x2

1` dx1x2y1y2
.

Clear denominators:

X3 = Z1Z2(X1Y2 + Y1X2)

´ (Z2
1Z

2
2 ` dX1X2Y1Y2),

Y3 = Z1Z2(Y1Y2 `X1X2)

´ (Z2
1Z

2
2 + dX1X2Y1Y2),

Z3 = (Z2
1Z

2
2 ` dX1X2Y1Y2)

´ (Z2
1Z

2
2 + dX1X2Y1Y2).

Rewrite x1y2 + x2y1 as

(x1 + y1)(x2 + y2)` x1x2 ` y1y2,

exploit common subexpressions.

12 multiplications (one by d,

one a squaring), 7 additions.

Still complete.
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one a squaring), 7 additions.

Still complete.

Comparison of addition costs

if curve parameters are small:

System Cost
Jacobian 11M + 5S
Jacobi intersection 13M + 2S
Projective 12M + 2S
Chudnovsky caching 10M + 4S
Jacobi quartic 10M + 3S
Hessian 12M
Edwards 10M + 1S



Comparison of addition costs

if curve parameters are small:

System Cost
Jacobian 11M + 5S
Jacobi intersection 13M + 2S
Projective 12M + 2S
Chudnovsky caching 10M + 4S
Jacobi quartic 10M + 3S
Hessian 12M
Edwards 10M + 1S

Can save time in doubling:

rewrite 1 + dx2
1y

2
1 as x2

1 + y2
1

(as suggested by Marc Joye);

rewrite 1` dx2
1y

2
1 as 2` x2

1 ` y2
1 ;

exploit common subexpressions.

B = (X1+Y1)2, C = X2
1 , D = Y 2

1 ,

E = C +D, H = Z2
1 ,

J = E ` 2H, X3 = (B ` E)J,

Y3 = E(C `D), Z3 = EJ.

7 multiplications

(4 of which are squarings),

6 additions.
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Jacobian if a = `3 3M + 5S
Jacobi intersection 3M + 4S
Edwards 3M + 4S
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A cryptographic example

“Curve25519”:

v2 = u3 + 486662u2 + u

over the field k = Z=(2255 ` 19).

Software speed records for

elliptic-curve Diffie-Hellman.

(2005 Bernstein)

n; P 7! nP is very fast

using Montgomery coordinates.

(1987 Montgomery)

n0; n1; P0; P1 7! n0P0 + n1P1?

Critical for digital signatures.

Batch verification: many ni’s.
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Multi-scalar multiplication:

Montgomery isn’t very fast.

Jacobian is faster.

Edwards is the new winner!

Curve25519 is equivalent

over k to the Edwards curve

x2 +y2 = 1+(1`1=121666)x2y2.

Transformation is easy:

x =
p

486664u=v,

y = (u` 1)=(u+ 1).

Map points to Edwards curve.

Use Edwards addition law.

Map back to Curve25519—

or use Edwards everywhere!



Multi-scalar multiplication:

Montgomery isn’t very fast.

Jacobian is faster.

Edwards is the new winner!

Curve25519 is equivalent

over k to the Edwards curve

x2 +y2 = 1+(1`1=121666)x2y2.

Transformation is easy:

x =
p

486664u=v,

y = (u` 1)=(u+ 1).

Map points to Edwards curve.

Use Edwards addition law.

Map back to Curve25519—

or use Edwards everywhere!

What about n 7! nQ

using standard Q = (9; : : :)?

Faster than n; P 7! nP?

If n = n0 + 216n1 + ´ ´ ´
then nQ = n0Q+ 216n1Q+ ´ ´ ´.
Precompute 216Q etc.

Use multi-scalar multiplication.

Edwards curves work well for

all of these applications.

Very fast doublings.

Very fast additions.

Complete addition law

helps stop secrets from

leaking through side channels.
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More on Edwards curves:

http://cr.yp.to

/newelliptic.html


