
What output size

resists collisions

in a xor of

independent expansions?

D. J. Bernstein

University of Illinois at Chicago

Hashes from stream ciphers?

Salsa20 stream cipher

allows fast random access:

expands 32-byte secret key,

8-byte nonce,

8-byte block counter

into 64-byte output block.

Alternative: Reduced rounds.

Alternative: ChaCha20,

newer variant of Salsa20.

Alternative: Traditional

LFSR-based stream ciphers.

Random access via exp.

Reuse this 48-byte-to-64-byte

function in a SHA replacement?

Different security goals,

but some sharing of (e.g.)

differential cryptanalysis;

some sharing of software;

some sharing of hardware.

Analogous to classic study

of reusing block ciphers.

Presumably better speed

by reusing stream ciphers.

Rumba20, a compression function

Salsa20 : (Z=256)48
! (Z=256)64.

Tweak the “diagonal constants”

to make four new functions

f1 : (Z=256)48
! (Z=256)64,

f2 : (Z=256)48
! (Z=256)64,

f3 : (Z=256)48
! (Z=256)64,

f4 : (Z=256)48
! (Z=256)64.

Define function Rumba20 :

(Z=256)192
! (Z=256)64 by

Rumba20(m1;m2;m3;m4) =

f1(m1)� f2(m2)�

f3(m3)� f4(m4).

Main question in this talk:

How cheaply can we find

collisions in Rumba20?

In the absence of collisions,

many reasonable ways

to build SHA replacement

using Rumba20.

Use output filter

to hide linear structure.

Optionally truncate after filter.

Rumba20 cycles/compressed byte

� 2 � Salsa20 cycles/byte.

Generally faster than SHA-256.

Can reduce rounds to save time.

Some literature

1996 Bellare/Micciancio:

Compress (m1;m2; : : :)

to f1(m1)� f2(m2)� � � �.

Good “incremental” speed.

Collision resistant?

Easy collisions for long inputs.

Not so easy if � is replaced by

+, vector +, modular �, etc.

Shorter inputs seem ok.

1999 van Oorschot/Wiener:

Parallel collision search.

2002 Wagner, “generalized

birthday attack”: impressively

fast collisions for �, +, vector +

for medium-length inputs.

Speed not so impressive

for short inputs.

Also, heavy memory use.

Open questions from Wagner:

Smaller memory use?

Parallelization “without enormous

communication complexity”?

Review of Wagner’s attack

Wagner says:

Choose 2128 values of m1

and 2128 values of m2.

Sort all pairs (f1(m1);m1)

into lexicographic order.

Sort all pairs (f2(m2);m2)

into lexicographic order.

Merge sorted lists to find

� 2128 pairs (m1;m2)

such that first 128 bits

of f1(m1)� f2(m2) are 0.

Compute � 2128 vectors

(f1(m1)� f2(m2);m1;m2)

where first 128 bits are 0.

Sort into lexicographic order.

Similarly f3(m3)� f4(m4).

Merge to find � 2128 vectors

(m1;m2;m3;m4) such that

first 256 bits of f1(m1)�

f2(m2)� f3(m3)� f4(m4) are 0.

Sort to find � 1 collision

in all 512 bits of f1(m1)�

f2(m2)� f3(m3)� f4(m4).

Generalize 128 to b. Sorting:

“O(n logn) time” where n = 2b.

“A lot of memory”:

huge machine storing 2b vectors.

Compare van Oorschot/Wiener:

Similar time, � 2b, using

� 2b parallel search units.

Similar machine cost.

Much more flexibility:

easily use smaller machines.

Normally want collisions in

truncation(scrambling(4b bits)).

Truncation reduces b for van

Oorschot/Wiener; not Wagner.

Improving Wagner’s attack

1. Search in parallel for m
i

’s

having many 0 bits in f

i

(m
i

).

2. Use mesh sorting:

sort n items on n parallel cells

in a
p

n�

p

n mesh

in time �
p

n.

3. Adapt and optimize parameters

to use smaller machine.

4. Streamline everything

to save constant factor.

Speed of improved attack,

ignoring constant factors:

Machine cost 28b=9, time 24b=9.

More generally, for 0 < � 8b=9:

Machine cost 2, time 24b�4. For

 < 2b=3, van Oorschot/Wiener

is better: time 22b�.

More generally, for 0 < � 8b=9

and =2 � t � 4b� 4:

Machine cost 2, time 2t,

success chance 2t+4�4b.

For t > 2, van Oorschot/Wiener

chance 22t+2�4b is better.

Status of Rumba20

Best attack at this point:

For small machine costs,

van Oorschot/Wiener.

Price-performance ratio

AT � 2256.

For large machine costs

(above � 285 parallel cells),

this improvement of Wagner.

Best AT � 2171

with � 2114 parallel cells.

In theory: can compute AT

given gate/wire costs, speeds.

Cryptanalyst needs

much smaller AT !

Better attack on 4-xor?

Better attack on Rumba20?

On the ChaCha20 variant?

On reduced-round variants?

Quickly generate leading 0’s?

I offer $1000 prize for

the public Rumba20 cryptanalysis

that I consider most interesting.

Awarded at the end of 2007.

Send URLs of your papers to

snuffle6@box.cr.yp.to.

