What output size resists collisions in a xor of independent expansions?

D. J. Bernstein

University of Illinois at Chicago

Hashes from stream ciphers?

Salsa20 stream cipher allows fast random access: expands 32-byte secret key, 8-byte nonce, 8-byte block counter into 64-byte output block. Alternative: Reduced rounds. Alternative: ChaCha20, newer variant of Salsa20. Alternative: Traditional LFSR-based stream ciphers.

Random access via exp.

Reuse this 48-byte-to-64-byte function in a SHA replacement?

Different security goals, but some sharing of (e.g.) differential cryptanalysis; some sharing of software; some sharing of hardware.

Analogous to classic study of reusing block ciphers. Presumably better speed by reusing stream ciphers. Rumba20, a compression function

Salsa20 : $(\mathbf{Z}/256)^{48}
ightarrow (\mathbf{Z}/256)^{64}$.

Tweak the "diagonal constants" to make four new functions

 $egin{aligned} f_1 : (\mathbf{Z}/256)^{48} &
ightarrow (\mathbf{Z}/256)^{64}, \ f_2 : (\mathbf{Z}/256)^{48} &
ightarrow (\mathbf{Z}/256)^{64}, \ f_3 : (\mathbf{Z}/256)^{48} &
ightarrow (\mathbf{Z}/256)^{64}, \ f_4 : (\mathbf{Z}/256)^{48} &
ightarrow (\mathbf{Z}/256)^{64}. \end{aligned}$

Define function Rumba20 : $(\mathbf{Z}/256)^{192} \rightarrow (\mathbf{Z}/256)^{64}$ by Rumba20 $(m_1, m_2, m_3, m_4) =$ $f_1(m_1) \oplus f_2(m_2) \oplus$ $f_3(m_3) \oplus f_4(m_4).$ Main question in this talk: How cheaply can we find collisions in Rumba20?

In the absence of collisions, many reasonable ways to build SHA replacement using Rumba20.

- Use output filter
- to hide linear structure.
- Optionally truncate after filter.

Rumba20 cycles/compressed byte

pprox 2 · Salsa20 cycles/byte.

Generally faster than SHA-256.

Can reduce rounds to save time.

Some literature

1996 Bellare/Micciancio:

Compress $(m_1, m_2, ...)$ to $f_1(m_1) \oplus f_2(m_2) \oplus \cdots$. Good "incremental" speed.

Collision resistant?

Easy collisions for long inputs. Not so easy if \oplus is replaced by +, vector +, modular \cdot , etc.

Shorter inputs seem ok.

1999 van Oorschot/Wiener: Parallel collision search.

2002 Wagner, "generalized birthday attack": impressively fast collisions for \oplus , +, vector + for medium-length inputs.

Speed not so impressive for short inputs.

Also, heavy memory use.

Open questions from Wagner: Smaller memory use? Parallelization "without enormous communication complexity"?

Review of Wagner's attack

Wagner says: Choose 2^{128} values of m_1 and 2^{128} values of m_2 .

Sort all pairs $(f_1(m_1), m_1)$ into lexicographic order. Sort all pairs $(f_2(m_2), m_2)$ into lexicographic order.

Merge sorted lists to find $\approx 2^{128}$ pairs (m_1, m_2) such that first 128 bits of $f_1(m_1) \oplus f_2(m_2)$ are 0.

Compute $\approx 2^{128}$ vectors $(f_1(m_1) \oplus f_2(m_2), m_1, m_2)$ where first 128 bits are 0. Sort into lexicographic order. Similarly $f_3(m_3) \oplus f_4(m_4)$. Merge to find $pprox 2^{128}$ vectors (m_1, m_2, m_3, m_4) such that first 256 bits of $f_1(m_1) \oplus$ $f_2(m_2) \oplus f_3(m_3) \oplus f_4(m_4)$ are 0. Sort to find pprox 1 collision in all 512 bits of $f_1(m_1) \oplus$ $f_2(m_2) \oplus f_3(m_3) \oplus f_4(m_4).$

Generalize 128 to b. Sorting: " $O(n \log n)$ time" where $n = 2^b$. "A lot of memory": huge machine storing 2^b vectors. Compare van Oorschot/Wiener: Similar time, $\approx 2^b$, using $\approx 2^{b}$ parallel search units. Similar machine cost. Much more flexibility: easily use smaller machines. Normally want collisions in truncation(scrambling(4b bits)). Truncation reduces b for van

Oorschot/Wiener; not Wagner.

Improving Wagner's attack

1. Search in parallel for m_i 's having many 0 bits in $f_i(m_i)$.

2. Use mesh sorting: sort *n* items on *n* parallel cells in a $\sqrt{n} \times \sqrt{n}$ mesh in time $\approx \sqrt{n}$.

3. Adapt and optimize parameters to use smaller machine.

- 4. Streamline everything
- to save constant factor.

Speed of improved attack, ignoring constant factors: Machine cost $2^{8b/9}$, time $2^{4b/9}$. More generally, for $0 < c \le 8b/9$: Machine cost 2^c , time 2^{4b-4c} . For c < 2b/3, van Oorschot/Wiener is better: time 2^{2b-c} .

More generally, for $0 < c \le 8b/9$ and $c/2 \le t \le 4b - 4c$: Machine cost 2^c , time 2^t , success chance $2^{t+4c-4b}$. For t > 2c, van Oorschot/Wiener chance $2^{2t+2c-4b}$ is better.

Status of Rumba20

Best attack at this point:

For small machine costs, van Oorschot/Wiener. Price-performance ratio $AT \approx 2^{256}$.

For large machine costs (above $\approx 2^{85}$ parallel cells), this improvement of Wagner. Best $AT \approx 2^{171}$ with $\approx 2^{114}$ parallel cells. In theory: can compute ATgiven gate/wire costs, speeds. Cryptanalyst needs much smaller *AT*!

Better attack on 4-xor? Better attack on Rumba20? On the ChaCha20 variant? On reduced-round variants? Quickly generate leading 0's?

I offer \$1000 prize for the public Rumba20 cryptanalysis that I consider most interesting. Awarded at the end of 2007.

Send URLs of your papers to
snuffle6@box.cr.yp.to.