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Is It easy to determine whether a
given integer is prime?

If “easy” means “computable”:
Yes, of course.

If “easy” means “computable
in polynomial time": Yes.
(2002 Agrawal/Kayal/Saxena)

If “easy” means “computable
in essentially cubic time":

Conjecturally yes!
See Williams talk tomorrow.



What about quadratic time?
What about linear time?

What if we want to determine
with proof whether a
given integer is prime?

Can results be verified
faster than they're computed?

What if we want

proven bounds on time?

Does randomness help?



Cost measure for this talk:
time on a serial computer.
Beyond scope of this talk:
use "AT" cost measure

to see communication, parallelism.

Helpful subroutines:

Can compute B-bit product,
quotient, gcd in time < B1to(1),
(1963 Toom; 1966 Cook;

1971 Knuth)

Beyond scope of this talk:

time analyses more precise
than “< Bconstant+o(1) '



Compositeness proofs

If n Is prime and w € Z

then w"™ — w € nZ

SO T IS "wW-Sprp :

the easy difference-of-squares
factorization of w™ — w,
depending on orda(n — 1),
has at least one factor in nZ.

eg.. Ifneb+8Zis prime
and w € Z then w € nZ or
w1/2 11 enZor
w14 11 enZor
w14 _1¢enz




Given n > 2: Try random w.
If n is not w-sprp, have proven n
composite. Otherwise keep trying.

Given composite n,
this algorithm eventually finds
compositeness certificate w.

Each w has > 75% chance.

Random time < B2to(1)

to find certificate if n < 25.
Deterministic time < B2+o(1)
to verity certificate.

Open: Is there a compositeness
certificate findable in time BO(1),
verifiable in time < Bto(1)?




Given prime n,

this algorithm loops forever.
After many w's we are
confident that n is prime . ..
but we don't have a proof.

Challenge to number theorists:
Prove n prime!

Side issue: Do users care?

Paranoid bankers: “Yes,
we demand primality proofs.”

Competent cryptographers: “No,
but we have other uses for
the underlying tools.”



Combinatorial primality proofs

If there are many elements
of a particular subgroup of

a prime cyclotomic extension of

Z/n then n is a power of a prime.
(2002 Agrawal/Kayal /Saxena)

Many primes r have
2/3

rime divisors of  — 1 above r

(1985 Fouvry). Deduce that AKS
algorithm takes time < B12+o(1)
to prove primality of n.

Algorithm 1s conjectured
to take time < Bo+o(1),



Variant using arbitrary cyclotomic
extensions takes time < B8+o(1).
(2002 Lenstra)

Variant with better bound on
group structure takes time

< B75+o(l)| (2002 Macaj;
same Idea without credit

in 2003 revision of AKS paper)

These variants are conjectured
to take time < Bo+o(1),

Variant using Gaussian periods
is proven to take time < Boto(l)
(2004 Lenstra/Pomerance)



What if n is composite?
Output of these algorithms
IS @ compositeness proof.

Time < B*to(1) to verify proof.
Time < B%t°(1) to find proof.

For comparison, traditional
sprp compositeness proofs:
verify proof, < B2+o(1).

find proof, random < B2to(l),

For comparison, factorization:
verify proof, < B1to(l);

find proof, conjectured
< B(1.901...+0(1))(B/ g 5)1/3.



Benefit from randomness?

Use random Kummer extensions:

twist. (2003.01 Bernstein,
and independently 2003.03
Mihdilescu/Avanzi;
2-power-degree case: 2002.12

Berrizbeitia; prime-degree case:
2003.01 Cheng)

Many divisors of n" — 1 (overkill:

1983 Odlyzko/Pomerance).
Deduce: time < pgA4+o(1)

to verity primality certificate.

Random time < B2to(1)
to find certificate.



Open: Primality proof with

proven deterministic time
< B>to(1) to find, verify?

Open: Primality proof with

proven random time
< B3+o(1) to find, verify?

Open: Primality proof with

reasonably conjectured time
< B3to(1) to find, verify?



Prime-order primality proofs

f w» 1 =1inZ/n, and n — 1
has a prime divisor ¢ > +/n

with w(»~1/9 — 1 in (Z/n)*,
then n is prime. (1876 Lucas,
1914 Pocklington, 1927 Lehmer)

Many generalizations.

Can extend Z/n. (1876 Lucas,
1930 Lehmer, 1975 Morrison,
1975 Selfridge /Wunderlich,

1975 Brillhart/Lehmer/Selfridge,
1976 Williams/Judd, 1983
Adleman /Pomerance/Rumely)




Can prove arbitrary primes.
Proofs are fast to verify
but often very slow to find.

Replace unit group by
random elliptic-curve group.
(1986 Goldwasser/Kilian;
point counting: 1985 Schoof)

Use complex-multiplication
curves; faster point counting.
(1988 Atkin; special cases:
1985 Bosma, 1986
Chudnovsky/Chudnovsky)

Merge square-root computations.
(1990 Shallit)



Culmination of these ideas
is “fast elliptic-curve
primality proving” (FastECPP):

Conjectured time < B4t+o(1)
to find certificate
proving primality of n.

Proven deterministic time
< B3+o(1) to verify certificate.

For comparison, combinatorics:
proven random < B21°(1) to find,
< BA4to(l) to verify.



Variant using

genus-2 hyperelliptic curves:

Proven random time BY(1)
to find certificate

proving primality of n.
(1992 Adleman/Huang)

Tools in proof: bounds on size

of Jacobian (1948 Weil); many

primes in interval of width z3/4

around z (1979 Iwaniec/Jutila).

Proven deterministic time
< B3+to(l) to verify certificate.



Variant using elliptic curves
with large power-of-2 factors

(1987 Pomerance):

Proven existence of certificate
proving primality of n.

Proven deterministic time

< B2to(l) to verify certificate.

Open: Is there

a primality certificate
findable in time BO(l),
verifiable in time < B2to(1)?

Open: Is there
a primality certificate
verifiable in time < Bto(1)?



Veritying elliptic-curve proofs

Main theorem in a nutshell:

If an elliptic curve

E(Z/n) has a point

of prime order g > ([n!/4] + 1)2
then n Is prime.

Proof in a nutshell:

If p is a prime divisor of n
then the same point mod »
has order g in E(Fp),

but #E(Fp) < (/P + 1)3
(Hasse 1936), so nl/2 < p.




More concretely:

Given odd integer n > 2,

a € {6, 10, 14,18, ...}, integer c,
gcd{n, 3 +ac®+ c} =1,
gcd{n, a’ — 4} =1,

prime g > ([n1/4] + 1)

Define z1 = ¢, 21 = 1,

2 = (T — 27)°,

20, = 4:c7;zz-(:c72; +azx;z; + zf)
Toip1 = 4(TiTit1 — 2i2i41)°

>
2i11 = de(Ti2401 — 2iTi01)”

It z; € nZ then n is prime.



For each prime p dividing n:

(a? — 4)(c® +ac® +¢c) #0in Fy,
so (3 +ac?+c)y’ =z +az’+x
Is an elliptic curve over Fyp;

(c, 1) is a point on curve.

On curve: i(c, 1) = (z;/24, .. .)
generically. (1987 Montgomery)
Analyze exceptional cases, show

g(c,1) = co. (2006 Bernstein)

Many previous ECPP variants.
Trickier recursions,
typically testing coprimality.



Finding elliptic-curve proofs

To prove primality of n: Choose
random E. Compute #E(Z/n)
by Schoof’s algorithm.

Compute g = #E(Z/n)/2. If q
doesn’'t seem prime, try new E.

If g > norq < ([nY/4] +1)%
n 1s small; easy base case.

Otherwise:

Recursively prove primality of g.
Choose random point P on E.
If 2P = o0, try another P.

Now 2P has prime order gq.



Schoof's algorithm:
time B>to(l)

Conjecturally find prime g after
B1+o(1) curves on average.
Reduce number of curves

by allowing

smaller ratios q/#E(Z/n).

Recursion involves
B1+o(1) |evels.

Reduce number of levels

by allowing and demanding
smaller ratios q/#E(Z/n).

Overall time B7+o(1),



Faster way to generate curves
with known number of points:
generate curves with
small-discriminant

complex multiplication (CM).
Reduces conjectured time

With more work: B4to(1),

CM has applications

beyond primality proofs:

e.g., can generate CM curves
with low embedding degree
for pairing-based cryptography.



Complex multiplication

Consider positive squarefree
integers D € 3+ 4Z.
(Can allow some other D's too.)

If prime n equals (u? + Dv?)/4
then “CM with discriminant —D"
produces curves over Z/n with

n + 1 4+ uw points.

Assuming D < B2+o(1);
Time BQ.5—|—O(1)_
Fancier algorithms: B2+0(1),



First step: Find all vectors
(a,b,c) € Z3 with

gcd{a, b, c} =1,

—D =b°—4ac, |b| <a<c
and b < 0= |b <a<c.

How?

Try each integer b between
— |+/D/3| and |4/D/3].
Find all small factors of 62 + D.
Find all factors a < |\/D/3].
For each (a, b),

find ¢ and check conditions.




Second step: For each (a, b, ¢)
compute to high precision

7(—6/2a ++/—D/2a) € C.
Some wacky standard notations:
g(z) = exp(2miz).

n — q(l LY (—1)kgk(3k-1)/2
k>1

4 Z (_1)/~ch(3k+1)/2)24_
k>1

f4(z) = n**(2/2)/n*(2).
j = (ff*+16)°/ fi*



How much precision is needed?

Answer: < pl+o(l) bits;
< BO5+o(1) terms in sum:
< Bo(1) inputs (a, b, ¢);
total time < B2:5+o(1)

Don't need explicit

upper bound on error.

Start with low precision:
obtain interval around answer;
if precision is too small,

later steps will notice

that interval iIs too large,

so retry with double precision.



Third step: Compute product
H_p € C[a:]
of £ — j(—b6/2a + v/—D/2a)

over all (a, b, c).

Amazing fact: H_p € Z|z].
The 7 values are

algebraic integers
generating a class field.

< B+o(1) factors.
Time < B2+o(1),



Fourth step: Find a root
rof H_pinZ/n.

Easy since n Is prime.

Amazing fact: the curve

y?> =3 + (3z + 2)r/(1728 — 1)
nas n + 1 4+ w points

for some (u, v) with

4n = u? + Dv?.




FastECPP using CM

To prove primality of n:
Choose y € B1+oll),

For each odd prime p < v,
compute square root of p

in quadratic extension of Z/n.
Also square root of —1.

Each square root
costs B2to(1),

Total time B31o(1).



For each positive squarefree

y-smooth D € 3+ 4Z
below B2+o(l),

compute square root of —D
in quadratic extension of Z/n.

Each square root
costs B1To(l);

multiply square roots of primes.

Total time B3to(1).



For each D
having /—D € Z/n,

find u, v with 4n = u? + Dv?
If possible.

This can be done by

a half-gcd computation.
Each D costs B1to(1),

Total time B31o(1).



Conjecturally there are
B1to(1) choices of (D, u, v).

Look forn+ 1+ u
having form 2g where g is prime.
More generally:

remove small factors

fromn+ 1+ u;
then look for primes.

Each compositeness proof
costs B2to(1),

Total time B31o(1).



Conjecturally have
several choices of (D, u, v, q),
when o(1)'s are large enough.

Use CM to construct curve

with order divisible by g.
Time < B25to(1). negligible.

Problems can occur.

Might have n +1 + u

when n + 1 — u was desired,

or vice versa. Curve might not
be iIsomorphic to curve of desired
form y? = z3 4+ az® + z.

Can work around problems,

or simply try next curve.



Recursively prove g prime.
Deduce that n Is prime.

< B1+o(1) levels of recursion.
Total time < B4to(1),

Verification time < B3+o(1),

Open: Can we quickly find (E, q)
with E an elliptic curve

(or another group scheme),

g prime, g € [n%0, n09],

and #E(Z/n) € qZ7



