Distinguishing prime numbers from composite numbers: the state of the art

D. J. Bernstein
University of Illinois at Chicago
Is it easy to determine whether a given integer is prime?

If “easy” means “computable”: Yes, of course.

If “easy” means “computable in polynomial time”: Yes. (2002 Agrawal/Kayal/Saxena)

If “easy” means “computable in essentially cubic time”: Conjecturally yes!

See Williams talk tomorrow.
What about quadratic time?

What about linear time?

What if we want to determine with proof whether a given integer is prime?

Can results be verified faster than they’re computed?

What if we want proven bounds on time?

Does randomness help?
Cost measure for this talk: time on a serial computer. Beyond scope of this talk: use “AT” cost measure to see communication, parallelism.

Helpful subroutines:
Can compute B-bit product, quotient, gcd in time $\leq B^{1+o(1)}$. (1963 Toom; 1966 Cook; 1971 Knuth)

Beyond scope of this talk: time analyses more precise than “$\leq B^{\text{constant}+o(1)}$. “
Compositeness proofs

If \(n \) is prime and \(w \in \mathbb{Z} \)
then \(w^n - w \in n\mathbb{Z} \)
so \(n \) is “\(w \)-sprp”:
the easy difference-of-squares factorization of \(w^n - w \),
depending on \(\text{ord}_2(n - 1) \),
has at least one factor in \(n\mathbb{Z} \).

e.g.: If \(n \in 5 + 8\mathbb{Z} \) is prime
and \(w \in \mathbb{Z} \) then \(w \in n\mathbb{Z} \) or
\(w^{(n-1)/2} + 1 \in n\mathbb{Z} \) or
\(w^{(n-1)/4} + 1 \in n\mathbb{Z} \) or
\(w^{(n-1)/4} - 1 \in n\mathbb{Z} \).
Given $n \geq 2$: Try random w. If n is not w-sprp, have proven n composite. Otherwise keep trying.

Given composite n, this algorithm eventually finds compositeness certificate w. Each w has $\geq 75\%$ chance.

Random time $\leq B^{2+o(1)}$ to find certificate if $n < 2^B$. Deterministic time $\leq B^{2+o(1)}$ to verify certificate.

Open: Is there a compositeness certificate findable in time $B^{O(1)}$, verifiable in time $\leq B^{1+o(1)}$?
Given prime n, this algorithm loops forever. After many w’s we are confident that n is prime . . . but we don’t have a proof.

Challenge to number theorists: Prove n prime!

Side issue: Do users care?

Paranoid bankers: “Yes, we demand primality proofs.”

Competent cryptographers: “No, but we have other uses for the underlying tools.”
Combinatorial primality proofs

If there are many elements of a particular subgroup of a prime cyclotomic extension of \(\mathbb{Z}/n \) then \(n \) is a power of a prime. (2002 Agrawal/Kayal/Saxena)

Many primes \(r \) have prime divisors of \(r - 1 \) above \(r^{2/3} \) (1985 Fouvry). Deduce that AKS algorithm takes time \(\leq B^{12+o(1)} \) to prove primality of \(n \).

Algorithm is *conjectured* to take time \(\leq B^{6+o(1)} \).
Variant using *arbitrary* cyclotomic extensions takes time $\leq B^{8+o(1)}$. (2002 Lenstra)

Variant with better bound on group structure takes time $\leq B^{7.5+o(1)}$. (2002 Macaj; same idea without credit in 2003 revision of AKS paper)

These variants are conjectured to take time $\leq B^{6+o(1)}$.

Variant using Gaussian periods is *proven* to take time $\leq B^{6+o(1)}$. (2004 Lenstra/Pomerance)
What if \(n \) is composite?
Output of these algorithms is a compositeness proof.

Time \(\leq B^{4+o(1)} \) to verify proof.
Time \(\leq B^{6+o(1)} \) to find proof.

For comparison, traditional sprp compositeness proofs:
verify proof, \(\leq B^{2+o(1)} \);
find proof, random \(\leq B^{2+o(1)} \).

For comparison, factorization:
verify proof, \(\leq B^{1+o(1)} \);
find proof, conjectured \(\leq B^{1.901...+o(1))(B/\lg B)^{1/3}} \).
Benefit from randomness?

Many divisors of $n^{\cdots} - 1$ (overkill: 1983 Odlyzko/Pomerance). Deduce: time $\leq B^{4+o(1)}$ to verify primality certificate.

Random time $\leq B^{2+o(1)}$ to find certificate.
Open: Primality proof with proven deterministic time
$\leq B^{5+o(1)}$ to find, verify?

Open: Primality proof with proven random time
$\leq B^{3+o(1)}$ to find, verify?

Open: Primality proof with reasonably conjectured time
$\leq B^{3+o(1)}$ to find, verify?
Prime-order primality proofs

If \(w^{n-1} = 1 \) in \(\mathbb{Z}/n \), and \(n - 1 \) has a prime divisor \(q \geq \sqrt{n} \) with \(w^{(n-1)/q} - 1 \) in \((\mathbb{Z}/n)^* \), then \(n \) is prime. (1876 Lucas, 1914 Pocklington, 1927 Lehmer)

Many generalizations.

Can prove arbitrary primes. Proofs are fast to verify but often very slow to find.

Replace unit group by random elliptic-curve group. (1986 Goldwasser/Kilian; point counting: 1985 Schoof)

Use complex-multiplication curves; faster point counting. (1988 Atkin; special cases: 1985 Bosma, 1986 Chudnovsky/Chudnovsky)

Merge square-root computations. (1990 Shallit)
Culmination of these ideas is “fast elliptic-curve primality proving” (FastECPP):

Conjectured time $\leq B^{4+o(1)}$ to find certificate proving primality of n.

Proven deterministic time $\leq B^{3+o(1)}$ to verify certificate.

For comparison, combinatorics:
proven random $\leq B^{2+o(1)}$ to find,
$\leq B^{4+o(1)}$ to verify.
Variant using genus-2 hyperelliptic curves:

Proven random time $B^{O(1)}$ to find certificate proving primality of n. (1992 Adleman/Huang)

Tools in proof: bounds on size of Jacobian (1948 Weil); many primes in interval of width $x^{3/4}$ around x (1979 Iwaniec/Jutila).

Proven deterministic time $\leq B^{3+o(1)}$ to verify certificate.
Variant using elliptic curves with large power-of-2 factors (1987 Pomerance):

Proven existence of certificate proving primality of n.
Proven deterministic time $\leq B^{2+o(1)}$ to verify certificate.

Open: Is there a primality certificate findable in time $B^{O(1)}$, verifiable in time $\leq B^{2+o(1)}$?

Open: Is there a primality certificate verifiable in time $\leq B^{1+o(1)}$?
Verifying elliptic-curve proofs

Main theorem in a nutshell:
If an elliptic curve $E(\mathbb{Z}/n)$ has a point
of prime order $q > (\lceil n^{1/4} \rceil + 1)^2$
then n is prime.

Proof in a nutshell:
If p is a prime divisor of n
then the same point mod p
has order q in $E(F_p)$,
but $\#E(F_p) \leq (\sqrt{p} + 1)^2$
(Hasse 1936), so $n^{1/2} < p$.
More concretely:

Given odd integer $n \geq 2$, $a \in \{6, 10, 14, 18, \ldots\}$, integer c, $\gcd\{n, c^3 + ac^2 + c\} = 1$, $\gcd\{n, a^2 - 4\} = 1$, prime $q > (\lceil n^{1/4} \rceil + 1)^2$:

Define $x_1 = c$, $z_1 = 1$,

\[x_{2i} = (x_i^2 - z_i^2)^2, \]
\[z_{2i} = 4x_iz_i(x_i^2 + ax_iz_i + z_i^2), \]
\[x_{2i+1} = 4(x_ix_{i+1} - z_iz_{i+1})^2, \]
\[z_{2i+1} = 4c(x_iz_{i+1} - z_ix_{i+1})^2. \]

If $z_q \in n\mathbb{Z}$ then n is prime.
For each prime p dividing n:

$$(a^2 - 4)(c^3 + ac^2 + c) \neq 0 \text{ in } \mathbb{F}_p,$$

so

$$(c^3 + ac^2 + c)y^2 = x^3 + ax^2 + x$$

is an elliptic curve over \mathbb{F}_p;

$(c, 1)$ is a point on curve.

On curve: $i(c, 1) = (x_i/z_i, \ldots)$ generically. (1987 Montgomery)

Analyze exceptional cases, show $q(c, 1) = \infty$. (2006 Bernstein)

Many previous ECPP variants.

Trickier recursions, typically testing coprimality.
Finding elliptic-curve proofs

To prove primality of n: Choose random E. Compute $\#E(\mathbb{Z}/n)$ by Schoof’s algorithm.

Compute $q = \#E(\mathbb{Z}/n)/2$. If q doesn’t seem prime, try new E.

If $q \geq n$ or $q \leq ([n^{1/4}] + 1)^2$: n is small; easy base case.

Otherwise:
Recursively prove primality of q.
Choose random point P on E.
If $2P = \infty$, try another P.
Now $2P$ has prime order q.

Schoof’s algorithm:
time $B^{5+o(1)}$.

Conjecturally find prime q after $B^{1+o(1)}$ curves on average.
Reduce number of curves by allowing smaller ratios $q/#E(\mathbb{Z}/n)$.

Recursion involves $B^{1+o(1)}$ levels.
Reduce number of levels by allowing and demanding smaller ratios $q/#E(\mathbb{Z}/n)$.

Overall time $B^{7+o(1)}$.
Faster way to generate curves with known number of points: generate curves with small-discriminant complex multiplication (CM). Reduces conjectured time to $B^{5+o(1)}$.

With more work: $B^{4+o(1)}$.

CM has applications beyond primality proofs: e.g., can generate CM curves with low embedding degree for pairing-based cryptography.
Complex multiplication

Consider positive squarefree integers $D \in 3 + 4\mathbb{Z}$.
(Can allow some other D’s too.)

If prime n equals $(u^2 + Du^2)/4$ then “CM with discriminant $-D$” produces curves over \mathbb{Z}/n with $n + 1 \pm u$ points.

Assuming $D \leq B^{2+o(1)}$:
Time $B^{2.5+o(1)}$.
Fancier algorithms: $B^{2+o(1)}$.
First step: Find all vectors $(a, b, c) \in \mathbb{Z}^3$ with
\[\gcd\{a, b, c\} = 1, \]
\[-D = b^2 - 4ac, \quad |b| \leq a \leq c, \]
and $b \leq 0 \Rightarrow |b| < a < c$.

How?
Try each integer b between
$-\left\lfloor \sqrt{D/3} \right\rfloor$ and $\left\lceil \sqrt{D/3} \right\rceil$.
Find all small factors of $b^2 + D$.
Find all factors $a \leq \left\lfloor \sqrt{D/3} \right\rfloor$.
For each (a, b), find c and check conditions.
Second step: For each \((a, b, c)\) compute to high precision
\[j(-b/2a + \sqrt{-D}/2a) \in \mathbb{C}. \]

Some wacky standard notations:

\[q(z) = \exp(2\pi i z). \]

\[\eta^{24} = q\left(1 + \sum_{k \geq 1} (-1)^k q^{k(3k-1)/2} \right. \]
\[\left. + \sum_{k \geq 1} (-1)^k q^{k(3k+1)/2}\right)^{24}. \]

\[f_1^{24}(z) = \eta^{24}(z/2)/\eta^{24}(z). \]

\[j = (f_1^{24} + 16)^3/f_1^{24}. \]
How much precision is needed?

Answer: $\leq B^{1+o(1)}$ bits;
\leq B^{0.5+o(1)}$ terms in sum;
\leq B^{1+o(1)}$ inputs (a, b, c);
total time $\leq B^{2.5+o(1)}$.

Don’t need explicit upper bound on error.
Start with low precision;
obtain interval around answer;
if precision is too small,
later steps will notice that interval is too large,
so retry with double precision.
Third step: Compute product $H_{-D} \in \mathbf{C}[x]$
of $x - j(-b/2a + \sqrt{-D}/2a)$
over all (a, b, c).

Amazing fact: $H_{-D} \in \mathbf{Z}[x]$.
The j values are algebraic integers generating a class field.

$\leq B^{1+o(1)}$ factors.
Time $\leq B^{2+o(1)}$.
Fourth step: Find a root r of H_D in \mathbb{Z}/n.

Easy since n is prime.

Amazing fact: the curve $y^2 = x^3 + (3x + 2)r/(1728 - r)$ has $n + 1 + u$ points for some (u, v) with $4n = u^2 + Dv^2$.
FastECPP using CM

To prove primality of n:

Choose $y \in B^{1+o(1)}$.

For each odd prime $p \leq y$, compute square root of p in quadratic extension of \mathbb{Z}/n.

Also square root of -1.

Each square root costs $B^{2+o(1)}$.

Total time $B^{3+o(1)}$.
For each positive squarefree \(y \)-smooth \(D \in 3 + 4\mathbb{Z} \) below \(B^{2+o(1)} \),
compute square root of \(-D\) in quadratic extension of \(\mathbb{Z}/n \).

Each square root costs \(B^{1+o(1)} \):
multiply square roots of primes.

Total time \(B^{3+o(1)} \).
For each D having $\sqrt{-D} \in \mathbb{Z}/n$, find u, v with $4n = u^2 + Du^2$, if possible.

This can be done by a half-gcd computation. Each D costs $B^{1+o(1)}$.

Total time $B^{3+o(1)}$.
Conjecturally there are $B^{1+o(1)}$ choices of (D, u, v).

Look for $n + 1 \pm u$

having form $2q$ where q is prime.

More generally:

remove small factors

from $n + 1 \pm u$;

then look for primes.

Each compositeness proof costs $B^{2+o(1)}$.

Total time $B^{3+o(1)}$.
Conjecturally have several choices of \((D, u, v, q)\), when \(o(1)'s\) are large enough.

Use CM to construct curve with order divisible by \(q\).
Time \(\leq B^{2.5+o(1)}\); negligible.

Problems can occur.
Might have \(n + 1 + u\)
when \(n + 1 - u\) was desired, or vice versa. Curve might not be isomorphic to curve of desired form \(y^2 = x^3 + ax^2 + x\).
Can work around problems, or simply try next curve.
Recursively prove \(q \) prime.
Deduce that \(n \) is prime.

\[\leq B^{1+o(1)} \] levels of recursion.
Total time \(\leq B^{4+o(1)} \).

Verification time \(\leq B^{3+o(1)} \).

Open: Can we quickly find \((E, q)\) with \(E \) an elliptic curve (or another group scheme), \(q \) prime, \(q \in [n^{0.6}, n^{0.9}] \), and \(\#E(\mathbb{Z}/n) \in q\mathbb{Z} \)?