Distinguishing prime numbers

 from composite numbers: the state of the artD. J. Bernstein University of Illinois at Chicago

Is it easy to determine whether a given integer is prime?

If "easy" means "computable":
Yes, of course.
If "easy" means "computable in polynomial time": Yes. (2002 Agrawal/Kayal/Saxena)

If "easy" means "computable in essentially cubic time":
Conjecturally yes!
See Williams talk tomorrow.

What about quadratic time?
What about linear time?
What if we want to determine with proof whether a given integer is prime?

Can results be verified faster than they're computed?

What if we want proven bounds on time?

Does randomness help?

Cost measure for this talk:
time on a serial computer.
Beyond scope of this talk:
use "AT" cost measure
to see communication, parallelism.
Helpful subroutines:
Can compute B-bit product, quotient, gcd in time $\leq B^{1+o(1)}$. (1963 Toom; 1966 Cook;
1971 Knuth)
Beyond scope of this talk:
time analyses more precise than " $\leq B^{\text {constant+o(1)." }}$

Compositeness proofs

If n is prime and $w \in \mathbf{Z}$
then $w^{n}-w \in n \mathbf{Z}$
so n is " w-sprp":
the easy difference-of-squares
factorization of $w^{n}-w$,
depending on $\operatorname{ord}_{2}(n-1)$,
has at least one factor in $n \mathbf{Z}$.
e.g.: If $n \in 5+8 \mathbf{Z}$ is prime and $w \in \mathbf{Z}$ then $w \in n \mathbf{Z}$ or $w^{(n-1) / 2}+1 \in n \mathbf{Z}$ or
$w^{(n-1) / 4}+1 \in n \mathbf{Z}$ or $w^{(n-1) / 4}-1 \in n \mathbf{Z}$.

Given $n \geq 2$: Try random w.
If n is not w-sprp, have proven n composite. Otherwise keep trying.

Given composite n,
this algorithm eventually finds compositeness certificate w. Each w has $\geq 75 \%$ chance.

Random time $\leq B^{2+o(1)}$ to find certificate if $n<2^{B}$. Deterministic time $\leq B^{2+o(1)}$ to verify certificate.

Open: Is there a compositeness certificate findable in time $B^{O(1)}$ verifiable in time $\leq B^{1+o(1)} ?$

Given prime n,
this algorithm loops forever.
After many w's we are confident that n is prime... but we don't have a proof.

Challenge to number theorists: Prove n prime!

Side issue: Do users care?
Paranoid bankers: "Yes, we demand primality proofs."

Competent cryptographers: "No, but we have other uses for the underlying tools."

Combinatorial primality proofs

If there are many elements of a particular subgroup of a prime cyclotomic extension of \mathbf{Z} / n then n is a power of a prime. (2002 Agrawal/Kayal/Saxena)

Many primes r have prime divisors of $r-1$ above $r^{2 / 3}$ (1985 Fouvry). Deduce that AKS algorithm takes time $\leq B^{12+o(1)}$ to prove primality of n.

Algorithm is conjectured to take time $\leq B^{6+o(1)}$.

Variant using arbitrary cyclotomic extensions takes time $\leq B^{8+o(1)}$. (2002 Lenstra)

Variant with better bound on group structure takes time $\leq B^{7.5+o(1)}$. (2002 Macaj; same idea without credit in 2003 revision of AKS paper)

These variants are conjectured to take time $\leq B^{6+o(1)}$.

Variant using Gaussian periods is proven to take time $\leq B^{6+o(1)}$. (2004 Lenstra/Pomerance)

What if n is composite?
Output of these algorithms
is a compositeness proof.
Time $\leq B^{4+o(1)}$ to verify proof.
Time $\leq B^{6+o(1)}$ to find proof.
For comparison, traditional sprp compositeness proofs:
verify proof, $\leq B^{2+o(1)}$;
find proof, random $\leq B^{2+o(1)}$.
For comparison, factorization: verify proof, $\leq B^{1+o(1)}$;
find proof, conjectured $\leq B^{(1.901 \ldots+o(1))(B / \lg B)^{1 / 3}}$.

Benefit from randomness?

Use random Kummer extensions; twist. (2003.01 Bernstein, and independently 2003.03 Mihăilescu/Avanzi;
2-power-degree case: 2002.12 Berrizbeitia; prime-degree case:
2003.01 Cheng)

Many divisors of $n^{\cdots}-1$ (overkill: 1983 Odlyzko/Pomerance).
Deduce: time $\leq B^{4+o(1)}$
to verify primality certificate.
Random time $\leq B^{2+o(1)}$ to find certificate.

Open: Primality proof with proven deterministic time $\leq B^{5+o(1)}$ to find, verify?

Open: Primality proof with proven random time $\leq B^{3+o(1)}$ to find, verify?

Open: Primality proof with reasonably conjectured time $\leq B^{3+o(1)}$ to find, verify?

Prime-order primality proofs

If $w^{n-1}=1$ in \mathbf{Z} / n, and $n-1$
has a prime divisor $q \geq \sqrt{n}$ with $w^{(n-1) / q}-1$ in $(\mathbf{Z} / n)^{*}$, then n is prime. (1876 Lucas, 1914 Pocklington, 1927 Lehmer)

Many generalizations.
Can extend \mathbf{Z} / n. (1876 Lucas, 1930 Lehmer, 1975 Morrison, 1975 Selfridge/Wunderlich, 1975 Brillhart/Lehmer/Selfridge, 1976 Williams/Judd, 1983 Adleman/Pomerance/Rumely)

Can prove arbitrary primes.
Proofs are fast to verify
but often very slow to find.
Replace unit group by random elliptic-curve group. (1986 Goldwasser/Kilian; point counting: 1985 Schoof)

Use complex-multiplication curves; faster point counting. (1988 Atkin; special cases: 1985 Bosma, 1986
Chudnovsky/Chudnovsky)
Merge square-root computations.
(1990 Shallit)

Culmination of these ideas is "fast elliptic-curve primality proving" (FastECPP):

Conjectured time $\leq B^{4+o(1)}$ to find certificate proving primality of n.

Proven deterministic time $\leq B^{3+o(1)}$ to verify certificate.

For comparison, combinatorics: proven random $\leq B^{2+o(1)}$ to find, $\leq B^{4+o(1)}$ to verify.

Variant using
genus-2 hyperelliptic curves:
Proven random time $B^{O(1)}$ to find certificate proving primality of n. (1992 Adleman/Huang)

Tools in proof: bounds on size of Jacobian (1948 Weil); many primes in interval of width $x^{3 / 4}$ around x (1979 Iwaniec/Jutila).

Proven deterministic time $\leq B^{3+o(1)}$ to verify certificate.

Variant using elliptic curves with large power-of-2 factors (1987 Pomerance):

Proven existence of certificate proving primality of n.
Proven deterministic time $\leq B^{2+o(1)}$ to verify certificate.

Open: Is there a primality certificate findable in time $B^{O(1)}$, verifiable in time $\leq B^{2+o(1)}$?

Open: Is there a primality certificate verifiable in time $\leq B^{1+o(1)} ?$

Verifying elliptic-curve proofs

Main theorem in a nutshell:
If an elliptic curve
$E(\mathbf{Z} / n)$ has a point
of prime order $q>\left(\left\lceil n^{1 / 4}\right\rceil+1\right)^{2}$ then n is prime.

Proof in a nutshell:
If p is a prime divisor of n
then the same point $\bmod p$
has order q in $E\left(\mathbf{F}_{p}\right)$,
but $\# E\left(\mathbf{F}_{p}\right) \leq(\sqrt{p}+1)^{2}$
(Hasse 1936), so $n^{1 / 2}<p$.

More concretely:
Given odd integer $n \geq 2$, $a \in\{6,10,14,18, \ldots\}$, integer c, $\operatorname{gcd}\left\{n, c^{3}+a c^{2}+c\right\}=1$,
$\operatorname{gcd}\left\{n, a^{2}-4\right\}=1$,
prime $q>\left(\left\lceil n^{1 / 4}\right\rceil+1\right)^{2}$:
Define $x_{1}=c, z_{1}=1$,
$x_{2 i}=\left(x_{i}^{2}-z_{i}^{2}\right)^{2}$,
$z_{2 i}=4 x_{i} z_{i}\left(x_{i}^{2}+a x_{i} z_{i}+z_{i}^{2}\right)$,
$x_{2 i+1}=4\left(x_{i} x_{i+1}-z_{i} z_{i+1}\right)^{2}$, $z_{2 i+1}=4 c\left(x_{i} z_{i+1}-z_{i} x_{i+1}\right)^{2}$.

If $z_{q} \in n \mathbf{Z}$ then n is prime.

For each prime p dividing n :
$\left(a^{2}-4\right)\left(c^{3}+a c^{2}+c\right) \neq 0$ in F_{p},
so $\left(c^{3}+a c^{2}+c\right) y^{2}=x^{3}+a x^{2}+x$ is an elliptic curve over \mathbf{F}_{p}; $(c, 1)$ is a point on curve.

On curve: $i(c, 1)=\left(x_{i} / z_{i}, \ldots\right)$ generically. (1987 Montgomery) Analyze exceptional cases, show $q(c, 1)=\infty .(2006$ Bernstein)

Many previous ECPP variants. Trickier recursions,
typically testing coprimality.

Finding elliptic-curve proofs

To prove primality of n : Choose random E. Compute $\# E(\mathbf{Z} / n)$ by Schoof's algorithm.

Compute $q=\# E(\mathbf{Z} / n) / 2$. If q doesn't seem prime, try new E.

If $q \geq n$ or $q \leq\left(\left\lceil n^{1 / 4}\right\rceil+1\right)^{2}$: n is small; easy base case.

Otherwise:
Recursively prove primality of q. Choose random point P on E. If $2 P=\infty$, try another P.
Now $2 P$ has prime order q.

Schoof's algorithm: time $B^{5+o(1)}$.

Conjecturally find prime q after $B^{1+o(1)}$ curves on average.
Reduce number of curves
by allowing
smaller ratios $q / \# E(\mathbf{Z} / n)$.
Recursion involves
$B^{1+o(1)}$ levels.
Reduce number of levels by allowing and demanding smaller ratios $q / \# E(\mathbf{Z} / n)$.

Overall time $B^{7+o(1)}$.

Faster way to generate curves with known number of points: generate curves with small-discriminant complex multiplication (CM). Reduces conjectured time to $B^{5+o(1)}$.
With more work: $B^{4+o(1)}$.
CM has applications beyond primality proofs: e.g., can generate CM curves with low embedding degree for pairing-based cryptography.

Complex multiplication

Consider positive squarefree integers $D \in 3+4 Z$.
(Can allow some other D's too.)
If prime n equals $\left(u^{2}+D v^{2}\right) / 4$
then "CM with discriminant $-D$ "
produces curves over \mathbf{Z} / n with $n+1 \pm u$ points.

Assuming $D \leq B^{2+o(1)}$: Time $B^{2.5+o(1)}$.
Fancier algorithms: $B^{2+o(1)}$.

First step: Find all vectors
$(a, b, c) \in \mathbf{Z}^{3}$ with
$\operatorname{gcd}\{a, b, c\}=1$,
$-D=b^{2}-4 a c,|b| \leq a \leq c$,
and $b \leq 0 \Rightarrow|b|<a<c$.

How?

Try each integer b between $-\lfloor\sqrt{D / 3}\rfloor$ and $\lfloor\sqrt{D / 3}\rfloor$.
Find all small factors of $b^{2}+D$.
Find all factors $a \leq\lfloor\sqrt{D / 3}\rfloor$.
For each (a, b),
find c and check conditions.

Second step: For each (a, b, c)
compute to high precision
$j(-b / 2 a+\sqrt{-D} / 2 a) \in \mathbf{C}$.
Some wacky standard notations:
$q(z)=\exp (2 \pi i z)$.
$\eta^{24}=q\left(1+\sum_{k \geq 1}(-1)^{k} q^{k(3 k-1) / 2}\right.$
$\left.+\sum_{k \geq 1}(-1)^{k} q^{k(3 k+1) / 2}\right)^{24}$.
$f_{1}^{24}(z)=\eta^{24}(z / 2) / \eta^{24}(z)$.
$j=\left(f_{1}^{24}+16\right)^{3} / f_{1}^{24}$.

How much precision is needed?

Answer: $\leq B^{1+o(1)}$ bits;
$\leq B^{0.5+o(1)}$ terms in sum;
$\leq B^{1+o(1)}$ inputs (a, b, c);
total time $\leq B^{2.5+o(1)}$.
Don't need explicit upper bound on error.
Start with low precision; obtain interval around answer; if precision is too small, later steps will notice that interval is too large, so retry with double precision.

Third step: Compute product $H_{-D} \in \mathbf{C}[x]$
of $x-j(-b / 2 a+\sqrt{-D} / 2 a)$
over all (a, b, c).
Amazing fact: $H_{-D} \in \mathbf{Z}[x]$. The j values are algebraic integers generating a class field.
$\leq B^{1+o(1)}$ factors.
Time $\leq B^{2+o(1)}$.

Fourth step: Find a root r of H_{-D} in \mathbf{Z} / n.

Easy since n is prime.

Amazing fact: the curve $y^{2}=x^{3}+(3 x+2) r /(1728-r)$
has $n+1+u$ points
for some (u, v) with $4 n=u^{2}+D v^{2}$.

FastECPP using CM

To prove primality of n :

Choose $y \in B^{1+o(1)}$.
For each odd prime $p \leq y$, compute square root of p in quadratic extension of \mathbf{Z} / n. Also square root of -1 .

Each square root costs $B^{2+o(1)}$.
Total time $B^{3+o(1)}$.

For each positive squarefree y-smooth $D \in 3+4 \mathbf{Z}$ below $B^{2+o(1)}$, compute square root of $-D$ in quadratic extension of \mathbf{Z} / n.

Each square root costs $B^{1+o(1)}$: multiply square roots of primes.

Total time $B^{3+o(1)}$.

For each D
having $\sqrt{-D} \in \mathbf{Z} / n$,
find u, v with $4 n=u^{2}+D v^{2}$, if possible.

This can be done by a half-gcd computation. Each D costs $B^{1+o(1)}$.

Total time $B^{3+o(1)}$.

Conjecturally there are $B^{1+o(1)}$ choices of (D, u, v).

Look for $n+1 \pm u$

having form $2 q$ where q is prime. More generally: remove small factors
from $n+1 \pm u$; then look for primes.

Each compositeness proof costs $B^{2+o(1)}$.
Total time $B^{3+o(1)}$.

Conjecturally have
several choices of (D, u, v, q), when $o(1)$'s are large enough.

Use CM to construct curve

 with order divisible by q.Time $\leq B^{2.5+o(1)} ;$ negligible.
Problems can occur.
Might have $n+1+u$
when $n+1-u$ was desired, or vice versa. Curve might not be isomorphic to curve of desired form $y^{2}=x^{3}+a x^{2}+x$.
Can work around problems, or simply try next curve.

Recursively prove q prime.
Deduce that n is prime.
$\leq B^{1+o(1)}$ levels of recursion.
Total time $\leq B^{4+o(1)}$.
Verification time $\leq B^{3+o(1)}$.
Open: Can we quickly find (E, q)
with E an elliptic curve
(or another group scheme),
q prime, $q \in\left[n^{0.6}, n^{0.9}\right]$, and $\# E(\mathbf{Z} / n) \in q \mathbf{Z}$?

