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extra p’s won’t damage
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Main work is multiplication.

For each 6-digit message chunk,

have to do one multiplication

of the 6-digit secret r

into an accumulator mod p.

Scaled up for serious security:

“Poly1305” uses p = 2130 � 5.

For each 128-bit message chunk,

have to do one multiplication

of a 128-bit secret r

into an accumulator mod 2130�5.

� 5 cycles per message byte,

depending on the CPU.
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Security analysis

Attacker’s goal:

Find n0;m0; a0 such that

m0 6= mn0 but a0 =

(m0(r) mod p)+sn0 mod 1000000.

Here m0(x) =
P

im
0[i]xi.

Obvious attack:

Choose any m0 6= m1.

Choose uniform random a0.

Success chance 1=1000000.

Can repeat attack.

Each forgery has chance

1=1000000 of being accepted.
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More subtle attack:

Choose m0 6= m1 so that

the polynomial m0(x)�m1(x)

has 5 distinct roots

x 2 f0; 1; : : : ; 999999g

modulo p. Choose a0 = a.

e.g. m1 = (100; 0; 0; 0; 0),

m0 = (125; 1; 0; 0; 1):

m0(x)�m1(x) = x5 + x2 + 25x

which has five roots mod p:

0; 299012; 334447; 631403; 735144.

Success chance 5=1000000.
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can be above 5=1000000.

Example: If m1(334885) mod p

2 f1000000; 1000001; 1000002g

then a forgery (1;m0; a1) with

m0(x) = m1(x) + x5 + x2 + 25x

also succeeds for r = 334885;

success chance 6=1000000.

Reason: 334885 is a root of

m0(x)�m1(x) + 1000000.

Can have as many as 15 roots

of (m0(x)�m1(x)) �

(m0(x)�m1(x) + 1000000) �

(m0(x)�m1(x)� 1000000).
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has a security guarantee.
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16 shared secret bytes

to authenticate L message bytes.

Each new message needs

new shared secret bytes,

used only once.

How to handle many messages?
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but can still prove that
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implies attack on AES.
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Another stream cipher:

Fk(n) = MD5(k; n).

Somewhat slower than AES.

“Hasn’t MD5 been broken?”

Distinct (k; n); (k0; n0) are known

with MD5(k; n) = MD5(k0; n0).

(2004 Wang)

Still not obvious how to predict

n 7! MD5(k; n) for secret k.

We know AES collisions too!

Many other stream ciphers

are unbroken, faster than AES.
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Alternatives to +
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might allow successful forgeries
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No! Broken by known attacks
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But ok for small # messages.
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Seems to be massive overkill.
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Alternatives to Poly1305

Notation: Poly1305r(m) =

(m(r) mod 2130 � 5) mod 2128.

For all distinct messages m;m0:

Pr[Poly1305r(m) =

Poly1305r(m0)] is very small.

“Small collision probabilities.”

For all distinct messages m;m0

and all 16-byte sequences ∆:

Pr[Poly1305r(m) =

Poly1305r(m0) + ∆ mod 2128]

is very small.

“Small differential probabilities.”
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.

Reduce m modulo a uniform

random prime number r

between 2120 and 2128.

(Problem: generating r is slow.)

Low differential probability:

if m 6= m0 then m�m0 �∆ 6= 0

so m�m0 �∆ is divisible

by very few prime numbers.
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(Problem: division by r is slow;

typical CPU has no big circuit

for polynomial multiplication.)
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to m1r1 + m2r2 + m3r3 mod p.

(Problem: long m needs long r.)
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AESr(AESr(AESr(m1)�m2)�m3)

has small differential probabilities.

True if AES is secure.

(Much slower than Poly1305.)
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AESr(3;m3)

has small differential probabilities.

(Even slower.)

Example: m 7! MD5(r;m)

is conjectured to have

small collision probabilities.

(Faster than AES,

but not as fast as Poly1305,

and “small” is debatable.)
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How to build your own MAC

1. Choose a combination method:

h(m) + f(n) or h(m)� f(n)

or f(h(m))—worse security—

or f(n; h(m))—bigger f input.

2. Choose a random function h

where the appropriate probability

(+-differential or �-differential

or collision or collision) is small:

e.g., Poly1305r.

3. Choose a random function f

that seems indistinguishable

from uniform: e.g., AESk.
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many more possibilities.

5. Choose a Googleable name

for your MAC.

6. Put it all together.

7. Publish!
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