
The DNS security mess

D. J. Bernstein

University of Illinois at Chicago



A public-key signature system

Message m

��
Signer’s
secret
key n

��

//
Signed
message
m; r; s

��
Signer’s
public
key nB

//
Verify

r = SHA-256
(sB � rnB;m)

Signer can compute signature.

Anyone can verify signature.

Seems hard for attacker

to forge signature.



The Internet

Web-browsing procedure:

1. Figure out web page’s URL.

2. Figure out server’s IP address.

3. Figure out server’s public key.

4. Retrieve page.

Similar procedure for mail et al.

Need to protect each step

against forgery.

(And against denial of service.)



Assuming URL is protected:

Why not put IP address into URL?

Protects IP address for free.

Answer:

IP addresses often change.

Want old links to keep working.

Why not put public key into URL?

Protects public key for free.

Will come back to this.



This talk focuses on step 2:

given web-page URL,

find server’s IP address.

e.g. if URL is

http://

www.akamai.com/

html/support

then need to find IP address

of www.akamai.com.



The Domain Name System

'& %$ ! "#Browser at panic.gov

'& %$ ! "#Administrator at akamai.com

“The web server

www.akamai.com

has IP address

64.212.198.121.”

OO



Many DNS software security holes:

BIND libresolv buffer overflow,

Microsoft cache promiscuity,

BIND 8 TSIG buffer overflow,

BIND 9 dig promiscuity, etc.

Fix: Use better DNS software.

http://cr.yp.to/djbdns.html

But what about protocol holes?



Attacker can forge DNS packets.

Blind attacker must guess cookie;

32 bits in best current software.

Could make cookie larger by

extending or abusing protocol.

Sniffing attacker succeeds easily,

no matter how big cookie is.

Solution: public-key signatures.



Paul Vixie, June 1995:
This sounds simple but it has deep
reaching consequences in both the
protocol and the implementation—
which is why it’s taken more than a
year to choose a security model and
design a solution. We expect it to
be another year before DNSSEC is in
wide use on the leading edge, and at
least a year after that before its use
is commonplace on the Internet.

BIND 8.2 blurb, March 1999:
[Top feature:] Preliminary DNSSEC.

BIND 9 blurb, September 2000:

[Top feature:] DNSSEC.



Paul Vixie, November 2002:
We are still doing basic research on
what kind of data model will work
for DNS security. After three or
four times of saying “NOW we’ve
got it, THIS TIME for sure” there’s
finally some humility in the picture
: : : “Wonder if THIS’ll work?” : : :

It’s impossible to know how many
more flag days we’ll have before it’s
safe to burn ROMs : : : It sure isn’t
plain old SIG+KEY, and it sure isn’t
DS as currently specified. When will
it be? We don’t know. : : :

2535 is already dead and buried.
There is no installed base. We’re
starting from scratch.



Paul Vixie, 20 April 2004,

announcing BIND 9.3 beta:

BIND 9.3 will ship with DNSSEC



Paul Vixie, 20 April 2004,

announcing BIND 9.3 beta:

BIND 9.3 will ship with DNSSEC
support turned off by default in the
configuration file.



Paul Vixie, 20 April 2004,

announcing BIND 9.3 beta:

BIND 9.3 will ship with DNSSEC
support turned off by default in the
configuration file. : : :

ISC will also begin offering direct
support to users of BIND through
the sale of annual support contracts.



Paul Vixie, 1 November 2005:
Had we done a requirements doc ten
years ago : : : they might not have
noticed that it would intersect their
national privacy laws or business
requirements, we might still have
run into the NSEC3 juggernaut and
be just as far off the rails now as we
actually are now.



DNS in more detail

Browser at panic.gov

DNS cache

WV UT
PQ RS

OO

.akamai.com
DNS server

OO

.akamai.com
database

OO

Administrator at akamai.com

WV UT

PQ RS
OO

“The web server

www.akamai.com

has IP address

64.212.198.121.”

_g



DNS cache learns location of

.akamai.com DNS server from

.com DNS server:

at panic.gov DNS cache
'& %$ ! "#

.com
DNS server

OO

.com
database

WV UT
PQ RS

OO

at akamai.com Administrator
'& %$ ! "#

OO

“The DNS server

for .akamai.com

is asia1

with IP address

144.135.8.182.”

4<



Packets to/from DNS cache

God sayeth unto the DNS cache:
“DNS Root K.Heaven 193.0.14.129”

193.0.14.129
“DNS .com k 192.52.178.30”

// DNS cache
“Web www.akamai.com?”oo

192.52.178.30
“DNS .akamai.com asia1 144.135.8.182”

// DNS cache
“Web www.akamai.com?”oo

144.135.8.182
“Web www.akamai.com 64.212.198.121”

// DNS cache
“Web www.akamai.com?”oo



GodWV UT

PQ RS

&&NNNNNNNNNNN Browser

Root
DNS
server

// DNS
cache

WV UT
PQ RS

OO

.com
DNS
server

::
uuuuuuuuuuu .akamai.com

DNS
server

OO

.com
data

at Internet
Central HQ

base

OO

.akamai.com
database

OO

at akamai.com

Administrator

WV UT

PQ RS
OOhhPPPPPPPP

\d

6>



Making DNS secure

Many popular ways to authenticate

cache ! browser: e.g., IPSEC, or

put cache on same box as browser.

Other local communication: same.

Limited risk for God ! cache:

information on this channel is

small, stable, widespread.

Keep safe local copy of result.

Root ! cache: similar;

can keep safe local copy,

although somewhat unstable.



Many popular ways to authenticate

Akamai admin ! .com: e.g.,

SSL-encrypted passwords.

Be careful: In January 2001,

someone fooled Internet HQ into

accepting fake Microsoft data;

many similar incidents.

Remaining channels,

the big DNS security problems:

.com server ! cache and

.akamai.com server ! cache.

Need to use public-key signatures

to protect these channels.



Who should check signatures?

Caches have responsibility

for verifying signatures.

Could check in browser instead,

but caches are easier than browsers

to upgrade and redeploy.

(Also, without cache support,

can’t stop denial of service.)



How does the cache obtain keys?

Akamai administrator signs

www.akamai.com information

under .akamai.com public key.

Cache needs safe copy of that key.

Old DNSSEC approach:

.akamai.com server

sends its key, signed by .com key,

to the cache.



Current DNSSEC approach:

.com server sends

second Akamai key to cache,

signed by .com key;

.akamai.com server sends

first Akamai key to cache,

signed by second key.

New software for DNS servers,

.com database to store keys,

and .akamai.com database.



No reason to change software!

.com server has to sign

“.akamai.com asia1 144.135.8.182”

anyway. Embed Akamai key k

into asia1 field as k:m1

where m1 is a magic number.

Cache sees m1, extracts k,

rejects data not signed by k.



Another solution:

Put public keys into URLs.

Use www:k:m2:akamai:com

instead of www.akamai.com.

Cache sees m2, extracts k,

rejects data not signed by k.

Doesn’t need HQ cooperation.

In fact, secure against HQ.

(But HQ can still deny service.)



How does cache obtain sigs?

How are signatures encoded

in DNS responses?

DNSSEC: Servers are responsible

for volunteering signatures

in a new signature format.

(Sometimes cache has to

go track down signatures;

makes denial of service easier.)

New software for DNS servers.



No reason to change software!

Put signed data into

existing servers.

Cache wants xx.yz.akamai.com

data from .akamai.com

with signature under key k.

Instead requests data for

r:m3.xx.yz.k:m3.akamai.com

where r is a cookie.

Rejects unsigned results.

(Cookie stops blind attacks.)



Simplified example

in BIND format:

.akamai.com server has

*.123.www.8675309.123.akamai.com.

TXT "A 64.212.198.121 ..."

where ... is a signature of

www A 64.212.198.121

under Akamai’s key 8675309.

.com server has

*.akamai.3141592.123.com.

TXT "akamai NS

8675309.789 144.135.8.182 ...".



Cache wants data for

www.akamai.com or

www.8675309.456.akamai.com.

Asks .com server about

237.123.www.akamai

.3141592.123.com.

Checks signature

under key 3141592.

Asks .akamai.com server about

291.123.www

.8675309.123.akamai.com.

Checks signature

under key 8675309.



Precomputation hassles

Popular DNS server receives

> 10000 queries per second.

Can’t keep up without

precomputing some signatures.

To avoid changing server

(and to prevent denial of service),

need to precompute all signatures.

Can’t use client’s fresh cookie

in precomputation, so need

secure global clocks for freshness.



Can’t precompute signatures for

all possible responses:

.akamai.com controls

quizno357.akamai.com etc.

DNSSEC approach: Sign wildcards

such as “there are no names

between quaalude.akamai.com

and quizzical.akamai.com.”

Big problem: saves time for

snoops invading DNS privacy.

Better: Sign only real names.

Legitimate users never ask

about quizno357.akamai.com,

so they don’t need it signed.



The .com database is � 2GB.

With signatures,

several times larger;

won’t fit into memory.

(Virtual memory allows

easy denial of service.)

DNSSEC approach: “opt-in.”

Useless signatures such as

“This is a signature for

any data you might receive

for x.com through y.com.”

Better: Buy enough memory.

The Internet can trivially afford

a few big .com servers.



What’s next?

First step:

build state-of-the-art

cryptographic tools.

Need small public keys;

fast signing; small signatures;

extremely fast verification.

Second step:

deploy DNS caches

verifying signatures

using mechanisms m1;m2;m3.

Third step:

deploy DNS signing tool

and start signing data!


